
Aalborg Universitet

From analysis to surface

Generating the surface of Milton Babbitt's Sheer Pluck from a parsimonious encoding of an
analysis of its pitch-class structure
Bemman, Brian; Meredith, David

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Bemman, B., & Meredith, D. (2014). From analysis to surface: Generating the surface of Milton Babbitt's Sheer
Pluck from a parsimonious encoding of an analysis of its pitch-class structure. Paper presented at The Music
Encoding Conference, Charlottesville, VA, United States. http://music-encoding.org/conference

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://vbn.aau.dk/en/publications/a128dc49-bfb5-4f0a-b375-d01fd85105e4
http://music-encoding.org/conference

FROM ANALYSIS TO SURFACE: GENERATING THE
SURFACE OF MILTON BABBITT’S SHEER PLUCK FROM A

PARSIMONIOUS ENCODING OF AN ANALYSIS OF ITS
PITCH CLASS STRUCTURE

Brian M. Bemman David Meredith
Aalborg University
bb@create.aau.dk

Aalborg University
dave@create.aau.dk

ABSTRACT

In recent years, a significant body of research has focused
on developing algorithms for computing analyses of mu-
sical works automatically from encodings of these works'
surfaces [3,4,7,10,11]. The quality of the output of such
analysis algorithms is typically evaluated by comparing it
with a “ground truth” analysis of the same music pro-
duced by a human expert (see, in particular, [5]).

In this paper, we explore the problem of generating an
encoding of the musical surface of a work automatically
from a systematic encoding of an analysis. The ability to
do this depends on one having an effective (i.e., comput-
able), correct and complete description of some aspect of
the structure of the music. Generating the surface struc-
ture of a piece from an analysis in this manner serves as a
proof of the analysis' correctness, effectiveness and com-
pleteness.

We present a reductive analysis of Sheer Pluck (1984), a
twelve-tone composition for guitar by Milton Babbitt
(1916–2011). This analysis focuses on the all-partition
array structure on which the piece is based. Having pre-
sented this analysis, we formalize some constraints on the
structure of the piece and explore some computational
difficulties in automating the generation of the all-
partition array structure.

1. INTRODUCTION

An all-partition array is a twelve-tone musical structure
developed by Milton Babbitt that forms the basis of a
number of compositions, particularly from his second pe-
riod of works (1964–1980), although he continued to use
this structure throughout his life. Thorough music-
theoretical discussions and mathematical proofs of as-
pects of this structure in Babbitt’s music can be found in
the literature [2,6,8,9].

In essence, an all-partition array is a structure of tone
rows that are organized into hexachordally combinatorial
pairs and then partitioned into discrete, vertical aggre-
gates. Each aggregate results from a distinct permutation
of partitioned segments and can be represented precisely
as an integer composition or, more abstractly, as an inte-
ger partition.1 A six-part, all-partition array will have 58
such integer partitions.

In the first part of this paper, we provide basic definitions
of concepts and terminology relating to the structure of
all-partition arrays. The later of the paper formalize row
pairing constraints specific to one type of six-part, all-
partition array and identify a particular computational dif-
ficulty in automatically generating this structure.

2. DEFINITIONS AND TERMINOLOGY

We define a tone row, ! = !!, !!, !!,… , !!! , to be an
ordered set of 12 distinct pitch classes in a system of 12-
fold octave division. That is,

!
!∈!

= 0,1,2… 11 !.

Suppose that ! and ! are tone rows such that ! =
!!, !!, !!,… , !!! and ! = ! !!, !!, !!,… , !!! . We say

that ! and ! are hexachordally combinatorial, denoted
by !!ℎ!!, if and only if

!!, !!,… , !! = ! !!, !!,… , !!! .
Note that the two structures in this equality are unordered
sets. That is, the pitch classes in the two hexachords do

1 See also Young tableaux for alternate representations of these [2,12].

Permission to make digital or print copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
all copies bear this notice and a full citation on the first page.
© 2014 Music Encoding Initiative Council

not have to appear in the same order in each row, A and
B.

If we define the pitch class aggregate,
! = ! {0, 1, 2,… , 11}, then, for any pitch class set, ! ⊆ !,
we define the complement of ! to be ! = ! ∖ !.

We say that two tone rows, ! = !!, !!, !!,… , !!! and
! = ! !!, !!, !!,… , !!! , are members of the same row
type iff

{a0, a1, a2, a3, a4, a5}={b0, b1, b2, b3, b4, b5}.

We denote the row type of a tone row
! = !!, !!, !!,… , !!! by (!, !) where
! = !!, !!, !!,… , !! .

We define an integer partition, denoted by
IntPart(s1,s2,…sk), to be a representation of an integer
! = !!!

!!! , as an unordered sum of ! positive integers.
For example, if n = 12 and k = 6, then one possible inte-
ger partition is IntPart(3,3,2,2,1,1) which is equal to
IntPart(3,2,1,3,2,1) since integer partitions are unordered.

