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Stable 1-norm error minimization based linear
predictors for speech modeling

Daniele Giacobello, Member, IEEE, Mads Grasbgll Christensen, Senior Member, IEEE,
Tobias Lindstrgm Jensen, Member, IEEE, Manohar N. Murthi, Member, IEEE,
Sgren Holdt Jensen, Senior Member, IEEE, and Marc Moonen, Fellow, IEEE

Abstract—In linear prediction of speech, the 1-norm error
minimization criterion has been shown to provide a valid al-
ternative to the 2-norm minimization criterion. However, unlike
2-norm minimization, 1-norm minimization does not guarantee
the stability of the corresponding all-pole filter and can generate
saturations when this is used to synthesize speech. In this paper,
we introduce two new methods to obtain intrinsically stable
predictors with the 1-norm minimization. The first method is
based on constraining the roots of the predictor to lie within the
unit circle by reducing the numerical range of the shift operator
associated with the particular prediction problem considered. The
second method uses the alternative Cauchy bound to impose
a convex constraint on the predictor in the 1-norm error
minimization. These methods are compared with two existing
methods: the Burg method, based on the 1-norm minimization of
the forward and backward prediction error, and the iteratively
reweighted 2-norm minimization known to converge to the 1-
norm minimization with an appropriate selection of weights.
The evaluation gives proof of the effectiveness of the new
methods, performing as well as unconstrained 1-norm based
linear prediction for modeling and coding of speech.

I. INTRODUCTION

Linear Prediction (LP) is widely used in a diverse range
of speech modeling based algorithms (e.g., coding and recog-
nition [1]). The traditional approach is to find the prediction
coefficients by minimizing the 2-norm of the prediction error,
i.e., the difference between the predicted and observed signal.
This works well when the excitation signal is i.i.d. Gaussian
[2]; however, when this assumption is not satisfied, problems
arise. This is the case for voiced speech where the pitch
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excitation is sparse and pulse-like. In this case, an alternative
approach based on the 1-norm minimization of the prediction
error has shown to offer a better modeling thanks to its ability
to decouple the pitch excitation from the vocal tract transfer
function [3].

The improved modeling of 1-norm minimization also ha
shown to be beneficial in speech coding. In particular, when
seeing the 1-norm as a convex relaxation of the O-norm,
the minimization process offers a residual that is sparser,
providing tighter coupling between the multiple stages of
time-domain speech coders and thereby enabling a more
efficient coding [4]-[6]. Nevertheless, unlike those obtained
through 2-norm minimization, the predictors obtained through
1-norm minimization are not intrinsically stable [7], [8] and,
in applications such as coding, having unstable filters may
generate saturations in the synthesized speech. In particular,
as noted in [3] for a large set of data, the percentage of unstable
filters in voiced speech is around 10%.

The predictor stability problem in 1-norm LP has been
tackled already in [8] by introducing the Burg method for all-
pole parameters estimation based on 1-norm minimization of
the forward and backward error. In this approach, however, the
sparsity is not preserved [3]. In this paper, we will introduce
two novel methods to obtain intrinsically stable predictors
with the 1-norm minimization. The first method is based on
modifying the shift operator that generates the observation
matrix from the analyzed speech segment [9], reducing the
numerical range of this matrix [10]. This allows us to restrict
the zeros of the predictor polynomial to lie within the unit
circle. A similar approach has been used in weighted LP [11],
[12] to modify the weighting function to guarantee stable
solutions. The second method uses the alternative Cauchy
bound [13], [14] to impose a constraint on the predictor in
the 1-norm error minimization.

The paper is organized as follows. In Section II, we provide
a brief review of LP based on the p-norm. In Section III, the
core of the paper, we introduce our two new methods to obtain
intrinsically stable predictors with the 1-norm minimization
and also review the existing ones. In Section IV, we compare
the spectral modeling and coding performances of the resulting
predictors. In Section V, we provide a complexity analysis
and possible efficient solutions for the method presented, as
initially introduced in [15] for the 1-norm LP. Finally, Section
VI concludes the paper.
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II. FUNDAMENTALS OF LINEAR PREDICTION

The problem considered in this paper is based on the
following speech production model, where a sample of speech
x(n) at time n is written as a linear combination of K past
samples:

x(n) = Z arx(n — k) + e(n), ()
k=1

where {a;} are the coefficients of the predictor

K
A(z) =1+ Z arz ", 2)
k=1

and e(n) is the driving noise process (also referred to as pre-
diction residual or excitation). The speech production model
(1) in matrix form becomes:

x = Xa+e. 3)

The problem considered in this paper is associated with finding
the prediction coefficient vector a € RX from a set of
observed real samples x(n) for n = 1,..., N so that the
prediction error is minimized [16]:

