Optimizing the identification of citrullinated peptides by mass spectrometry

Utilizing the inability of trypsin to cleave after citrullinated amino acids

Bennike, Tue; Lauridsen, Kasper; Olesen, Michael Kruse; Andersen, Vibeke; Birkelund, Svend; Stensballe, Allan

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 04, 2019
Aim

- Investigate the cleavage properties of trypsin after a citrulline residue.
- Investigate the behavior of citrullinated peptides by reversed phase chromatography.
- Propose a verification strategy for detected citrullinated peptides in a MS workflow.

Introduction

Citrullination is a PAD-enzyme catalyzed deamination of arginine, yielding the non-standard amino acid citrulline.1

Protein citrullination has been associated with several diseases and auto-antibodies against citrullinated proteins are today used as an important clinical biomarker in rheumatoid arthritis.2,3 The site-specific characterization of citrullination using mass spectrometry remains problematic, especially as citrullination and deamidation of asparagine or glutamine results in the same mass increase of +0.984016 Da. The verification, therefore, often relies on a trypic miscleavage after citrulline.2 Furthermore, the mass increase is close to that of a neutron, +1.08665 Da.

However, tryptic cleavage after citrulline has in some cases been reported, so we here investigate the cleavage properties of trypsin after a citrulline residue.

Method

24 synthetic peptide sets containing either arginine or citrulline were analyzed (SPT Peptide Technologies GmbH). The peptide sequences originated from disease-associated in vivo citrullinated proteins. In-solution tryptic digestion was performed with sequencing grade trypsin (Promega). 1 pmol sample was analyzed using ESI LC-MS/MS in positive ion mode, on a hybrid microQTOF mass spectrometer (Bruker). The peptides were separated using an in-house packed 10 cm reversed phase C18 column (Dr. Maisch; reprosil-pur C18-AQ) with acetonitrile.

Extracted ion chromatograms (XIC) were constructed in Bruker dataanalysis v 3.4, with all predicted tryptic peptides +/- m/z 0.01, under the assumption that trypsin cleaves after arginine, tyrosine and citrulline.

Results and Discussion

In situ digestion results were compared to the empirical data. For SP 10, prior to digestion only the synthetic peptide is detected and after digestion, peptides corresponding to PAPDR, LLLASP and SCYK are detected, corresponding to a successful complete cleavage after 495. This is not the case after digestion of SP 10, where peptides corresponding to PAPDR and LLLASPcitSCYK are detected. All investigated peptides demonstrate this behavior.

Our results clearly demonstrate the inability of trypsin to cleave after citrulline residues. Hence, a miscleavage indicates the presence of the PTM. Furthermore, the shift in retention time between the citrulline and arginine peptides was large enough for 22 of the 24 peptides to ensure that both peptides could be identified.

References