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Synthesis of Nano- and Micro-Scale Topographies by
Combining Colloidal Lithography and Glancing Angle
Deposition (GLAD)**

By Alireza Dolatshahi-Pirouz,* Kristian Kolind, Cristian Pablo Pennisi, Meg Duroux,
Vladimir Zachar, Morten Foss and Flemming Besenbacher
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A great challenge when developing materials for applica-
tion in biomedical engineering is to design interfaces that
ultimately can control the interaction between cells and the
biomaterial.[1–3] Previously, nanoscale surface topographies
have been reported to influence biological processes such as
protein adsorption,[4–6] cellular responses,[7–9] and blood
clotting,[10] making it an important factor in developing
biomaterials for medical applications. Inspired by the native
microenvironment of cells, which contain dual-scale top-
ographies in the micro and nanoscale, different methods have
been proposed to design such native-like topographies for
optimization of biomaterials.[11–13] However, to date none of
the methods have offered the possibility to change the nano-
scale roughness on sub-micrometer topographies in a well-
controlled manner. Surfaces with a well-controlled roughness
for various applications can be manufactured through
glancing angle deposition (GLAD).[14–20] During GLAD, a
flux of vaporized particles impinge at the substrate at an

oblique angle of incidence causing regionalized shadowing
and thereby an enhanced surface roughening.[21,22] Colloidal
surface patterning on the other hand can generate ordered
submicron structures with a well-defined periodicity.[22]

Here, we present a method by means of which we can
synthesize unique platinum surfaces with controlled micro-
and nano-scale topographies through a combination of
(GLAD) and colloidal surface patterning.[23–27] Platinum was
used since it offers a good biocompatibility and constitutes an
integral part in various implantable electrodes. Like most
implants, electrodes trigger a foreign body response, which
ultimately results in the formation of a nonconductive capsule
that compromises their functionality.[28] This capsule consist of
fibroblasts or glial cells depending on whether the electrode is
implanted in the peripheral or central nervous system,
respectively. The potential biomedical application of our
surfaceswas therefore investigated by studying the interaction
of human skin-derived fibroblasts and glial cells with the
surfaces in terms of cell attachment, spreading, and morphol-
ogy.Combining theGLADtechniquewith the colloidal surface
patterning technique, results in the fabrication of well-defined
and separated topographies with a unique micro- and nano-
scale roughness.[23–27] More specifically, bare silicon wafers
were pre-coated with 110 nm colloidal particles followed by a
5nm platinum (Pt) sputter coating to assure chemical
homogeneity of the surfaces prior to the GLADprocess, which
was performed at an oblique angle of 5°. The nano-particles
were subsequentlymelted by heating the samples to 160 °C for
approximately 1 h before being sputter coatedwith 25 nmof Pt
(Figure 1A). The heat treatment only reduced the size of
the nano-particles by 20–25 nm when compared to the size
prior to heating and sputtering (see Supporting Information
Figure S1).

The surface morphology of the fabricated surfaces was
examined by atomic force microscopy (AFM; Figure 1B–E),
which revealed stochastically dispersed nano-features on
the flat-reference surfaces and on the submicron islands.
From AFM line-scans, we find that the nanoscale features
increased in size as the amount of deposited Pt increased.
Likewise, examination of the fabricated surfaces with
planar- and cross-sectional scanning electron microscopy
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(SEM; Figure 1F–H) revealed well-separated islands along
with a thin Pt layer of approximately 20–25 nm, confirming
the successful sputtering of Pt onto the surfaces (Figure 1F–H).
Furthermore, a detailed analysis of the width and
characteristic heights of the individual submicron islands
from cross-sectional SEM images showed a similar island
width on the respective surfaces, while the maximum

height of the islands was observed to increase as the
amount of deposited Pt was increased (Figure 1I). The AFM
and SEM results thus confirmed that by combining GLAD
and colloidal patterning, it is possible to design and
synthesize surfaces with well-defined micro- and nano-
scale surface topographies.