& = argmin ||x — Xa||b, 4)
where
x = [a() x(N2) ], (5)
.T(Nl—l) $<N1—K)
X = : : ; (6)
LL'(NQ—l) .T(NQ—K)
and || - ||, is the p-norm defined as ||x||, = (Zi:/:l |x(n)\p)%

for p > 1. The starting and ending points N; and N, can be
chosen in various ways assuming that x(n) = 0 for n < 1
and n > N [17]. We will consider the case N; = 1 and N, =
N + K, which for p = 2 is equivalent to the autocorrelation
method:

4 = argmin [|x — Xa||3 = (X'X) !XTk, (7
a

where R = X”X is the autocorrelation matrix.
The case we consider here is when p = 1, which corre-
sponds to minimizing the sum of absolute values:

A = argmin ||x — Xa||;. (8)

This formulation is relevant particularly in LP of voiced speech
signals where the prediction residual is usually modeled by an
impulse train. The 1-norm, intended as a convex relaxation
of the O-norm, will offer an approximate solution to the
minimization of the cardinality, i.e., the sparsest prediction
residual:

a4 = argmin ||x — Xalo. )

a

This translates into the ability of the predictor to preserve the
structure of the underlying sparse pulse-like excitation. The

spectral envelope will benefit from this by avoiding the over-
emphasis on peaks generated in the effort to cancel the voiced
speech harmonics [3], [8].

The 1-norm minimization criterion is also equivalent to
the Maximum-Likelihood (ML) estimator when the prediction
error is assumed to be i.i.d. Laplacian:

appr = argmax f(x]a) = argmax{exp(—||x — Xal1)}. (10)
a a

A multivariate Laplacian distribution can be seen as generated
by an autoregressive (AR) model excited by a sequence of i.i.d.
univariate Laplacian samples [18]-[20]. However, a rigorous
proof cannot be obtained since the Laplacian distribution
does not have a closed form solution [21]. This conjecture
statistically justifies the use of the l-norm in modeling the
excitation, given that it is well known that a multivariate
Laplacian distribution offers a better model for a speech signal
segment [22].

The minimization problem in (8) does not allow for a closed
form solution and so a linear programming formulation is
required [16]. In particular, interior point methods [23] have
been proven to solve the minimization problem efficiently [15].

ITII. METHODS FOR OBTAINING STABLE PREDICTORS
A. Reducing the numerical range of the shift operator

First of all, we consider a known general framework for
linear prediction, successfully implemented in [11] and [12]

for the analysis of voiced speech. The columns of the matrix
obtained concatenating x and X, as defined in (6)

[x|X] = [x0 X1 ... xx] € RWHOXE+D (4
can be generated via the formula:
Xp4+1 = BXg, (12)
where
xo=[r129 ... 2x 0 ... 0]T € RNFTK, (13)

and B is a a noncirculant shift matrix of size (N +K) x (N +
K):

0 0 0

B= 1 (14)
: . .0
0 O 1 0

Applied to x, B shifts the elements down by one position and
eliminates the last element. In other words, B is a nilpotent
operator of power n = N + K, i.e., BNtK = 0.

Let us now consider the p-norm LP problem (4), where
the column [x|X] are constructed using the formula in (12)
where B is generalized to any matrix in ROVHE)X(N+K) 1t
has been shown that, in this case, the roots {z;} of the monic
polynomial solution to the p-norm LP problem (4) belong to
the numerical range 7,(B) of the matrix B, which, in turn,
belongs to an open circular disk p(B) of radius 2||B||2 and
center in the origin [9]. It is then clear that the roots of the
predictor, obtained by solving (8), with B as defined in (14),
will be contained in a closed circle of radius 2||B||s = 2. This
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result can be generalized for any shift matrix B with nonzero
entries different from the unity:

0 0 0
B=| P2 (15)
: . 0
0 0 BytrnNt+Ek-1 O

In this case, the radius of the circle p(B) that contains the
numerical range 1;(B) is calculated as:

2”B||2 :2maX|Bl+1’z\ (16)

We will then change the nonzero values of B (and subse-
quently the construction of [x|X]) in order to reduce the
radius of the circle containing 7;(B) to be equal or less
than one, therefore guaranteeing the stability of the linear
predictor. In particular, having max|B; ;| < 1/2 will be
sufficient for stability. We can also consider a more general
formulation of the LP scheme, where we apply a weighting
vector w € ]Rf“( on the analyzed speech signal segment.
The effect of the weighting can be moved into the shift matrix
and the analyzed speech segment by defining:

B | welwn . a7
i 0
0 0 wnikx/wnik-1 0
and
Xo = [w1z1 woxs WNTN O ... 0]T~ (18)

Constructing all the other columns of the new matrix [%|X]
using the relation in (12), the minimization problem (8) then
becomes:

rnain||5i—5(a||1. (19)
According to (16), the circle containing the numerical range of
[%|X] and, in turn, the roots of the predictor will have radius:

Wn+1

B) =2
p(B) = 2max 0,

(20)
We can then construct a weighting vector that stabilizes the

predictor. In [11] and [12], the weighting vector is chosen
based on the short-time energy (STE):

