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Abstract Flow in air conditioned r ooms is 

examined by means of model experiments . 
The different gearnetries giving unsteady, 

steady three- dimensional and steady two
dimensional flow are determined . Velacity 

profiles and temperature profiles are 

measured in some of the geometries. 

A numerical solution of the fl ow equa

tions is demonstrated and the flow in 

air conditioned rooms in case of steady 
two-dimensional flow is predi cted . Compari 
son with measured results is shown i n 
the cas e of small Archimedes numbers, and 
predictions are shown at high Archimedes 

numbers . 

A numerical prediction of f low and heat 

transfer in cavities is also shown . 

• 

• 
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l. Introduction. 

One of the aims of an air conditioning system is to produce 
optimal conditions for the occupants of a room. This eannot 
be achieved simply by supplying a given amount of fresh air 
and by adding or removing heat to maintain a comfortable 
temperature level. I t is also necessary to generate homoge-
neonsthermal conditions everywhere in the occupied zone. 

Thermal conditions, that is to say distribution of velocities 
and temperatures, are gaverned by many paramet ers, some of 
which are the distribution of heat sources, the dimensions of 

the room, air change, and the location and dimensions of the 

diffuser. It is the purpose of the present investigation to 

predict the combined influence of these parameters. 

This investigati on i s made by means of a small- scale modelling 

technique and by numerical solution of the flow equations. The 

small-scale modelling technique is dealt with in part 2 and 
the numerical prediction of the flow in part 3. The two parts 
may be read independently, and it should be noted that the 

results in part 2 are general while those in part 3 apply in 
cases where the flow in the main part of the room is two
dimensional~ 

Part 4 gives a short description of the numerical prediction 
of convective heat transfer in cavities. 
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2 . Model experiments . 

Small - scale rnodelling techniques are used for rnany typ es of 

flow investigations . A variety of reasons can be narned fo r 

rnaking tests with models instead of making thern in fu l l-scal e , 

but in beating and ventilation research their appeal lies 

first and fo remost in the advantages of working with smaller 

dimensions and smaller systems. In the following , for example , 

experiffients are made with flow in a model which simulates 

roorn lengths of lo- 2o m - an exp eriment which can be difficult 

to make in full-scale rooms owing to the space required . Small 

size models can also be made with a ver y flexible geometry , 

a s is the case here , where exp eriments are made with about 
25 different geometrical variations of the model . It is a 

p r imary purpose of these model experiments to obtain qualita

tive knowledge of the air distribution which takes place in 

r ooms of different dimensions , i . e. whether the flow is steady 

or unsteady , two-dimensional or three-dimensional. The diffu

sers and room dimensions which give steady two- dimensional 

flow in the main body of the room are of special interest 

because we shall later dernonstr ate a calculation procedure 

capable of predicting the flow in these situations. 

The model experiments must also yield quantitative data such 

as velacity profiles and temper ature profiles. These data and 

r esults from other references will b e used to check the 

solution procedure. 

The following paragr aphs on model exper iments begi n with the 

development of the governing laws , i . e. thetheoryof similarity . 

Particular attention shoul d be g i ven to the paragraph which 

demonstrates the influence of thermal radiation in model experi

ments , paragraph 2 . 2.2 . This is followed by the paragraphs 

dealing with the actual model experiments , of which paragraph 

2 . 3 is the first . If the reader is acquainted with the camplex 
of problems surrounding the theory of similarity or does not 

wish to study the subject he would do well to begin reading 

at paragraph 2 . 3. 
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2.1. The basic eguations 

A set of basic equations is of interest for many r easons . With 

such a set of equations it is possible to describe the laws 
governing model experiments, and such syst ems also f orm the 

.basis of the numerical method for prediction of flow distri

bution in a room, which is deseribed later . 

I n t he following we shall consider the flow in a car tesian 

coordinate system wi th the coordinates x1 , x2 , x
3

. The basic 

equations describing the flow are the equation of continuity , 

the equations of moti on and the equation of energy. The 
equations are gi ven i n detail in, for example , the reference 
[ l ] . 

