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ABSTRACT 

In recent years, a significant body of research has focused 
on developing algorithms for computing analyses of mu-
sical works automatically from encodings of these works' 
surfaces [3,4,7,10,11]. The quality of the output of such 
analysis algorithms is typically evaluated by comparing it 
with a “ground truth” analysis of the same music pro-
duced by a human expert (see, in particular, [5]). 
 
In this paper, we explore the problem of generating an 
encoding of the musical surface of a work automatically 
from a systematic encoding of an analysis. The ability to 
do this depends on one having an effective (i.e., comput-
able), correct and complete description of some aspect of 
the structure of the music. Generating the surface struc-
ture of a piece from an analysis in this manner serves as a 
proof of the analysis' correctness, effectiveness and com-
pleteness. 
 
We present a reductive analysis of Sheer Pluck (1984), a 
twelve-tone composition for guitar by Milton Babbitt 
(1916–2011). This analysis focuses on the all-partition 
array structure on which the piece is based. Having pre-
sented this analysis, we formalize some constraints on the 
structure of the piece and explore some computational 
difficulties in automating the generation of the all-
partition array structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 

An all-partition array is a twelve-tone musical structure 
developed by Milton Babbitt that forms the basis of a 
number of compositions, particularly from his second pe-
riod of works (1964–1980), although he continued to use 
this structure throughout his life. Thorough music-
theoretical discussions and mathematical proofs of as-
pects of this structure in Babbitt’s music can be found in 
the literature [2,6,8,9]. 
 
In essence, an all-partition array is a structure of tone 
rows that are organized into hexachordally combinatorial 
pairs and then partitioned into discrete, vertical aggre-
gates. Each aggregate results from a distinct permutation 
of partitioned segments and can be represented precisely 
as an integer composition or, more abstractly, as an inte-
ger partition.1 A six-part, all-partition array will have 58 
such integer partitions. 
 
In the first part of this paper, we provide basic definitions 
of concepts and terminology relating to the structure of 
all-partition arrays. The later  of the paper formalize row 
pairing constraints specific to one type of six-part, all-
partition array and identify a particular computational dif-
ficulty in automatically generating this structure. 

2. DEFINITIONS AND TERMINOLOGY 

We define a tone row, ! = !!, !!, !!,… , !!! , to be an 
ordered set of 12 distinct pitch classes in a system of 12-
fold octave division. That is, 

!
!∈!

= 0,1,2… 11 !. 

Suppose that !  and !  are tone rows such that ! =
!!, !!, !!,… , !!!  and ! = ! !!, !!, !!,… , !!! . We say 

that !  and !  are hexachordally combinatorial, denoted 
by !!ℎ!!, if and only if 

!!, !!,… , !! = ! !!, !!,… , !!! . 
Note that the two structures in this equality are unordered 
sets. That is, the pitch classes in the two hexachords do 

                                                             
1 See also Young tableaux for alternate representations of these [2,12]. 
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not have to appear in the same order in each row, A and 
B. 
 
If we define the pitch class aggregate, 
! = ! {0, 1, 2,… , 11}, then, for any pitch class set, ! ⊆ !, 
we define the complement of ! to be ! = ! ∖ !. 
 
We say that two tone rows, ! = !!, !!, !!,… , !!!  and 
! = ! !!, !!, !!,… , !!! , are members of the same row 
type iff 
 

{a0, a1, a2, a3, a4, a5}={b0, b1, b2, b3, b4, b5}. 
 
We denote the row type of a tone row 
! = !!, !!, !!,… , !!!  by (!, !)  where 
! = !!, !!, !!,… , !! . 
 
We define an integer partition, denoted by 
IntPart(s1,s2,…sk), to be a representation of an integer 
! = !!!

!!! , as an unordered sum of ! positive integers. 
For example, if n = 12 and k = 6, then one possible inte-
ger partition is IntPart(3,3,2,2,1,1) which is equal to 
IntPart(3,2,1,3,2,1) since integer partitions are unordered. 
 
We define an integer composition, denoted by 
IntComp(s1,s2,…sk), to be a representation of an integer 
! = !!!

