High throughput 16S rRNA gene amplicon sequencing

A fast and cheap method to study the influence of microbial community composition on activated sludge floc properties

Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup; Albertsen, Mads; Karst, Søren Michael; Christensen, Morten Lykkegaard; Nielsen, Per Halkjær

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
High throughput 16S rRNA gene amplicon sequencing: a fast and cheap method to study the influence of microbial community composition on activated sludge properties

Marta Nierychlo, Poul Larsen, Mads K. Jørgensen, Mads Albertsen, Søren M. Karst, Morten L. Christensen, Per H. Nielsen
Center for Microbial Communities
Aalborg University, Aalborg, Denmark

mni@bio.aau.dk

Introduction

A reliable and reproducible method for identification and quantification of microorganisms is important for the studies of microbial communities in activated sludge and for the demonstration of their significance for plant operation and stability.

DNA-based identification of microorganisms using 16S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution.

Since bacterial morphology, mode of growth and EPS composition determine floc size, shape and strength, which in turn influence important sludge properties, the link established between the microbial community structure and physico-chemical sludge characteristics may provide a better understanding of the activated sludge process.

Objectives

- To show how 16S rRNA gene amplicon sequencing can be used to reveal factors of importance for the operation of 23 full-scale nutrient removal plants that can be related to settling problems and floc properties.
- To investigate whether the microbial community composition differs between the flocs and the supernatant (bulk water) and whether certain bacterial species are prone to detachment from the flocs.

Methods

- **Activated sludge from 23 WWTPs**
- **Shear** 600 rpm, 2 hours
- **Centrifugation**
- **Supernatant after shear** – loosely bound fraction
- **Activated sludge fractions analyzed**

Conclusions

16S rRNA gene amplicon sequencing is suitable for comprehensive studies of WWTPs thanks to short analysis time, low cost, high throughput, and high taxonomic resolution.

A number of bacterial species can be correlated to the sludge characteristics that are important for the proper plant operation (SVI, floc strength, and EPS content).

Specific bacteria are enriched in the bulk water fraction and in the fraction loosely bound to the floc.

Internal figures:

- **Relative abundance** of 10 most frequently occurring genera compared between the different sludge fractions. The variation between the WWTPs is captured by the boxplot width.
- **Spearman correlation** of bacteria present in different sludge fractions with important sludge characteristics: Sludge Volume Index (SVI), shear sensitivity, degree of flocculation and conditions for flocculation. Bacteria that were highly correlated (R <= 0.6) with the mentioned parameters are listed above.

External figures:

- Community composition in different activated sludge fractions
- Total sludge Supernatant Supernatant after shear

External tables:

- OTU taxonomic classification
- 16S rRNA gene amplicon sequencing