21

where M is the length of the STE window. The STE window
tends to more heavily weight those parts of the speech signal
that consist of samples of large magnitude, providing a robust
signal selection especially for the analysis of voiced speech.
In order to achieve intrinsically stable solutions, we can then
simply define the entries of the matrix B in (17) as:

- o (wl 1/wz)§1/27
Bz+1,z = { (wzil/wl) > 1/2'

Finally, we can solve our modified 1-norm problem in (19)
obtaining an intrinsically stable predictor. Clearly, the window,

(wiH /wl) lf

12 if (22)

Algorithm 1 Iteratively Reweighted 2-norm Minimization
Inputs: speech segment x
Outputs: predictor &%, residual
i = 0, initial weights W=0 =T
while halting criterion false do
1. & + argmin, |[W'(x — Xa)||3
2. Witl  diag (|x — Xai| €)'/
i1 +1
end while

and thus the weights, can be chosen ad libitum; we will use
the STE windowing that provides important signal selection
properties to retrieve the underlying spiky structure of the
speech signal, as done in [12].

B. Constrained 1-norm minimization

We will now consider another method to constrain the roots
of the predictor within the unit circle. Let us consider the
univariate polynomial A(z) in (2). According to [24], the
alternative Cauchy bound states that all zeros of (2) lie in
the disk:

K
|z| <A, where A= max {17 Z |ak|} . (23)

k=1

This bound, a refinement of the famous Cauchy bound [13],
gives precious hints on how to modify the formulation of (8)
to guarantee a stable predictor. In particular, we can rewrite
the problem as:

Ix — Xal|,
lall; <1

minimize

2 (24)

subject to

where the constraint ||al|; < 1, according to (23), provides

a sufficient (not necessary) condition for the zeros of (2) to

belong to the open unit disk, and can be easily incorporated
in the linear program to solve (8) [16].

C. Iteratively Reweighted 2-norm minimization [25]

Now let us consider some previously proposed methods for
obtaining stable solutions. A known method to obtain a stable
predictor based on 1-norm minimization is based on iteratively
reweighted 2-norm minimization [25]. The algorithm is shown
in Algorithm 1. It is guaranteed to output a stable predictor
since the only difference to the original formulation is the
projection in the weighted domain by the matrix W, leaving
x and X untouched, as discussed in Section III-A. In [25], a
proof that [|#11]|y < [|#?]|2 (where # = x— X&) is provided,
meaning that this is a descent algorithm. In Algorithm 1, the
halting criterion can be chosen as either a maximum number
of iterations or as a convergence criterion. The parameter
€ > 0 is used to avoid problems when a component of ¥ goes
to zero. The weighting with the square root of the inverse
of the amplitude of the residual increases the influence of
the small values in the residual while the influence of the
large residual values decreases, which is consistent with the
Laplacian probability density functions (8).
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Algorithm 2 1-norm Burg Method
Inputs: speech segment x
Outputs: reflection coefficients {k;}
Initialize forward f; = x and backward by = x error
fori=1,...,K do
1. k; < argming ||, + kb1 + [[kifi—1 +bi1]l1
update forward error
2. filn) « fi—1(n) + kibi—1(n — 1)
update backward error
end for

D. Burg method based on 1-norm minimization [8]

The Burg method based on 1-norm minimization was first
proposed in [8]. This method stands as a generalization of the
Burg method where the reflection coefficients of the lattice
filter are obtained by minimizing the 1-norm of the forward
and backward prediction error instead of the 2-norm. The
algorithm is shown in Algorithm 2. Once the K reflection
coefficients are found, the prediction polynomial and the
prediction error can be easily calculated. This method is
also guaranteed to provide a stable predictor since all the
reflection coefficients obtained have amplitude less than one.
A simple proof is shown in [8]. This method is, however,
suboptimal due to the decoupling of the main K -dimensional
minimization problem (8) in K one-dimensional minimization
sub-problems.

IV. PERFORMANCE ANALYSIS

In this section, we analyze and compare the performance of
the stable predictors obtained with the methods presented in
the previous section with traditional 2-norm LP and 1-norm
LP. An overview of the methods compared and the acronyms
used through the section are shown in Table I. In the case of
I-norm LP, a stability check takes place once the predictor
is obtained and the stabilization is performed through pole
reflection when the predictor is unstable. Notice that pole
reflection is the only way to obtain an amplitude response for
the stabilized predictor that is exactly the same as the one of
the unstable predictor. In all other methods, no stability check
has to be performed.

A. Modeling Performance

In this section, we analyze the modeling performance of
the predictors in the case of voiced speech. The experimental
analysis was done on 5,000 segments of length N = 40 (5§ ms)
of clean voiced speech coming from several different speakers
with different characteristics (gender, age, pitch, regional
accent) taken from the TIMIT database, downsampled to 8
kHz.

1) Spectral Envelope Modeling: As a reference, we used
the envelope obtained through a cubic spline interpolation
between the harmonics peaks of the logarithmic periodogram.
This method was presented in [26] and provides an ap-
proximation of the vocal tract transfer function, “cleaned”

TABLE 1
DESCRIPTION OF THE DIFFERENT PREDICTION METHODS COMPARED IN
OUR EVALUATION.