!!! , as an ordered sum of ! positive integers. For 
example, if n = 12 and k = 6, then 
 

IntComp(3,3,2,2,1,1) ≠ IntComp(3,2,1,3,2,1). 
 

Note that these two integer compositions are unequal be-
cause of the different ordering of the summands (or 
parts) in each. 
  
We define a weak integer composition, 
WIntComp(s1,s2,…sk), to be a representation of an integer 
! = !!!

!!! , as an ordered sum of ! non-negative inte-
gers. For example, if n = 12 and k = 6, then 
WIntComp(6,6,0,0,0,0) is a weak integer composition. 
Note that, because weak integer compositions are ordered 
sets, WIntComp(6,6,0,0,0,0) ≠ WIntComp(0,6,0,6,0,0). 
The difference between a weak integer composition and 
an integer composition is therefore simply that zeros are 
permitted in the former, but not the latter. 
 
Within a particular context, we may choose to bound or 
restrict the number k of parts or summands in an integer 
composition or partition. For example, within the context 
of the six-part all-partition array structure, we choose to 
bound the number of summands to six. 

3. SIX-PART ALL-PARTITION ARRAYS 

Typically, in a six-part all-partition array, Babbitt makes 
use of all 48 tone rows in a so-called Babbitt square.2 As 
shown in Figure 1, in such an all-partition array, these 48 
tone rows appear in a 6x8 grid. The rows and columns of 
this grid are typically referred to in the literature as lynes 
and blocks, respectively [6]. 
 

 

Figure 1. 48 tone rows of a Babbitt square mapped to a 
6x8 grid representing a 6-part all-partition array struc-
ture. 

A lyne is a concatenation of tone rows, often of the same 
row type, while each block is a set of vertically aligned  
tone rows, one from each lyne. In the final surface struc-
ture of a composition, elision and repetition of pitch clas-
ses across block boundaries serves to obscure them and 
make the divisions between blocks more ambiguous than 
may be suggested by Figure 1. There are 48! ways in 
which the 48 standard transformations of a tone row can 
be mapped to this grid. However, in practice, this is se-
verely constrained by the hexachordal combinatoriality 
relation, h (defined above). The six lynes of the grid 
(each containing rows of a different row type) are 
grouped into three pairs. Within each pair of lynes, the 
rows in one lyne are h-related to the rows in the other 
lyne. Extending our terminology, we say that such lyne 
pairs are h-related. Figure 2 shows a representative block 
in a six-part all-partition array with three pairs of h-
related rows. 

 

Figure 2. Typical single block within a six-part all-
partition array. Note the three h-related row pairs. 
                                                             
2 A Babbitt square is a collection of 48 tone rows equivalent to one 
another by some twelve-tone operation, P (transposition), I (inversion), 
R (retrograde), or RI (retrograde-inversion) [1]. 



 
It can be shown that there are (8!)! ways of organizing a 
6x8 grid of tone rows, arranged as three pairs of ℎ-related 
lynes. This still unwieldy number of possibilities is, how-
ever, further reduced by application of additional con-
straints that will now be described. 

4. ROW PAIRING CONSTRAINTS IN SHEER 
PLUCK  

4.1 Reductive Analysis 
An alternative representation of the grid in Figure 1 is 
presented in Figure 3. This music-theoretical analysis re-
veals in more detail the row pairing constraints and rela-
tionships between rows. Each box contains a pair of h-
related rows, each represented by the operation that gen-
erates that row from P0 (e.g., (RI6, I6) in block I in lynes 1 
and 2). At the top of each box is a header containing an 
operation that relates that pair of h-related rows (e.g., “R” 
for block I, lynes 1 and 2). The arrows labelled T3 and T9 
indicate a cross-complement relationship between pairs 
of adjacent rows in one lyne to pairs of adjacent rows in 
another. Note also that blocks have T6-related partners, 
represented by the arrows in the center of the diagram.3 

 
 
Figure 3. Sheer Pluck row pairing constraints and rela-
tionships. 

                                                             
3 As noted in [6], this type of six-part, all-partition array was originally 
constructed by mathematician and composer, David Smalley. It is not 
clear the extent to which Babbitt contributed to its particular pairing of 
rows and sequence of integer compositions. 