To study the cellular response of the developed surfaces for
their potential use as biomaterials, fibroblast and glial cells
were seeded on the surfaces and allowed to attach and spread
for 24 h. Determination of the cell density was performed by
automatic counting of DAPI stained cell nuclei (Figure 3B).
Likewise, an estimate of cell attachment was performed by a
qualitative analysis of positively stained vinculin, a protein
involved in the formation of focal contacts (Figure 2). Finally,
cell spreading was determined by measuring the area of the
cells actin stained images and based on this the degree of cell
roundness and elongationwas calculated (Figure 3C–E). From
Figure 3B, significant cell density differences were observed
between the control and surfaces R1 and R2 for the fibroblasts
and between the control and all the structured surfaces for the
glial cells. Among the micro- and nano-structured surfaces
surface R2 had a significantly (p< 0.05) lower fibroblast cell
density compared to R3. Likewise, glial cells had a
significantly lower cell density on surface R2 compared to
both R1 (p< 0.01) andR3 (p< 0.001), while no differenceswere
found between R1 and R3. In an analysis of the cell
cytoskeleton and the formation of focal adhesion contacts
large differences were observed between the structured and
the control surfaces. The cytoskeleton of both fibroblast and
glial cells on the control surfaces were well spread and
contained well-defined actin stress fibers, while the cytoskel-
eton on the rough surfaces appeared less organized and more
diffuse (Figure 2). Also, on the control surfaces fibroblasts had
more well defined dash-like vinculin spots (typical of mature
focal adhesions) compared to the dot-like (transient) vinculin
spots found in fibroblasts cultured on the structured
surfaces.[29] The state of the actin cytoskeleton and the
morphology of the focal adhesion sites could likely influence
subsequent cellular behavior suchas the cell proliferation.[30–32]

This is however not the main focus here and will be explored
further in a subsequent project.

In several studies, the morphology of cells on surfaces in
different cellular states[33–36] has been investigated and it is
demonstrated that a close correlation exits between the cell
morphology and cell function. It is generally accepted that a
small, round cell shape is typically indicative of a cell entering
apoptosis,[33,37] whereas a well-spread polygonal cell shape
is most often quantified as being in a viable, functional
state.[33,35] It is possible to quantify cell shape bymeasuring cell
area and calculating the degree of elongation and roundness by
means of imaging software packages. From such a quantitative
analysis our study revealed that the total area of both
fibroblasts and glial cells was significantly larger on the control
surfaces as compared to the micro- and nano-structured
surfaces (Figure 3C). With regards to cell elongation, it was
found that the glial cellswere significantly less elongatedon the

Fig. 1. (A) Illustration of the fabrication process. (B) AFM images of the flat control, (C)
surface R1 (1.6� 10�5 (g cm�2)) (D) R2 (3.2� 10�5 (g cm�2)) and (E) R3 (6.4� 10�5

(g cm�2)). The red lines mark the position were the line-scans in the upper right corner of
the AFM images were taken. (F) Plan-view and cross-section SEM images of surface R1,
(G) R2 and (H) R3. (I) Table showing the mean widths and heights of the submicron
islands� standard error of the mean. For each surface type the width and height of 15
islands were measured.
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control surface as compared to cells on the structured surfaces,
while no differences were observed for fibroblasts (Figure 3D).
Furthermore, cell roundness of both glial cells and fibroblasts
was significantly (p< 0.001) lower on the control surfaces
compared to the structured surfaces. Also, the roundness value
of fibroblasts on surface R1 was significantly (p< 0.001) higher
than for cells on surface R2.

In Figure 4, we have depicted the roundness values versus
the cell area in order to explore any correlation between the
two parameters. It was found that a large scatter existed for
both cell types on all the studied surfaces indicating that the
cells were primarily in a non-round and well-spread state.
However, from a detailed analysis of the scatter plots some
differences in the distribution patterns were revealed between
the fibroblasts and glial cells and among the different surfaces
cultured with the same cell type. As such, the scatter observed
for fibroblasts was similar on all the surfaces (Figure 4A), but
significantly different from the more narrow scatter distribu-
tion observed for the glial cells. For the different surfaces
cultured with glial cells, it was also found that for surface type
R3 the cell roundness values declined as the cell area increased
beyond approximately 1500mm2 (indicated by vertical line in
Figure 4B), while this decrease in cell roundness did not occur
before a larger cell area of around 2000mm2 for glial cells on

the control surface. Thus, we suspect that the individual
micro- and nano-structured surfaces may have a larger impact
on glial cell morphology than initially anticipated from
Figure 3E.