We define an integer composition, denoted by
IntComp(s1,s2,…sk), to be a representation of an integer
! = !!!

!!! , as an ordered sum of ! positive integers. For
example, if n = 12 and k = 6, then

IntComp(3,3,2,2,1,1) ≠ IntComp(3,2,1,3,2,1).

Note that these two integer compositions are unequal be-
cause of the different ordering of the summands (or
parts) in each.

We define a weak integer composition,
WIntComp(s1,s2,…sk), to be a representation of an integer
! = !!!

!!! , as an ordered sum of ! non-negative inte-
gers. For example, if n = 12 and k = 6, then
WIntComp(6,6,0,0,0,0) is a weak integer composition.
Note that, because weak integer compositions are ordered
sets, WIntComp(6,6,0,0,0,0) ≠ WIntComp(0,6,0,6,0,0).
The difference between a weak integer composition and
an integer composition is therefore simply that zeros are
permitted in the former, but not the latter.

Within a particular context, we may choose to bound or
restrict the number k of parts or summands in an integer
composition or partition. For example, within the context
of the six-part all-partition array structure, we choose to
bound the number of summands to six.

3. SIX-PART ALL-PARTITION ARRAYS

Typically, in a six-part all-partition array, Babbitt makes
use of all 48 tone rows in a so-called Babbitt square.2 As
shown in Figure 1, in such an all-partition array, these 48
tone rows appear in a 6x8 grid. The rows and columns of
this grid are typically referred to in the literature as lynes
and blocks, respectively [6].

Figure 1. 48 tone rows of a Babbitt square mapped to a
6x8 grid representing a 6-part all-partition array struc-
ture.

A lyne is a concatenation of tone rows, often of the same
row type, while each block is a set of vertically aligned
tone rows, one from each lyne. In the final surface struc-
ture of a composition, elision and repetition of pitch clas-
ses across block boundaries serves to obscure them and
make the divisions between blocks more ambiguous than
may be suggested by Figure 1. There are 48! ways in
which the 48 standard transformations of a tone row can
be mapped to this grid. However, in practice, this is se-
verely constrained by the hexachordal combinatoriality
relation, h (defined above). The six lynes of the grid
(each containing rows of a different row type) are
grouped into three pairs. Within each pair of lynes, the
rows in one lyne are h-related to the rows in the other
lyne. Extending our terminology, we say that such lyne
pairs are h-related. Figure 2 shows a representative block
in a six-part all-partition array with three pairs of h-
related rows.

Figure 2. Typical single block within a six-part all-
partition array. Note the three h-related row pairs.

2 A Babbitt square is a collection of 48 tone rows equivalent to one
another by some twelve-tone operation, P (transposition), I (inversion),
R (retrograde), or RI (retrograde-inversion) [1].

It can be shown that there are (8!)! ways of organizing a
6x8 grid of tone rows, arranged as three pairs of ℎ-related
lynes. This still unwieldy number of possibilities is, how-
ever, further reduced by application of additional con-
straints that will now be described.

4. ROW PAIRING CONSTRAINTS IN SHEER
PLUCK

4.1 Reductive Analysis
An alternative representation of the grid in Figure 1 is
presented in Figure 3. This music-theoretical analysis re-
veals in more detail the row pairing constraints and rela-
tionships between rows. Each box contains a pair of h-
related rows, each represented by the operation that gen-
erates that row from P0 (e.g., (RI6, I6) in block I in lynes 1
and 2). At the top of each box is a header containing an
operation that relates that pair of h-related rows (e.g., “R”
for block I, lynes 1 and 2). The arrows labelled T3 and T9
indicate a cross-complement relationship between pairs
of adjacent rows in one lyne to pairs of adjacent rows in
another. Note also that blocks have T6-related partners,
represented by the arrows in the center of the diagram.3

Figure 3. Sheer Pluck row pairing constraints and rela-
tionships.

3 As noted in [6], this type of six-part, all-partition array was originally
constructed by mathematician and composer, David Smalley. It is not
clear the extent to which Babbitt contributed to its particular pairing of
rows and sequence of integer compositions.

4.2 Formal Constraints
For a program to pair rows according to the constraints of
Figure 3, these constraints must first be formally defined.

We begin by setting (A,B, C,D) = (P, I,R,RI), for con-
venience. Let (x,y) be any pair of row operations with un-
specified transposition (level) in the same block in an h-
related lyne pair (e.g., (RI,I), (I,R),(RI,R) in block I). The
first condition that must be satisfed by all (x,y) is that
 (!, !) ∈ {(!, !): ! ≠ ! ∧ (!, !) ⊂ !,!,!,! } . (1)

We denote by (xi,yi) any pair of h-related rows in the same
block in lynes i+1 and i+2. We can then state the following
three related conditions that are satisfied by such row pairs:
 (x!, y!) ∈ { x, y : !, ! ∈ A, C !, B,D }, (2)
 (x!, y!) ∈ { x, y : !, ! ∈ A,! !, B,! }, and (3)
 (x!, y!) ∈ { x, y : !, ! ∈ A,! !, !,D }. (4)

Finally, if p and q are adjacent blocks and p = ((x0,y0),
(x1,y1), (x2,y2)), then q = (((x'0,y'0), (x'1,y'1), (x'2,y'2)) where
 {x'i,y'i}={A,B,C,D}∖{xi,yi}. (5)

Constraints (1), (2), and (5) are visualized in Figure 4.