METHOD DESCRIPTION

Traditional 2-norm minimization (7) with 10Hz band-
width expansion (v = 0.996) and Hamming window-
ing.

Unconstrained 1-norm minimization (8). Stability is
imposed by pole reflection if unstable. No windowing
is performed.

Stable 1-norm minimization through reduction of the
numerical range of the shift operator (19). The weigths
in (17) and (18) are chosen from the STE (21).
Constrained 1-norm minimization as shown in (24).
No windowing is performed.

Burg method based on the 1-norm minimization of
forward and backward error (as shown in Algorithm
2). No windowing is performed.

Reweighted 2-norm minimization (as shown in Algo-
rithm 1). No bandwidth expansion is performed. No
windowing is performed.

LP2

LP1

STW

CT1

BU1

RWwW2

TABLE 11
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS IN
THE UNQUANTIZED CASE SD;;, AND QUANTIZED CASE SD4 FOR
DIFFERENT PREDICTION ORDERS K. A 95% CONFIDENCE INTERVALS IS
GIVEN FOR EACH VALUE.

[METHOD [ K [ SD,, | 5Py |
2 0 | 1972003 | 2.95£0.00
12 | 1984005 | 2.7240.12
o1 10 [ 1782001 | 2.53%£0.02
12 | 1614001 | 2.31+0.04
10 [ 1712002 | 2.47£0.01
STW | 15 | 1522001 | 2.19+0.09
o 10 | 1.88£0.01 | 2.6420.01
12 | 1654001 | 2.2240.01
S0t 10 [ T.91£0.06 | 2.71£0.09
12 | 1.8440.11 | 2.59+0.10
10 [ 1.830001 | 2.5120.02
RW2 1 12 | 1694003 | 2374005

from the fine structure belonging to the pitch excitation. We
then calculated the log spectral distortion (SD) between our
reference envelope S;,:(w) and the estimated model of the
all-pole model corresponding to the inverse of the predictor
S(w,a)

as
1 ™
SD,, = \/ o / [1010g, Sint(w) — 1010g, o S(w, a)]” dw.

(25)
In general, the linear predictors obtained through 1-norm
minimization provide smoother all-pole models of the vocal
tract and are therefore more robust to quantization. We also
compared the log spectral distortion between our reference
envelope Sin¢(w) and the quantized LP model S(w, &):

1 ™
SD, = \/%/ [1010g, o Sint(w) — 1010g,o S(w, &)]? dw.

(26)
The quantizer used is the one presented in [27], with the
number of bits fixed at 20 for the different prediction orders.
A critical analysis of the results in Table II shows how 1-
norm based LP (LP1) offers substantially better modeling of
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Fig. 1.  Figures of typical properties of the spectrum for the methods
considered using prediction order K = 10. The top pane illustrates an
example of the spectral difference between LP1 and LP2 for a voiced segment
of speech for which the spectrogram is shown. The bottom pane demonstrating
the differences between LP1 and the different approaches for intrinsically
stable solution listed in Table I.

the envelope than traditional 2-norm LP (LP2). All the other
methods achieve a performance similar to LP1, but STW
offers even better modeling performance, thanks also to the
choice of weights. It should be noted that CT1 increases its
performances considerably from order K = 10 to K = 12.
This is a direct consequence of the stringent constraint on
the prediction coefficients (||alj; < 1), requiring a larger K to
model all the spectral information as well as the other methods.

Examples of the spectral envelopes for the different methods
are shown in Figure 1. The top pane clearly illustrates some
of the shortcomings of the 2-norm minimization approach, as
the overemphasis on peaks of the underlying pitch excitation
causes the envelope to have a sharper contour than desired
with poles close to the unit circle. The bottom pane shows
the similarity in performance of the stable methods presented.
It can be seen that BU1 and RW2 have a slightly different
behavior. The Burg method, in particular, can suffer from
spectral line-splitting when there is a mismatch between the
true order of the system and the order of the Burg algorithm
[28]. In this particular case, a pole is not located around the
first formant. Instead, two poles are estimated around it, which
makes for a fading spectral lobe. A similar effect happens
in RW2, where the spectral lobe around the first formant is
unusually wide. This is an effect of the ill-conditioning of
the autocorrelation matrix (X7X)~! in Step 1 of Algorithm
1 after a few reweighting iterations. The eigenvalues might
tend to cluster towards certain locations of the autocorrelation
matrix, thus generating a higher spread in the eigenvalues
and a peakier behavior in the envelope. This can also be
seen in the difference between LP1 and RW2 in the higher
frequencies [29].

2) Shift Invariance: Linear predictors obtained with the
I-norm minimization criterion are well documented to be
robust to small shifts of the analysis window [3]. In speech
analysis, this is a desirable property, since speech, and voiced
speech in particular, is assumed to be short-term stationary.
The shortcomings of the LP2 method are a direct consequence
of the coupling between the vocal tract transfer function and

TABLE III
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH
SHIFT OF THE ANALYSIS WINDOW s = 1,2, 5,10, 20.