If we assume that the flow is incompressible the equation 
of continuity will be 

·av. 
-l a x. 

l 
= o (2 . 1- 1) 

where ~ is the instantan eous velocity in direction x i . All 
equations are written in abbreviat~d form accor ding to the 
summation convention, where the subscript i takes the values 
l, 2 and 3. In a case like this where the same subscript is 

r epeated a summation over is implied . 

The equations of motion - also called the Navier Stokes 

equations - describe the balance of the f orces in the three 

coordinate directions. If we assume that the flow lS 

i ncompressible, the three equations of motion will be 

p -1 +V·-1 (
av. • av.) 
at Jax. 

J 

= p g. - ~ 
l ax . 

l 

a 2 . v. 
+ jJ. axjaxj 

( 2 . 1- 2) 
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p is the density and ~ the molecular viscosity . The instanta

neous pressure is p and the gravitational acceleration is gi. 

The subscript i takes the values l, 2 , and 3 and describes 

three equations in three directions , and the subscript j is 
summed up in the single equations . The density p and viscosity 

~ are, in principle , functions of the instantaneous tempera-
t ure T. With the temperature differences that occur in 

practice this effect can be ignored except for the gravita

tional term pgi' see for example Rubel and Landis [ 3o J . This 
as sumption is called the Boussinesq approximation . 

The dependence of density on temperature is expressed by an 

equation of state . 

P = Po - Po Ø ( T- T0 ) 
(2 . :'_ - 3) 

where Po and T
0 

are reference values and P is the coefficient 
of thermal expansion. 

If we apply the Boussinesq approximation and equation (2.1-3) 
to the equations (2.1- 2) we get 

(
a-v. . av.) Po-1.-V·-1 = 
at J axj 

a2. 
V· 

., ~o l 
a x. ax. 

J J 

-Po~9i(T-T0 )-~ a x. 
l 

assuming that the hydro static term Po9j is ignored . 

Po ~ 9 i (T -T 0 ) is the v a riation in the gravi ty as a 
function of the ternperature , that is to say buoyancy . 

(2 .1-4) 
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The last equation in the set of basic equations is the energy 

equation, which expresses the energy conservation at a point . 
Energy is, in principle, the sum of internal energy, kinetic 
energy an~ potential energy. However, the last two can be 
ignored in our application. In a later chapter we will use an 
equation fortnat part of the kinetic energy which isconnec
ted with the tur bulent eddies; not because they contain 
significant amounts of energy but because the transport of 

turbulent kinetic energy is important in connecti~n with the 
description of turbulence. 

The velocities are so low that we may consider the flow 

incompressible and ignore the energy produced by friction, 

viscous dissipation, and thus the energy equation remains 

(a t q at ) 
PoCp at • j ax . 

J 

a2t 
= "A axjaxj 

(2.1- 5) 

Specific heat Cp and thermal conductivity X are assumed to 

be uniform according to the Boussinesq approximat ion. 

We have now set up a system of equations which gives a complete 
description of the flow in an area. It consists of the 
equation of continuity (2.1- 1), three equ?tions of motion 

(2.1-4) and the energy equation (2 . 1-5), and contains the five 

unknowns v1, v2 , v3 , p and t . 

It must be emphasized that the variables referred to are instanta
neous velocity , pressure and temperature, and that in derivation 

of the equations nothing has been said about the type of 

flow. Theset of equations describes every situation, regard-
less of whether it is steady, unsteady, turbulent or laminar . 
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A system consisting of differential equations is fully ~escri
bed when the boundary conditions , i. e . the values al ong the 

boundary of the area of integration , are known . The ooundar y 

conditions for the velacity are, in a diffuser , a velacity 

profile of the type 

vi= f(xj,t) (2 . 1- 6) 

The boundary conditions for the velacity on a surface are 

y. - o 
l - c 2 . =- -7) 