4.2 Formal Constraints 
For a program to pair rows according to the constraints of 
Figure 3, these constraints must first be formally defined. 
 
We begin by setting (A,B, C,D) = (P, I,R,RI), for con-
venience. Let (x,y) be any pair of row operations with un-
specified transposition (level) in the same block in an h-
related lyne pair (e.g., (RI,I), (I,R),(RI,R) in block I). The 
first condition that must be satisfed by all (x,y) is that 
 (!, !) ∈ {(!, !): ! ≠ ! ∧ (!, !) ⊂ !,!,!,! } . (1) 
 
We denote by (xi,yi) any pair of h-related rows in the same 
block in lynes i+1 and i+2. We can then state the following 
three related conditions that are satisfied by such row pairs: 
 (x!, y!) ∈ { x, y : !, ! ∈ A, C !, B,D }, (2) 
 (x!, y!) ∈ { x, y : !, ! ∈ A,! !, B,! }, and (3) 
 (x!, y!) ∈ { x, y : !, ! ∈ A,! !, !,D }. (4) 
 
Finally, if p and q are adjacent blocks and p = ((x0,y0), 
(x1,y1), (x2,y2)), then q = (((x'0,y'0), (x'1,y'1), (x'2,y'2)) where 
 {x'i,y'i}={A,B,C,D}∖{xi,yi}. (5) 
 
Constraints (1), (2), and (5) are visualized in Figure 4. 

 

Figure 4. First four blocks of Sheer Pluck. Red (1), 
Green (2) and Blue (5). 

Pairing rows according to the constraints listed above 
now reduces the number of possibilities for tone row or-
ganization to a much more manageable 96. This, howev-
er, represents only one requirement of the all-partition 
array. The second, parsing this structure into vertical ag-
gregates, is a more difficult task.  

5. PARSING INTO VERTICAL AGGREGATES 

Discrete, vertical aggregates are distinguished according 
to the partitioning of members from each lyne into seg-
ments of length 12 or fewer. These segments can be rep-
resented abstractly (without regard for order) as integer 
partitions, but when realized, are more precisely repre-
sented (i.e., with regard for order) as integer composi-
tions. Figure 5 shows one example.  

 



 

Figure 5. Integer partitions 52!1!, 4!8, and 71! realized 
as integer compositions in an incomplete single block. 

The number of integer partitions present in an all-
partition array is equal to the number of partitions of 12 
given !, the number of summands, as defined above. A 
1!" partition (where ! = 12) for example, is not available 
to a six-part array because it contains only six lynes 
(where !! = 6). Of the total possible 77 integer partitions 
of 12, a six-part array will therefore contain only 58 [8]. 
Of these 58 required integer partitions, there are 6,188 
possible integer composition subsets to choose from (i.e., 
the permutations of each integer partition).  
 
The 58 integer partitions we need to parse a 6x8 grid re-
quire 696 pitch classes. However, our grid of 48 tone 
rows contains only 576 pitch classes. Therefore, the in-
clusion of an additional 120 pitch classes (examples of 
which are shown in bold in Figure 5) is necessary in order 
to successfully parse it. Determining where to place these 
extra pitch classes is not trivial, because of the very large 
number of possible ways of placing n distinct objects into 
k distinct locations. For example, when n = 120 and k = 
48, then the number of possible solutions is 48!"# ≈
5.61 ⋅ !10!"#. Clearly, it would thus be impossible to ex-
haustively search through all these possibilities. One of 
our goals is to find an computationally tractable solution 
to this problem. 

6. CONCLUSION 

As shown above, having a program complete the first 
step of constructing an all-partition array (organizing ℎ-
related rows) is relatively straightforward. The computa-
tional difficulties arise, however, when attempting to 
parse it. Without providing a program with the correct 
locations of the required extra 120 pitch classes, an expo-
nential growth in computing time will occur with an ex-
haustive search of their possible placements. Even if the 
location of these pitch classes is provided, a similarly ex-
haustive search for possible integer compositions is not 
possible, as it too will result in an exponential growth in 
computing time. We are currently exploring the possibil-
ity of using a greedy approach to solve this problem. 
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