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Kj ærulfsgade 2, DK-9400 Nørresundby 
Institute of Building Technology and Structural Engineering 

University of Aalborg 
Sohngaardsholmsvej 57, DK-9000 Aalborg 

ABSTRACT 

In thispaper the possibilities of detection of crack extension 
in a steel beam by observation of changes in the dynamical 
response are investigated. Sytem changes are observed by 
frequency domain and time domain techn.iques . The position 
and the size pf the crack by finite element calculations. The 
estimated values are compared to the real values observed 
in the experiment. 

l INTRODUCTION 

The introduetion of a crack in a structure will cause a local 
reduction in stiffness and an increase in the damping capac­
ity. 

The local reduction in stiffness will cause a decrease in the 
eigenfrequencies and a discontinuity in the mode shapes at 
the crack position (see figure 1). 

st iffness 

'-------------7 crack size 

Figure l. 
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The crack will in many cases by turn be open and closed, 
which implies that the s tiffness of the structure becomes 
nonlinear. This nonlinearity can for instance be revealed 
by means of the response spectra of the structure, where 
the nonlinearity will cause subharmonics and superharmon.ic 

peaks (see e.g. Tsyfanskii et al [3]). 

The increase in damping is due to the faet that the beam 
will have a yielding zone at the crack tip. This means that 
energy will be dissipated in this zone during a load cycle, 
which implies an increase in the damping capacity of the 
structure. 

The above-mentioned effects of a crack means that the mea­
surement of eigenfrequencies, mode shapes and damping ra­
tios during the lifetime of a structure can be used for detec­
tion of cracks in structures. 

The aim of this paper is to present and evaluate a method, 
where changes in eigenfrequencies and mode shapes are used 
for the detection of cracks in a civil engineering structure. 
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Section 2 contains a presentation of the different system 
identification methods used during the experimental tests . 

The above-mentioned decrease in stiffness is inelucled by 
meansofa model developed from fracture mechanics, as de­
scribed in section 3. The model is inelucled in the stiffness 
matrix for a finite beam element, which is used during the 
damage detection, as shown in section 5. 

However, the use of changes in eigenfrequencies and mode 
shapes will be hopeless if the finite element model is not 
calibrated immediately after the ending of the construction 
work. A method based on non-linear optimization for the 
performance of this calibration is given in section 4. 

The evaluation of the methods given in section 6 is based on 
results from experimental measurements on a 2 meter long 
hollow section cantilever, which contains a fatigue crack. 

2 SYSTEM IDENTIFICATION TECH-
NIQUES 

A large number of system identification methods is available 
(see e.g. J ensen [l)) and it is out of the scope of'this paper 
to give a presentation of them. 

The system identification methods work either in the time 
or in the frequency domain. The choice of domain/method 
is higbly depending on the nature of the problem and espe­
cially on the dynamic characteristics , which have to be iden­
tified. The identification of eigenfrequencies can for instance 
be done with required accuracy in both domain. However, 
the identification of damping ratios of ligthly damped s truc­
tures gives much more reliable estimates, when the identifi­
cation is performed in the time domain than in the frequency 
domain. The latter is due to the faet that the information 
about the damping is spread over a long time interval in 
the time domain and concentrated in smal! area around the 
resonance peaks in the frequency domain (see figure 2) . 

f n: eigen freque n cy of th e n'th mode. a) 
( n : modal dampin g ra.ti o o f the n 1th mode. 

The cantilever used in the experimental tests is quite ligtbly 
damped ( damping ratio ( < 0.001 ), which means that time 
domain system identification methods are therefore used for 
the identification of the modal properties of the first mode. 

However the eigenfrequency of the second mode is deter­
mined through a FFT-analysis. 

The experimental tests inelude only measurement of free de­
cays. 

The identification of the eigenfrequency f o, the modal damp­
ing ratio ( and the relative modal coordinate in the measure­
ment point of the first mode from free decays is based on a 
minimization for each measurement point of the errorluntion 
F(B) given in equation (1), which expressed the difference 
between the theoretical free decay curve and the measured. 