The boundary conditions for the temperature are , in a diffuser 

and along surfaces , of the type 

t =Hx.,t) 
J 

• 

(2 . 1- 8) 

The differential equations may have gradients as boundary 

conditions at some parts of the boundary . For example , a 
return opening may be deseribed as follows 

a v1 = 0 a x1 
(2 . 1-9) 

ar = o (2 .1-lo) a x1 

where v1 and T are mean values, assuming flow parallel 

to the walls in the return opening. 
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The temperature at a surface may have a boundary condition 

of the type 

(at) = const. 
a n n= o 

(2.1-11) 

where n is normal for the surface ,and the heat f l ow to or from 

the surface is constant. The description of boundary conditions 

will be more complicated when thermal radiation is involved . 

This question will be dealt with in paragraph 2.2.2. 

2.2. Principle of similarity. 

2.2.1. Dimension1ess equations 

We shall demonstrate how it is possible, by means of dimension

less equations to evaluate rules which have to be observed 

when making a model experiment. 

The following parameters are se1ected in order to characterize 

the situation in an air conditioned room : Diffuser velacity 

V
0

, height o.f diffuser h, supply temperature T
0

, and t he 

positive temperature difference ·between supply and return 

6T
0

• 

It should be·noticed that the height of the room H or its 

hydrau1ic diameter may be used as a reference length in 
other papers on the subject. 

The set of basic equations is made dimensionless by introducing 

the dimensionless variables 

X * x . . =-1 
l h 

(2.2.1-l) 
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. * v. v . =-1 
l vo 

(2 . 2.1- 2) 

A* p (2 . 2 . 1- 3) p = 
V~ P0 

t*= ~o (2 . 2 . 1 - 4) 
h 

. * T = t- T0 (2.2.1- 5) 
f1 T o 

These variables are intr oduced i n the equations (2 . 1- l) , 

( 2 . 1 - 4 ) and ( 2 . 1-5) , an d we wil l thus g e t t h e following 

e quations. 

av.* 
_l o 
a * = x. 

l 

a· * a·* V · A* v . 
-l +V · -1 = 
at* J ax ·*" J 

- 2..Q '* 
a * + x. 

l 

Il o 
P0 V0 h 

a t* . * at* 
-·+V. --* -at J ax. -

J 

-~gi h !!.To t*" 
v2 o 

a2A* v. 

axjaxt 

..,.,_ a 2 t * 
CpP 0 V0 h ax~ax.*" 

J J 

(2 . 2.1- 6) 

(2 . 2 . 1 - 7) 

(2 . 2.1- 8) 
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It will be seen that the solution of the set of equations 

is dependent on some dimensionless numbers comprising physi
cal constants of the flu~d , and r eference values of .the 
problem. 

A r = Ø 9 2 h Å T0 (2.2.1-9) 
v2 

Q 

1 l-Lo (2 .2.1-lo) --
Re P0 V0 h 

1 A. 
= (2 . 2 . 1-11) 

P r R e c p Po V0 h 

where Ar is the Archimedes number, Re is the Reynolds number, 

and Pr is the Prandtl number . It is assumed that the 

gravity acts in the positive direc t ion of the x2~axis . 

The use of the Archimedes number is common in air conditioning 
references, while in fluid dynamics it is often written as . 

Ar 
_ Gr --

Re2 
(2.2.1-12) 

where Gr is the Grashof number. 

By means of fig. 2.2.1-l we can now specify the conditions 

to be fulfilled when a model experiment is to be made • . The 

figure shows a section of a room and a sectio~ of a geometri
cally similar model . 