[[METHOD | SD; | SDz | SDs | SDio | SD2o |
LP2 0.138 | 0.159 | 0.233 | 0478 | 1.342
LP1 0.005 | 0.010 | 0.017 | 0.021 | 0.039
STW | 0.003 | 0.008 | 0.015 | 0.023 | 0.032
CT1 0.007 | 0.013 | 0.024 | 0.036 | 0.082
BUT 0.015 | 0.077 | 0.135 | 0.191 | 0.401
RW2 | 0.006 | 0.059 | 0.161 | 0.199 | 0.515

the underlying pitch excitation that standard LP introduces in
the estimate [30]. To analyze the invariance of the LP methods
to window shifts, we took the same 5,000 frames of clean
voiced speech mentioned above and we expanded them to the
left and to the right with 20 samples, giving a total length
N = 80. In each frame of length N = 80 we defined a
M = 40 samples rectangular window for all methods and we
shifted the window by s = 1,2, 5, 10, 20 samples. The average
log spectral difference of the 10*" order LP estimate between
So(w) and Ss(w):

1 s
SD, = \/2/ [101og,y So(w) — 101og; o Ss(w, a)]? dw,
m —1T

27)
was analyzed. The average differences obtained for the
methods in Table I are shown in Table III. The results
obtained indicate clearly that the 1-norm based predictors’
robustness to small shifts in the analyzed window is still
maintained. While the decay in performance for increasing
shift in the analysis window is comparable for all methods,
the stable predictors still retain better performance. Also in
this case, the change in the frequency response in traditional
LP is clearly given by the pitch bias in the estimate of the
predictor, particularly dependent on the location of the spikes
of the pitch excitation.

3) Pitch Independence: The ability of the linear predictors
obtained with the 1-norm minimization criterion to decouple
the pitch excitation from the vocal tract transfer function is
reflected also in the ability to have estimates of the envelope
that are not affected by the pitch. In this experiment, the
envelope was calculated using a 10?" order predictor obtained
with LP1. The underlying pitch excitation is then modeled
with an impulse train with different spacing. We then filtered
this synthetic pitch excitation through the obtained LP filter
and analyzed the synthetic speech applying the different LP
methods in Table I. The analysis is divided into three subsets:
high-pitched 7, € [16,35] (fo € [228Hz,500Hz]), mid
pitched T, € [36, 71] (fo € [113Hz, 222Hz]), and low pitched
T, € [72,120] (fo € [67THz,111Hz]). The shortcomings of
LP2 can be particularly seen in high-pitched speech, as shown
in the results of Table IV. Because high-pitched speakers have
fewer harmonics within a given frequency range, modeling
of the spectral envelope is more difficult and particularly
problematic for traditional LP. The stable methods are much
less affected by the underlying pitch excitation, which results
in an improved spectral modeling.
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TABLE IV
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH
DIFFERENT UNDERLYING PITCH EXCITATION. A 95% CONFIDENCE
INTERVAL IS GIVEN FOR EACH VALUE.

[METHOD | low [ mid | high |
LP2 0.81£0.14 | 1.12£0.29 | 1.32£0.59
LPI 0.05£0.00 | 0.11£0.00 | 0.14£0.01
STW | 0.03£0.01 | 0.04£0.01 | 0.03£0.03
CT1__ | 0.09£0.01 | 0.08£0.03 | 0.19£0.04
BUI | 0.23£0.02 | 0.16£0.10 | 0.28£0.09
RW2 | 0.11£0.03 | 0.12£0.07 | 0.27£0.09

B. Coding Performance

The second objective is to adopt the presented methods
in the speech coding context. The experimental analysis was
conducted on about one hour of clean speech (both voiced
and unvoiced) coming from several different speakers with
different characteristics (gender, age, pitch, regional accent)
taken from the TIMIT database, re-sampled at 8 kHz. We
propose three different experiments to evaluate the coding
performance of the presented methods. In the first and second
experiment we evaluate the sparsity of the residual induced
by the choice of the prediction method and the consequent
improvement in coding efficiency. In the third experiment, we
explore the noise robustness of the LP estimators based on the
1-norm criterion, as noted and analyzed in [3] for coding and
[50] for general modeling purposes.