In summary, we have developed an interesting scheme to
fabricate surfaces with unique micro- and nano-scale top-
ographies synthesized through colloidal surface patterning
andGLAD. By changing the amount of depositedmaterial, we
were able to control the surface nano-roughness of the
submicron islands in a well-controlled manner. The cellular
response of these substrateswere investigated in cell adhesion
studies with fibroblasts and glial cells, from which it was
observed that the structured surfaces influence the initial cell
attachment, spreading, cytoskeletal organization and cell
morphology. Likewise, it has been demonstrated that the
characteristic sizes of the nano-scale features influence glial
cell adhesion and the morphology of both cell types. We thus
conclude that the proposed GLAD and colloidal surface
patterning is a promising new method for designing surfaces
with specific micro- and nano-scale topography to control the
initial response between cells and surfaces. We envision, that
the proposed method may prove as a very useful surface
engineering tool in the areas of tissue engineering and
biomaterials science.

Fig. 2. Representative immunostaining images of glial cells (A–H) and fibroblasts (I–P) on the different surfaces. (A–D) and (I,J) display the actin cytoskeleton, while (E–H) and (M–

P) display the vinculin focal adhesions. Scale bar¼ 30mm.
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1. Experimental

1.1. Surface Fabrication
Colloidal particles were deposited onto silicon wafers via

electrostatic self-assembly. In brief, silicon wafers (Si-Mat,
Germany) were pre-coated with a triple layer precursor

film to make the surface positively charged at neutral
pH by coating the substrates with: (i) 2% (by weight)
poly(diallydimethylammonium) chloride (PDDA, MW
200 000–350 000, Sigma–Aldrich, Denmark), 30 s rinse in
milliQ (MQ) water and drying with nitrogen; (ii) 2% (by
weight) poly(sodium 4-styrenesulfonate) (PSS, MW 70 000,
Sigma–Aldrich, Denmark), 30 s rinse in MQwater and drying
with nitrogen; (iii) 5% (by weight) aluminum chloride
hydroxide (ACH, chlorohydrol, Reheis, Eire), 30 s in MQ
water and drying with nitrogen. Negatively charged latex
particles with a diameter of 110 nm (Invitrogen, US) diluted to
a concentration of 0.4% (by weight) was subsequently
adsorbed onto the charged substrates from solution by
electrostatic interactions. The adsorption lasted for 2min
and the substrates were afterward rinsed in MQ water for
1min before drying with nitrogen. The resultant particle
layers were short range ordered arrays of separated particles
with surface coverage at 22.7� 1.4% as determined by ImageJ.
Prior to the Pt GLAD step the surfaces pre-templated with
latex particles were coated at room temperature with 5nm
gold by e-gun evaporation at 90°. The gold deposition step
assured that the subsequent GLAD Pt layer would remain
firmly attached to the surface. The GLAD depositions were
carried out by e-gun stimulated thermal evaporation at 5°
between the evaporation flux and the substrate at deposited Pt
surface mass densities of 1.6� 10�5 (g cm�2), 3.2� 10�5

(g cm�2), and 6.4� 10�5 (g cm�2), using Pt with a purity of
99.9% (Pt from Dansk Aedelmetal A/S, Denmark, 99.9%
purity). The deposited surface mass densities were monitored
by a quartz crystal microbalance (QCM) and corrected by a
cosine (90° � u) factor due to the reduced incoming flux
caused by the tilted substrate plane. We defined the angle of
incidence u as the angle between the incident vapor direction
and the substrate plane (see Figure 1A). The GLAD

Fig. 3. (A) Illustration showing roundness and elongation values for cells with different
morphologies (B) cell density, (C) area, (D) elongation, and (E) roundness values on the
respective surfaces. Significant differences between the individual groups and the
control, calculated based on the Students t-test, are marked with *(p< 0.05),
**(p< 0.01), and ***(p< 0.001), respectively.

Fig. 4. Roundness versus cell area distributions for the fibroblasts (A) and glial cells (B) on the respective surfaces.
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evaporation was carried out at room temperature with a
background pressure <10�8mbar and a distance between the
evaporation source and the substrate at 250mm. During
GLAD the substrates were rotated at three rotations per
minute. After GLAD deposition, the samples were heated up
to 160 °C for 1 h in an oven. The heating step was followed by
sputter deposition of 25 nm to assure a homogenous Pt
coverage. The flat Pt reference surfaces for the cell assays were
produced by sputtering 100 nm Pt on a silicon wafer (Si-Mat,
Germany) at room temperature with an Argon pressure of
2� 10�3mbar and AFM measurements confirmed a low
roughness value (0.64� 0.004 nm).