To Vo ____.,. 
h 

__...,. 

- lo -

l L 

Fig. 2.2.1-1. Sect ion of a room and section of 

a geometrically similar model. The reference 

variables are shown on the figure. 
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The basic flow equations of the fo r m (2.1- l), (2 . 1- 4), and 

( 2 .1-5) as well as the boundary conditions (2.1- 6) to (2 . 1-lo) 
are set up for room and model respectively. After this, we 

make the twosets of equations and the boundary conditions 
dimensionless by intr oducing the variables (2.2.1-l) to 
(2.2.1-5) into the equations. These variables contain reference 

values from the full size room and from the model respectively . 
For example , the velacity in a room is deseribed dimensionless 

bJ dividing with the diffuser velacity in the roo~ , and the 
velacity in the model is deseribed dimensionless by dividing 

with the supply velacity in the model. 

The two sets of equations wil l now have t he form (2.2.1-6) , 

(2 . 2 . 1-7) and (2.2.1- 8), and it will be seen that they are 
identical and thus describe the same sol ution , provided that : 

l. the dimensionless boundary conditions , including 

geometry, are identical 

2. the dimensionless numbers in the equations ( 2 . 2 . 1- 9) , 

(2.2.1-lo) and (2 . 2 .1-ll) are identical , i.e. the 
Archimedes number, the Reynolds number and the Prandtl 

number are the same for room and model . 

2 . 2 . 2 . Heat flow at surfaces . 

Item l of the principle of similarity requires that boundary 
conditions for the t emperature must be indentical in room and 

model. How , then is it possible to establish the correct 

boundary conditions in a model ? 

The influence of a surface can in certain situations be de

scr ibed thus : The surface has a gi ven temperature or tempera

tur e distribution, as is the case , for example , with heat 
l oss through a window if the outdoor temperature is low. 
The boundary condition is of the type (2.1-8) , and it is easy 
to establish. If the dimensionless. surface t emperature in a 

room is known according to equation (2 . 2 . 1-5); the surface 
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temperature in the model is determined so that it gives the 

s ame dimensionless temper ature . Thermal r adiation between 

surfaces will not affect the model test , if all sur faces a r e 

kept at given temperatures , i . e . boundary conditions of the 

t ype (2.1- 8). 

However , the boundary conditions for the temperature are 

generally more complicated . Distributi on of the surface tempe

rature is dependent on radiation between the different sur

faces, and it is dependent on the local heat flo w to or 

from the surface and also on the local coefficient of heat 
transfer . This we will examine by setting up an equation for 

the heatbalance for a surface element dA . This equation is 

rendered dimensionless in the same way as previou s equations , 

and the dimensionless numbers thus obtained, are evaluated. 

When forming t he heat balance equation it is reasonable ~o 

ignore the heat capacity owing to the large time constant of 

the surface material in relation to the turbulent eddies . 

Situations where the time dependent changes of temperature 

are so great that the time constant of the building structures 

is significant - for example daily variation of sun gain and 

outdoor temperature - are not included i n this analysis 

because in pr actice model experiments are only made for 

steady conditions. 

Fig. 2 . 2 . 2- 1 shows the surface element dA with the normal n. 

The surface element is exposed to radiation from the surroun

ding body with the instantaneous mean radiant temperature Tm5 , 

and the heat flow to the surface element is qdA . 

The heat balance per unit area of the surface element is 

~ 4 - - A. -(at) 
a o T ms • q - a n n= O 

~ 4 
+ E a T dA . (2 . 2 . 2- l) 



-. 'tP - -~ 1 l 
l 
l 
l 
l 
l 

L--------------~= 

- ~1 -
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The first term in t he equation is the ther mal r adiation received 
from the surroundings , while the second term is t he heat flow 

to the surface . The first t erm on the right hand side is the 
conductive he3t flow and t he second term is t he thermal 

' 
radiation emitted f r om the surface . The thermal radiation is 

written as a produet of the absorptivity a or the emissivity 
E multiplied by the Stefan- Boltzmann•s constant o and by 

the mean radiant temperature Tms to the fourth power or the 

instantaneous temperature TdA of the surface element to the fourth 
power respectively . 