1) Experiment 1: A 10'" order predictive analysis was
first done on a segment of speech of N = 40. Then a
multipulse encoding procedure [31] was performed to code
T pulses in the residual, with 7'= 5 and T' = 10. Multipulse
encoding was used to obtain a sparse residual, rather than a
pseudo-random one, as obtained through algebraic codes, to
better match the characteristics of the output of the 1-norm
minimization. In Table V, we present the results in terms of
segmental SNR and number of bits necessary to encode the
prediction vector & within the well-known 1 dB distortion [32]
using the method presented in [27]. Since most of the residual
samples are not identically zero!, as an addition to the coding
results, we provide three measures widely known throughout
the literature to be more robust and effective than the 0-norm
in measuring sparsity [34]. Considering r; = x; — X;a;, the
linear prediction residual of a given unquantized predictor for
the ¢-th considered segment of speech, we calculated the Hoyer
criterion [35]:

N llrillx
& (ri) = (1 — : (28)
S N GV T
the pg-mean [36]:
1 f
fzpq(ri): 1_1 (r Hp)a 1<p<y, (29)
Nrz~a \lrillq

and the Gini index [37]:

N ~ 1
G Tn,i N_n+§
Glr)=1-2 . (30
) ;nrinl( N GO

lExcept for LP1 where at least K values will be zero, we cannot estimate
a priori the number of zeros that will result in the optimization [33].

TABLE V
COMPARISON BETWEEN THE CONSIDERED PREDICTORS &
TRANSPARENTLY ENCODED WITH B BITS ADOPTED IN A MULTIPULSE
ENCODING SCHEME WITH T' PULSES. RESULTS ARE GIVEN IN TERMS OF
SEGMENTAL SNR WITH 95% CONFIDENCE INTERVAL. THE AVERAGE
SPARSITY OF THE RESIDUAL CALCULATED WITH THE HOYER MEASURE
&H(.), THE pg-MEAN £P9(-), AND THE GINI INDEX £ (-) IS ALSO SHOWN.

[METHOD [ T [ B(a) [ SSNR [ ¢F() [¢€r1() [ €9() |
2 || g | aoagas | 033 | 025 | o6
L0l 0s | aongry | 057 | 073 | o1
SIW | 0| 17 | s0ec09 | 051 | 063 | 079
crt || 3 | asis | 049 | el | o7
BUL |y | 1o | 19at0a | 047 | 050 | o7
RW2 | 0| 51 | sosein | 055 | 07 | om

o L |
as |

251 : —— Median q
+ Mean

E —25%-75%
ol 4

—5%-95%

Fig. 2.  Box plot of Mean Opinion Score obtained with POLQA calculated
for the LP methods presented in Table I when implemented in the AMR-
NB speech codec. LP1no represented the non-stabilized version of LP1. The
reference is the traditional AMR with LP analysis performed with LP2.

where T; is the version of r; indexed in non-decreasing order
(Pn,; < Tny1,i). We then averaged over all the T' segments

of speech for a given prediction method and determined the
1

different sparsity measures {(-) = = Z?:l &i(r;), where € €
(0,1) (¢ — 1 only for r — 0, the null vector). For £’(),
we used p = 2 and ¢ = 4, which is a normalized version
of the kurtosis, a well known measure for the peakedness of
a distribution [38], and therefore another good measure for
sparsity [39].

The best coding performance was achieved by RW2, con-
sistently with the “guidance” in the reweighting algorithm
based on the square root of the inverse of the residual
amplitude. However, it also required a larger number of bits
to transparently encode the predictor. As mentioned in the
introduction, BU1 does not preserve the sparsity of the residual
and the coding characteristics of the 1-norm, giving similar
performance to the LP2. The methods we have introduced
seem to offer a good coding performance. The very smooth
spectrum obtained with CT1 allows considerably fewer bits
than any other method to achieve transparent coding of the
prediction coefficients, achieving a performance comparable
to LP2 and BU1. STW performs slightly worse than RW2,
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but with a significant saving in the bit budget of the predictor.
The sparsity measures £(-) follow the experimental results
pretty closely, confirming the validity of the SNR resulting
from MPE encoding as a measure of sparsity. The Gini index
offers the best discriminative properties for sparsity measures,
as noted in [34].

2) Experiment 2: In the second experiment, we evaluate
the performance of the different methods in an actual speech
coder. In particular, we substitute the linear predictive analysis
stage in the Adaptive Multi-Rate Narrow-Band (AMR-NB)
encoder in its 12.2 kbps configuration [40], with the presented
methods?. The main advantage of AMR-NB is that it is a
multimodal coder, working on different rates from 12.2 kbps
to 4.75 kbps, with the possibility of changing rate during
the voice transmission by interacting with the channel coder
[41]. The AMR codec is based on the Algebraic Code-Excited
Linear Prediction (ACELP) paradigm [42], the most used
approach for speech coding even for most recently developed
codecs, e.g., OPUS and SILK [43] and thus the results
presented in this section easily generalize to any speech codec
based on the ACELP paradigm.

In our experiment, we replaced the calculation of the LP
coefficients, obtained through efficiently solving (7), with the
LP methods listed in Table I. Notice that LP2 in this case
is the unmodified AMR encoding. The AMR encoder uses
38 bits per frame (20 ms) to encode 2 sets of Line Spectral
Frequencies (LSFs) calculated on the first and third subframe
(5 ms). To demonstrate how the instability of LP1 can be
detrimental to the synthesized speech, thus justifying the need
for the stabilized methods, we also included the non-stabilized
1-norm LP (LP1no). Given that the AMR transforms the LP
coefficients in LSFs to quantize the LP coefficients, to obtain
the results for LP1no we coded the stable predictor LP1 and
then reproduced the instability at the decoder by reflecting
the poles with original magnitude greater than one. This was
done because the LSF have an inherent stability control, the
interlacing property; thus LSF cannot be calculated if the
predictor is unstable [44].