N 

F(B) =l:) x i - X;e-2rr(/.Ci-Il//. 

j=I 

(l) 

where Xj is the j'th sampled value, X; is the amplitude at 
measurement point i, ! s is the sampling frequency and eP is 
the phase. 

The minimization o f F( B) is performed by m e an o f the M-file 
CONST in the MATLAB optimization toolbox [4] . 

The ratio between the modal coordinates of two measure­
ment points is calculated as 

S max 

S max 
-2-

s (f) 

b) 

(2) 

Figure 2. a) Time domain, Auto correlation function. b) Frequency domain, Autospectrum. 
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3 STIFFNESS MODEL FOR A CRACKED 
BEAM 

This section contains a presentation of an advanced model 
for a cracked beam section. The model is developed from 

fracture mechanics. The cracked section in the beam in 
bending modes will be modelled as a spring (see figure 3). 

A. (rad /Nm) 

M, e ( -------,@;....---- ) M, e 

Figure 3. 

The fundamental principle in the determination of the spring 
stiffness A will be summarized in the foliowing for hollow 
section beamin bending (see figure 4). 

The fatigue cracks are initiated from the end of a 20 mm 
long laser-cutted slot. The fatigue cracks are supposed to 
grow by the same speed at each side of the slot. 

The strain energy release rate g is related to the stress in­
tensity factor KI (see e.g. Hellan [6],p. 58) and to the 
compliance A of the cracked beam element (see e.g. Hellan 
[6),p. 55), as shown in equation (3) . 

g = f!_ K2 = M2 d.\ 
E I 2 dA (3) 

where E is Young's modulus, v is the Possion ratio, M is 
the bending moment and A is the crack surface. The factor 
(J is given by 

i j .... ~ 

-

!I 
E 
o 
N 

(J = { l, for plane stress; 
l - v 2 , for plane strain. 

(4) 

This means that the increase in compliance 6.,\ caused by a 
crack can be calculated by 

(4) 

wherc ae is half of thc total crack lcngth and t is the wall 
thickness of the member. 

The stress intensity factor KI as a furretion of the crack size 
and beam dimension is shown in equation (6) for the crack 
in the flange (see Tada et al [5], p . 2.2). 

(6) 

where I is the moment of inertia, b is the width of the profile, 
h is the height of the profile and a is half of the crack length. 

Introducing the expression (6) into equation (5) and solving 
the integral gives. 

The above-presented method has been used by several au­
thors (see e.g Okamura [7) and Ju [8)) . The expression used 
forKIvaries from paper to paper, which results in small dif-
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ferences in the results. The latter clearly demonstrates that 

a calibration of the diagnosis function F( R) is preferable (see 
section 5). The calibration shall be basedon measurements 
from beams with fatigue cracks instead of saw cuts (see e.g. 

Chondros & Dimarogonas [9] and Cawley & Ray [10]) . 

The stiffness matrix for a finite beam element contairung a 

crack has been set up and used in the diagnosing session (see 

section 5). 

4 CALIBRATION OF MODELS AT VIR­
GIN STATE 

The virgin state values for the dynamic characteristics are 
used for calibration of the mathematical model (typical a 
finite element model) to secure that themodel describes the 
real structure in the best possible way. The calibration may 
shortly be written as , where M is an appropriate choiced 
functional. 

Model= M(measurement) (8) 

The calibration of finite element models is commonly per­
formed by convergence analysis, where the number of el­
ements is increased until convergence is obtained for the 
eigenfrequencies of relevance. However, an increase in the 
number of elements leads to more time-consurning and ex­
pensive computer runs. This is clearly undesirable, since 
the finite element model has to be used after each of the 
subsequent periodical measurements. 

The calibration is in thispaper performed by minimizing the 
function Fv(X) given in equation (9) with respect to the 
model parameters in the vector X. The vector X c an for 
instance consists of element length, weigth of accelerometers 
and density. 