The absorptivity a andthe emissivity E are in practice identi 

cal, because the received and emitted radiation is of the same 

wavelength distribution , 3.5 - 4o ~ m . Short wave sun radiation 
is ignored . Equation (2 . 2.2-l ) can thus be written 

(
a t) · 4 . 4 q = - A. - + E o (T dA - T m s) 
an n= o 

(2 . 2 . 2- 2) 

When temperature differences are moder ate we can linearize the 

term ( T d4A - t~ s ) and make the equation dimensionless by means 
of formulas (2 . 2 . 1-l ) and (2.2 . 1- 5) . 

q h 
å T0 A. (at*") = - an"'lf- nif:O 

+ 
4EoTJh 

A. 
A * A * (TdA-Tms> (2 . 2.2- 3) 
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Equation (2 .2.2-3) contains two dimensionless numbers which 

must be i dentical for a surface element in a room and for a 

surface element placed in a similar position in a model. 

We will first discuss the situation where radiation to and 

from the surface is negligible. This is the case when the air 

passing the surface has a high velacity or when the emissivity 

of the surface is small. Equation (2 . 2 . 2-3 ) now expresses 

that the dimensionless temperature gradient at th~ surface i s 
equal to 

q h 
ll T0 A 

(2.2.2-4) 

The condition that the same dimensionless t emperature gradient 

should be present in room and model is now fulfilled by 

distri but ing t he heat flux q in the model according to (2 . 2 . 2-4 ) 

in such a way that this number is identical in room and 

model at the same locations. 

Let us now discuss the case where radiation is significant . 

The number 

4E:oT~h 
A 

(2.2.2-5) 

must be identical in room and model. The emissivity is 0.9 

for common surfaces in a room by longwave thermal radiation. 

It is therefore not possible to raise this coefficient consi

derably in the model. T
0 

measured in Kelvin, is of the same 

magnitude in room and model. 

We now see that it is not possible to make the dimensionless 

number (2.2.2-5) identical in room and model if we are working 
with air in the model. 
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The number will, in the model, be smaller according to the 
geometrical relation between model and room. This means that 

it is not possible when making model experiments wi th air to 

reproduce the influence of radiation in a room. 

If the model experiment is made with water the influence of 

radiation has to be ignored, because water is opaque to l ong
wave thermal radiation. 

When a model experiment is to be made in a situation where 

radiation is significant the only possibility in practice is 

to give the model a dimensionless temperature distribution 
which accords with the distribution which can be foreseenin 

a room under the combined influence of radiation , convection 
and conduetion to and from the surfaces. 

2.2.3 . Practical use of the similarity principle. 

In this paragraph we shall examine some exampl es of the use 

of the similarity principle and show how we can, in cert ai n 

situations, reduce the requirements. 

First let us consider the situation where the velocities in 

a room are high and the temperature differences are small. The 
forced convection is dominant compared with the free convection. 

This corresponds to the situation that the buoyancy terms 

in the equations (2.1-4) are becomming small compared to 
the other terms. We can in this situation ignore the buoyancy 

and the Archimede_s number will not appear in t he dimension less 

equations. It is not important to the model experiment. 

In the following example we assume that the Archimedes 
number is of a size such that the buoyancy shall be taken into 

consideration. We also assume that full consideration is 

given to the similarity principle, i.e. the fol l owing three 
dimensionless numbers must be identical in the room and i n the 

model 
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(2.2.3-1) 

(2.2.3-2) 

(2.2.3-3) 

The model experiment- is made in air , so in this way the same 
Prandtl number is secured in room and model. 

The factor by which the room is bigger than the model is 

called M, which means that the model is manufactured in the 
scale 1/M. The requirement that the same Reynolds number 

shall apply in room and model means that the velacity in the 
model increases with the factor M, . because the height of the 

supply opening h is M times as small . The supply opening in 
the model is M times as small and the square of the supply 
velacity is M2 times as big as in the room. Therefore the 

Archimedes number requires that i1 T
0 

in themodel shall be 

M3 times as big as in the room. We see that the temperatures 

in the model will reach very high values if the scale l/M is 

to be reduced significantly . 