We calculated the Mean Opinion Score (MOS) [45] obtained
with POLQA [46], the latest ITU-T standard for objective
speech quality assessment (the successor of PESQ [47]). We
considered roughly 500 samples of clean speech of length
5 seconds (around 40 minutes).

The results presented in Figure 2 show a significant overlap
of the 5-95 percentile regions and the interquartile ranges of
STW and LP1, suggesting no statistical difference between
the two distributions. The mean and median values of the
scores obtained with CT1 and STW are both significantly
higher than the AMR with LP2. Notice that the instability
of LP1no generates saturations in the decoded speech, thus
greatly degrading the codec performance. The instability, while
on average around 3% for the analyzed set (since it includes
both voiced and unvoiced speech), also corrupts the state of
several future decoded frames, hence the net difference in per-

2While AMR-NB is arguably a “old” codec, it is still widely used in speech
communications, especially given the delay in adoption of wideband codec
caused by the increased usage of bandwidth hungry smartphones and the
explosion of cellular phone usage in emerging markets.

4sf R

L L L L
IR P o o® «® o®

Fig. 3.  Mean Opinion Score obtained with POLQA calculated for the LP
methods presented in Table I when implemented in the AMR-NB speech
codec for varying SNRs (white noise).

formance with its stabilized version. The low performance of
RW?2 compared to the other methods seems to bring different
conclusions from what is presented in Table V. However, it
should be noted that RW2 requires more bits for quantization,
thus suggesting that the 19 bits allocated in the AMR payload
are probably not sufficient for transparent quantization. This
presents a practical problem for the comparison of the different
methods, as we would need to optimize and apply different
bit-rates for the different methods. For example, a better trade-
off between the bits necessary to encode the predictor and
the residual should be addressed. However, the experiment
done and its results outline, without loss of generality, higher
modeling properties of the proposed predictors over the state-
of-the-art methodology.

3) Experiment 3: In the third experiment, we evaluate
the setup of the previous experiment for noise robustness.
It is well known throughout the literature that LP1 is more
robust than LP2 for analysis and coding of speech, e.g., [12],
[48]. In this section, we compared the stable solutions for
different SNRs. We considered white noise only, as it is more
appropriate for this type of experiment and does not corrupt
the spectral features of the speech signal. Noise and speech
were mixed at SNRs ranging from -5 to 25 dB following
the ITU-T Recommendation P. 835 [49] where the reference
signal was always scaled to an ideal average active level of
approximately -26 dBov to avoid clipping in the mixed signals.
The MOS scores calculated using POLQA are the median
values calculated over all the utterances. Notice that the clean
condition scores are the median values of Figure 2. The results
clearly show the improvement in quality and a slightly slower
decay for the STW, LP1, and CT1. It is interesting to see that
STW achieves an improvement of 0.5 in MOS over traditional
AMR and 0.1 over LP1. This suggests that the windowing
performed in STW helps in noisy conditions, as noted in [50],
and can actually improve the performance of LP1.

V. SOLUTIONS AND COMPLEXITY

The higher complexity burden of linear prediction based
on the l-norm minimization is well known throughout the
literature [3]. In particular, the traditional linear prediction
solution LP2 in (7) can be solved using O((N + K)K)
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floating point operations using the Levinson-Durbin algorithm
[2]. This is one order lower than solving one iteration for the 1-
norm problem using interior-point methods. However, efficient
solutions based on hand-tailoring solvers to the given problem
have proven to be successful in bringing the complexity down
to acceptable levels [15]. In this section, we introduce efficient
solvers for the methods considered in the paper and analyze
their complexity.

A. I-norm error minimization

It is well-known that solving the least 1-norm problem
(8) using interior points methods corresponds to solving a
small number of weighted least-squares problems with the
same coefficient matrix and weights that change each iteration
[16, §11.8.2]. The number of iterations is, in the worst case,
also a function of K, but this is often neglected because in
practice the dependency is very small if any [51, §14.1]. Via
direct methods this then has the complexity O(K?(N + K)).
This can be exploited in hand-tailored algorithms to produce
fast solvers, e.g., [15]. If a stable solution is necessary, a
stability check performed by determining the roots of the LP
polynomial significantly adds on the complexity. Furthermore,
no simple modification can be made to the efficient process of
estimating the LP coefficients and the following calculation of
the LSF [52] [53] in a speech coder, as they are all based on
the assumption of the roots of the polynomial being contained
in the unit circle. This also justifies the need for intrinsically
stable solutions.