Figure 4. First four blocks of Sheer Pluck. Red (1),
Green (2) and Blue (5).

Pairing rows according to the constraints listed above
now reduces the number of possibilities for tone row or-
ganization to a much more manageable 96. This, howev-
er, represents only one requirement of the all-partition
array. The second, parsing this structure into vertical ag-
gregates, is a more difficult task.

5. PARSING INTO VERTICAL AGGREGATES

Discrete, vertical aggregates are distinguished according
to the partitioning of members from each lyne into seg-
ments of length 12 or fewer. These segments can be rep-
resented abstractly (without regard for order) as integer
partitions, but when realized, are more precisely repre-
sented (i.e., with regard for order) as integer composi-
tions. Figure 5 shows one example.

Figure 5. Integer partitions 52!1!, 4!8, and 71! realized
as integer compositions in an incomplete single block.

The number of integer partitions present in an all-
partition array is equal to the number of partitions of 12
given !, the number of summands, as defined above. A
1!" partition (where ! = 12) for example, is not available
to a six-part array because it contains only six lynes
(where !! = 6). Of the total possible 77 integer partitions
of 12, a six-part array will therefore contain only 58 [8].
Of these 58 required integer partitions, there are 6,188
possible integer composition subsets to choose from (i.e.,
the permutations of each integer partition).

The 58 integer partitions we need to parse a 6x8 grid re-
quire 696 pitch classes. However, our grid of 48 tone
rows contains only 576 pitch classes. Therefore, the in-
clusion of an additional 120 pitch classes (examples of
which are shown in bold in Figure 5) is necessary in order
to successfully parse it. Determining where to place these
extra pitch classes is not trivial, because of the very large
number of possible ways of placing n distinct objects into
k distinct locations. For example, when n = 120 and k =
48, then the number of possible solutions is 48!"# ≈
5.61 ⋅ !10!"#. Clearly, it would thus be impossible to ex-
haustively search through all these possibilities. One of
our goals is to find an computationally tractable solution
to this problem.

6. CONCLUSION

As shown above, having a program complete the first
step of constructing an all-partition array (organizing ℎ-
related rows) is relatively straightforward. The computa-
tional difficulties arise, however, when attempting to
parse it. Without providing a program with the correct
locations of the required extra 120 pitch classes, an expo-
nential growth in computing time will occur with an ex-
haustive search of their possible placements. Even if the
location of these pitch classes is provided, a similarly ex-
haustive search for possible integer compositions is not
possible, as it too will result in an exponential growth in
computing time. We are currently exploring the possibil-
ity of using a greedy approach to solve this problem.

7. REFERENCES

[1] Babbitt, M. (1961). Some aspects of twelve-tone
composition. International Music Association. p. 61.

[2] Bazelov, A. R. & Brickle, F. (1976). A partition
problem posed by Milton Babbitt (Part 1).
Perspectives of New Music, 14(2), 280–293.

[3] Cambouropoulos, E. (2008). Voice and stream:
Perceptual and computational modeling of voice
separation. Music Perception, 26(1), 75–94.

[4] Chew, E. (2014). Mathematical and Computational
Modeling of Tonality: Theory and Applications.
New York: Springer.

[5] Collins, T. (2013). MIREX 2013 Competition on
Discovery of Repeated Themes and Sections.
Curitiba, Brazil. http://www.music-
ir.org/mirex/wiki/2013:Discovery_of_Repeated_The
mes_ %26_Sections

[6] Mead, A. W. (1994). An Introduction to the Music
of Milton Babbitt. Princeton, NJ: Princeton
University Press.

[7] Meredith, D., Lemström, K. & Wiggins, G. A.
(2002). Algorithms for discovering repeated patterns
in multidimensional representations of polyphonic
music. Journal of New Music Research, 31(4), 321–
345.

[8] Morris, R. D. & Alegant, B. (1988). The even
partitions in twelve-tone music. Music Theory
Spectrum, 10, 74–101.

[9] Starr, D. & Morris, R. (1978). A general theory of
combinatoriality and the aggregate (part 2).
Perspectives of New Music, 16(2), 50–84.

[10] Temperley, D. (2001). The Cognition of Basic
Musical Structures. Cambridge, MA: The MIT
Press.

[11] Temperley, D. (2007). Music and Probability.
Cambridge, MA: The MIT Press.

[12] Yong, A. (2007). What is … a Young Tableau?.
Notices of the AMS, 54(2), 240–241.

A portion of a single parsed block with
extra pcs…

= 118

= 117

= 111

= 114

= 118

= 118

19

= 696