If the model experiment is only to predict the gener al stream 

line pattern , which is mainly gaverned by free turbulence, it 

is possible to ignore the Reynolds number and the Prandtl number . 
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This simpl ification is possible because the structure of the tur
bulence at a sufficient l y high level of velacity will be 
similar at different supply velocities and therefore inde
pendent of th~ Reynolds number . Likewise the transport of 
thermal energy by turbulent eddies will dominate the mole-

cular diffusion and will therefore be independent of the 
Frandtl number . 

Turbulent free j et s and wall j et s are examples o f flows 11'1hich 
can be similar at different Reynolds numbers and Prandtl 

numbers, see Schwarz and Cosart [ 32 ] and Schmidt [ 31]. 
NUllejans [25 ] has also shown how the general stream line 

pattern in a series of model tests was simi l ar at different 

Reynolds numbers .and only dependent on buoyancy and, with it, 
the Archimedes number . 

There is a big advantage to be gained in ignoring the Reynolds 

number. In the example it was shown that the temperature 
difference in the model was M3 times greater than in the room. 

If we ignore the Reynolds number it is possible to lower the 

velocity in the model to a value at which the flow is still 
suitably turbulent . The lower velacity will give a smaller 

denaminator in the Archimedes number (2.2.3- 3) and therefore 
also a lower temperature difference ~ T0 in the model. However , 
it is not possible to ignore the Reynolds number or Prandtl 
number if it is the heat transfer from the surface which 

is to be studied in the model experiment. The viscosity and 

molecular diffusion will always be important close to a 
surface 

When a model experiment is made with water as fluid it is 

necessary to ignore the Prandtl number, because water at 

normal temperature and pressure has a Prandtl number which 

is lo times greater than the Frandtl number for a i r. 
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2.3. Test set up. 

This paragraph deals with the construction of a model and the 

necessary measuring equipment . The model works with air as 
experimental fluid and it has given the results discussed in 

paragraphs 2 . 4,and 2 . 5. 

Fig. 2 .3- l shows a sketch of model and measuring equi pment. 

The model (l) comprises a box with a length of 1 . 8o m, a 
widthof o,6o m and a height of o.6o m. It is made of wooden 

frames, of which the battom and both ends are coated with 

hard masonite and insulated with polystyrole. The side walls 

are double glazed, and the top of the model is of plexiglass 

with loose insulation in sections. By means of a light box (2) 
a beam of light can be applied at different places in the 
model and the stream line pattern in the model can be observed. 

Air is sueked in through the box (3) and the nozzle (4). The 
nozzle endsin a supply opening (5), which is aligned with 
the top of the model and has a height of 7 . 2 mm . The inlet 
opening follows the whole width of the model and is divided 

up into 5 sections . They can be closed independently if it is 

wished to examine the flow in situations where the inlet ope
ning only covers part of the width of the model. 

The air leaves the model via a return opening (6) and is led 
to the blowers (7) . By placing the blowers after the model, 

the risk of upsetting the measurements in the model by heat 
emitted from the blowers is avoided. 

Inside the model is fitted an extra floor section (9) and an 

end wall (lo). We can thus examine various geometrical situationE 

by varying the length and the heigth of this sub- model , and 

the width can be varied by placing a couple of plexiglass 

walls parallel with the side walls . 
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Fig. 2.3-l. Test set up with model and measu
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The model is designed for three types of experiments: 

l. Measurement of stream line pattern 

2. Measurement of a vertical velacity and 

turbulence profile 

3. Measurement of temperature distribution. 

The stream line pattern is measured by introducing light 

weight particles to the air, which are illuminateq and photo

graphed or filmed. The particles used are metaldehyde particles. 