Fv(X) =L (1 - e~~)) 
2 

W; (9) 

where i3M contains the measured dynamic characteristics, 
ec(X) contains the calculated dynamic characteristics, w 
contains weighting parameters and X contains the model 
parameters. 

The elements in the vector e-M and e-c are eigenfrequencies 

and mode shapes. The weighting vector W is introduced 
for two purposes. The first purpose is to favour the critical 
dynamic characteristics, which were found in the sensitivity 
analysis. The second purpose is to secure that the parame­
ters in e-M are weigthed with respect to how well they have 

been identified. The elements in the weighting vector W are 
in this paper taken as the reciproc value of the coefficient of 
variation of the single dynamic parameter. 

The minimization of Fv(X) is in this paper performed by 
means of the computer program NLPQL [2] . 

The number and length of elements eannot be changed la ter, 
because such changes may lead to changes in the dynamic 
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characteristics, which are camparable to the changes due to 

e.g. crack growth. 

5 DIAGNOSIS TECHNIQUES 

A diagnosis of the state of damage has to be given, if a pe­
riodical measurement reveals significant changes in the dy­
namic characteristics. This diagnosis problem can in general 

be written as 

D= F(R) (10) 

D is a damage vector, which for instance contains informa­
tion about the size and location of a crack. The vector R 
contains information about the changes in the dynamic char­
acteristics ( e.g. eigenfrequencies) of the s truet ure. Thus the 
main task in the development of a damage detection scheme 
based upon results from vibration measurements is to de­
velop an expression for the function F(R), which gives an 
unambiguous D for a given R. 

A crack in a structure is defined by its size and location, 
thus the vector D contains two elements for each crack. It 
is therefore obvious that the vector R has to contain at least 
two elements for each crack to be revealed. However, the 
required number of elements in R will in many cases be in­
creased due to symmetry reasons. 

The size of the vector D is of course unknown in a practical 
problem and can in principle be infinite, whereas the number 
of elements in the vector R normally will be limited by the 
measurement system in use. FUrthermore, the elements in 
R will be defective due to different factors such as the signal 
to noise ratio and the length of the records. 

The problem given in equation (10) has in this paper been 
solved in two steps. The loaction of the crack has been 

estimated first and the length of the crack afterwards. 

It can be shown (see e.g. Cawley & Adams [11]) that the 
ratio between the changes in eigenfrequencies due to a local 
damage is only a function of Xc . Cawley and Adams defines 
the error in assuming the damage to be at position x*, given 
frequency changes b f; and {j f i in the modes i and j as 

(11) 

where Sx•i is the sensitivity in mode i against failure at x*. 

The total error in assuming failure at position x* is 

(1 2) 
all pairs i ,j 

ex• has been calculated for a crack positioned succesively 
for each 0,01 m . The crack position Xc is taken as that x* , 

which gives the minimum value of ex•. 



The crack length a has been estimated by minimizing the 
function Fp(a) given in equation (13) with respect to a. 

(13) 

subjected to 

O ~ 2a ~ b 

where (§M contains the measured dynamic characteristics, 
EJ 0 (a) contains the calculated dynamic characteristics , EJV 

contains the measured values of the dynamic characteristics 
at virgin state and W contains the weighting parameters. 

The minimization of Fp(a) is in this paper performed by 
means of the computer program NLPQL [2]. 

The purposes of the vector W are identically with those de­
scribed in connedion to equation (14) . 

6 EXPERIMENTAL RESULTS 

The applicability of the methods deseribed in the previous 
section is evaluated in this section through a detection of a 
fatigue crack in a cantilever (see figure 10). 

The crack was initiated by a 20 mm long laser cutted slot 
in one of the flanges. Laser cutting was applied in arder to 
get a cut width a small as possible and thereby minimize 
the errors by using a slot instead of a fatigue crack (see e.g. 
Cawley & Ray [14]) . Crack growth was obtained by mean 
of a B & K vibration exciter giving a sinus-loading with a 
frequency nearby the first eigenfrequency of the cantilever 
( see figur e 5). 