1.2. Material Characterization
After GLAD deposition was carried out on the respective

substrates images were acquired by means of AFM using a
commercial Nanoscope IIIA Multimode SPM (Veeco instru-
ments, Santa Barbara, CA). AFM images were acquired in the
tapping mode at scan frequencies 1–2Hz under ambient
conditions using a silicon cantilever (NSG01, NT-MDT,
Russia) with a typical resonance frequency at 150 kHz, a
spring constant of 5.5Nm�1 and a tip radius below 10 nm. The
AFM images were quadratic with a linear dimension of 2mm
and a linear resolution of 512 pixels. The AFM images were
complemented with cross-section and plan-view SEM images
(FEI Company, USA). These images were analyzed with
ImageJ software (from www.rsbweb.nih.gov) to determine
the height andwidthof the submicron islands (brush columns),
aswell as the thicknessof the respectivePt coatings.Thecolumn
heightandwidtharepresented in thepaperasmean� standard
error of mean from a total of 15 submicron islands. No
significant sample variations were seen.

1.3. Cell Culture
In brief, test samples consisted of a flat and three different

nanorough surfaces attached to a microscope slide using
medical-grade silicone adhesive (MED-1037, NuSil Technolo-
gy, USA). Samples were cleaned by immersion in a solution
1% v/v of detergent (Liquinox, PC International Ltd, UK),
rinsed with ultrapure water, and sterilized using 70% ethanol.
Samples were introduced in separate cell culture dishes
(35mm BD Falcon, BD Biosciences, Broendby, Denmark) and
seeded with either fibroblasts or glial cells at an approximate
density of 5000 cells cm�2. The culture medium consisted of
Dulbecco’s Modified Eagle’s medium (DMEM, Invitrogen,
Taastrup, Denmark) supplemented with 10% fetal calf serum,
and 1% penicillin/streptomycin. The fibroblasts were
obtained from a human skin biopsy, while the glial cells
consisted of a human astrocytoma-derived glial cell line
(U-87, ATCC no. HTB-14). After 24 h of culture on the test
samples, the cells were rinsed with phosphate buffer saline
(PBS), fixed with 4% buffered formaldehyde and permeabi-
lized with 0.1% Triton X-100 in PBS for 5min. The cell nucleus
was then stained with the Hoechst 33342 dye (Molecular
Probes, Carlsbad, CA, USA) for 1 h at 37 °C, rinsed with PBS
and incubated with a 1:200 dilution of primary antibody anti-

vinculin produced in rabbit (Sigma–Aldrich A/S, Broendby,
Denmark) for 1 h at 37 °C. Samples were then rinsed in PBS
and incubated in a 1:150 dilution of secondary antibody anti-
rabbit Cy5-conjugated produced in goat (Invitrogen) under
mild shaking for 1 h at room temperature. Finally, the actin
cytoskeletonwas stained by incubating the samples for 20min
in a PBS solution containing 1% bovine serum albumin (BSA)
and a 1:40 diluted Bodipy 558/568 Phalloidin (Invitrogen),
which binds specifically to the actin cytoskeleton. Following
the cytoskeletal immunostaining, the samples were rinsed
twice with PBS and kept at 4 °C in PBS until microscopic
analysis.

1.4. Cell Counting and Cell Morphology
Light microscopy was performed with a Leica DM 6000B

microscope, where images were acquired at random on each
surface. Area, elongation, and roundness of isolated cells were
analyzed with the grain analysis tool provided with the
ImageJ software. Elongation indicates how elongated a shape
is and is defined as Elongation¼ (Length –width)/(Length),
while the roundness value is a measure of the irregularity of
an object compared to a circle and defined as roundness¼
perimeter/(4p Area). The 0.5 means square root of the
parenthesis.

1.5. Statistics
All data was expressed as mean� standard error of mean.

Differences between two groups were calculated by the
Student’s t-test, with significant levels of difference set at
the 95, 99, and 99.9% confidence interval and marked with
*(p< 0.05), **(p< 0.01), and ***(p< 0.001), respectively.
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