B. Reducing the numerical range of the shift operator

Complexity-wise, solving (19) has the same complexity of
LP1. However, the calculation of the STE weighting (21)
and the shift matrix (17) to generate (19), increases the
complexity to O(K?(N + K) + NK). Nonetheless, this is
still a significantly lower increase in computational overhead
compared to stabilizing through pole reflection, as mentioned
in Section V-A.

C. Constrained I-norm minimization

Solving the constrained 1-norm minimization can be
achieved by solving a number of linear systems with the
coefficient matrix:

XTD1X + Dy + vdsds (31)
where D; € RNTEXN+K D, ¢ REXK 1, ¢ R! and
d3 € REX! changes in each iteration (D; and D, are
diagonal matrices). This is the same as what is required for
solving the unconstrained minimization problem, see [15,
Eqn. (2)], plus a rank-1 term. The complexity for forming
and solving these linear systems of equations are then
O(K? + K?(N + K)). This is the same complexity as in
[15] and similar practical performance is expected.

D. Burg method based on 1-norm minimization

The optimization step 1 in Algorithm 2 can be computed in
closed form. For notation, let us consider = [f;b] and 3 =
[b; f]. The convex problem can then be written as miny || ka+
B||1 with the optimality condition:

M
Zaiallk*ai +Bill120

(32)
i=1
where M = 2(N + K) and
[-1;1] if =0
z|l, = -1 if =<0 (33)
1 if >0

is the subgradient of ||z|/;. The optimum can be computed
by considering that the left-hand side of (33) only changes at
points where there is a shift in the sign of || - ||;. Then a
solution satisfies ¥* € K= {—8;/a;|a; #0,i=1,...,M}.
It is then possible to test the candidates £ € K and evaluate
either the optimality condition or compute and compare the
objectives with a total complexity of O(M?). Another algo-
rithm first computes v; = —3;/«; (if @; = 0 this term can be
removed from the optimization problem). If any v; = v;, with
i # j, remove element ¢ and scale a; < 2a; and 3; < 25,
(such that all v; are unique). Then sort the values such that

VZ(j) < VZ(j+1)- (34)
Let o
FG)= > asgn(vggos+6i) . (35)
i=1,i#L(5)

Notice that at k = vz(;) € K

M
> aidllvrgyai + Bill = F(5) + azolo].  (36)
i=1

The optimality criteria at a candidate point in K is then

[F(7)| < lazgol, K =vz(j*) € K. (37)

Instead of evaluating F'(j) for all j via (37), it is possible to
use the recursive formula

F(j+1) = F(j) — azg+nsgn(vzgyozg+n + Brg+n)

+ az(sgn(vz(i+noz) + Bz()), (38)
forj =1,..., M —1. It is then possible to evaluate and check
the optimality condition |F'(j)| < |az(;| forall j =1,..., M
with complexity O(M log M). Since this is a linear program,
general algorithms for solving linear programs are also ap-
plicable, but the method listed above is preferable due to
its simplicity. The method is summarized in Algorithm 3.

The total complexity of the 1-norm Burg method is then
O(K(N + K)log(N + K)).

E. Iteratively Reweighted 2-norm minimization

The iteratively reweighted 2-norm minimization has the
per iteration floating-point complexity O(K2(N + K))
using direct methods. Empirically we have observed that 4-5
reweighting schemes are sufficient to reach convergence, thus
the complexity is in the same order as LP1.
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Algorithm 3 Solving The Subproblem In 1-norm Burgs
Method (Algorithm 2)

Inputs: speech segment f, b € RM/2x1

Output: k*
a = [f;b], B = [b;f]
v; = —f;/a; (assume unique v; and «; # 0)

Calculate an index table Z for sorting v; ascending
Calculate F'(1) via Equation (35)
if |F(1)] < |azq)| then

Return £* = vz(y)
end if
for j =2,...,M do

Calculate F'(j) via Equation (38)

if [F(j)| < |az(;)| then

Return £* = vz

end if

end for

VI. CONCLUSIONS

In this paper, we have presented two new methods for
intrinsically finding stable predictors based on 1-norm error
minimization. The methods introduced, one based on the
reduction of the numerical range of the shift operator and
one based on constrained 1-norm minimization, have both
shown to offer a wvalid alternative to the original 1-norm
linear prediction, preserving the properties of the 1-norm
error minimization criterion. In particular, the experimental
analysis has shown that both methods offer attractive model-
ing and coding performance without any significant increase
in complexity. The two methods have also been shown to
offer slightly better modeling performance compared to the
Burg method based on the 1-norm minimization and the 2-
norm reweighted minimization method. For all the considered
methods, a thorough experimental analysis has shown that the
properties that make 1-norm based linear prediction appealing
for both analysis and coding of speech are preserved without
too much degradation. These properties, shift invariance and
pitch invariance, derive from the more efficient decoupling
between the pitch harmonics and the spectral envelope and
an overall better modeling of the speech production process.
Furthermore, the application of the proposed predictors by
modifying the linear prediction step to currently deployed
state-of-the-art codecs, showed improved quality for clean con-
ditions and a slower decaying of performance for decreasing
SNR.
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