The analysis in this section are based upon measurement of 
the three lower eigenfrequencies and the ratio between the 
modal coordinate for first mode shape of the two measure­
ment points at virgin state ( a = O) and for a situation with 
2a ::::J 60mm ( :::::! 3/4 of the flange). 

The results from the virgin state measurements are shown 
in table l. 

Measured Coef. of 
value variation 

JI, Hz 11.3087 0.0024 
/2, Hz 70.56 0.05 
h, Hz 190.0 0.07 
cP2 / (h 0.100 0.013 

Table l. Results from virgin state measurements. 

The finite element model of the cantilever inelude 8 beam 
elements. The minimization of the fundion Fv(X) has been 
performed solely with respect to the length of the elements. 
The results are shown in table 2 and 3. 
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A: Accelerometer, B&K, type 4370 
B: Charge amplifier, B&K, type 2635 

E 

C: Rockland filter, type 2582 Measurement 
D: A- D converter, type DT2821 
E: Compaq Portable III 
F: Vibration exciter, B&K 4809 
G: Power amplifier, B&K 2706 Fatigue 
H: F u netion generator, HP3311 A 

Figure 5. Instrumentation 

Element 5 6 7 8 
Lentgh ,mm 318 179 155 342 

Element l 2 3 4 
Lentgh ,mm 460 185 147 214 

Table 2. Length of elements . 

Measured FE-model 
value 

ft, Hz 11.3087 11.3103 
j 2, Hz 70.56 71.21 
h, Hz 190.0 196.1 

cP2 / eP l 0.100 0.938 

Table 3. Measured and calculated values at virgin state. 

The differences between the measured values and the calcu­
lated values are probably due to the faet that the support is 
totally fixedin the finite element model, while some rotation 
is possible in the fixture of the test cantilever. 

The first eigenfrequency, the damping ratio of the first mode 
and the ratio between the modal coordinate at the middle 
and at the top have been estimated for different crack sizes 
during the fatigue loading. The results are shown in figure 
6. 



Figure 6. 
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The results from the periodical measurement (2a :=::o 60mm) 
are shown in table 4. 

Measured Coef. of 
val u e variation 

f 1 , Hz 10.92 0.003 
h, Hz 68.9 0.007 
h, Hz 187.1 0.050 

<h/rPJ 0.100 0.02 

Table 4. Results from "periodical" measurements (2a :=::o 

60mm). 

The estimated values for Xc and a are shown in table 5. 

Measured Estimated 
val u e value 

Xc, mm 100 100 
a, mm 60 64 

Table 5. Results from the diagnosing session 

7 CONCLUSION 

The results from the performed tests and analysis shows that 
changes in eigenfrequencies and relative mode shapes forms 
an excellent base for the perfomance of damage detection in 
civil engineering structures. 

The location of the crack is estimated exact and the crack 
length is overestimated by :=::o 6 %. However the ladder men­
tianed deviation migth be estimated to large, because the 
measurement of the crack length was primitively measured 
by means of a Vernier gauge and a magnifying glass. This 
method will allways lead to a lower value for the exact crack 
length. 

Furhter, better results could probably have been obtained if 
the calibration of themodel for fl)., which was recommended 
in section 3, had been perfomed. 

Further the results shows, that the first eigenfrequency de­
crease as expected (see figure l and 6a) when the crack grow. 

The expected increase in damping due to crack growth is not 
demonstrated in the same convincing manner. However the 
graph in figure 6b shows a growing tendency for 2a > 20mm, 
where the cantilever contains a real fatigue crack. The drop 
at the start can be due to that the cantilever has been de­

mounted from its fixture between the two measurements. 

The ratio between the modal coordinates does not varies 
significant with the crack length (see figure 6c), which is due 
to that both measurement points are above the crack and 
the relatively small crack size. 
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