These particles have a very big and crystal-like structure, 
which gives them high drag in proportion to their weight. The 

settling speed of the particles is so low that it is negligible 

even in experiments at very low velocities such as full scale 

experiments with free convection, see Daws et al. [ 6 ] • 

. . '-") h The part1cles are formed by heat1ng metaldetyde on a ot 

surface , in this case a soldering iron (11) . When metaldehyde 
is heated a poisonous gas is produced and t herefore the model 

is equipped with a box (3) so that all gas is led through the 

model and out into the free air (8). 

The particles are illuminated in a section by means of a looo W 
halogen lamp· (2) and are photographed or filmed through t he 
side wall . By taking pietures with different exposure times 
it is possib·le to determine the stream line pattern and also 

make a qualitative evaluation of the mean velacity and turbu
lence. 

The supply velocity is determined by measuring the pressure 

drop across the nozzle (4) by means of a micromanometer (12 ). 
The nozzle (4) has a contraction of 2o:l and its shape is 

determined according to a method deseribed by Li bby 

and Reiss [ 18} • 

*) META, Lonza A.G., Basel 



- 22 -

Test measurements show that in practice the nozzle gives 
a frietion free flow and it therefore creates an almost rect

angular velacity profile in the supply opening . This velacity 
profile is a welldefined boundary condition for a model 

experiment and it is easy to repeat in other tests . 

The vertical velacity profile in the model is measured with 

a DI SA CTA-anemometer type 55D01 (13) and (14) . The signal 

is linearized with a DISA linearizer type 55Dl0 and the mean 

value as well as theroot- mean- square value is measured . 

The anernorneter is calibrated befare and after a set of measure

ments in a known , uniform velacity core from a fr ee jet. This 

free jet has the same temper ature as the air in the model . 

A DISA CTA- anemometer type 55K01 is used in some new measure
ments made in 1976 . 

For temperature experiments heat is supplied along the battom 

of the model. The heat is generated by an ESWA electric 

heating film vihich is mounted on the sur face (9) and is 

supplied via a variable transformer. Surface temperatures 
and the temperatures in the flow are measured by o .2 mm copper

cons tantan thermocouples (15), and the temperatures are 

recorded on a pen recorder (16) . 

2.4 . Isathermal model e~eriments. 

2 . 4 .1. Far arneter s of the model experiments . 

A model experiment in air with isathermal flo w is fully 
characterized by the Reynolds number and by the geometry of 

the model , see paragraph 2. 2 . 3 . The geometry for all the 

experiments made , can be expressed by the dimensions given 

on fig . 2 .4 .1-1. H is the height of the model, L is its 1ength 

or depth , and W is its width. h is the height of the supply 

opening and w is the width . u is the height of the r eturn 
op en ing . 
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Fig. 2 . 4 . 1-1 . Definition of geometry and coordi
nates in the model. 
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All the geometrical parameters are expressed in the following 
dimensionless ratios 

h/H, L/H , W/H, u/H and w/W 

Fig. 2.4.1-l also shows the location of the coordinate axis. 

The coordinate system is placed with its centre in the upper 

left corner of the model, and all distances in the model are 
expressed in the dimensionless coordinates 

x1/H , x2/H and x
3
;w. 

2.4.2. Flow in models with big depths. 

This paragraph examines the results of a series of tests in 

which the depth L/H of the model is so great that the flow 

is not influenced by the end wall. 

The results simulate a deep room and, of course, also rooms 
where the "effective" value of L/H is high. This may be the 
case in, for example , a storage room filled with goods and 

consequently having a small "effective" height H. 

A jet will have a limited penetration into the model. Entrain

ment in the jet means that air must be led back along the 

bottom of the model and at a given distance this air will 

disperse or deflect the jet~ 

We define the penetration l as the distance from the wall re 
with the supply opening to the point in the bottom of the 

model where the stream lines diverge - reattachment point, 

see fig. 2.4.2-l at the top. The penetration lre must not 
b e confus ed wi t .h the throw. The throw is, in the case of 

isathermal flow, a variable describing t he velocities in a 

room, and it is defined as the length from the diffuser to 

a point with a given velacity (e.g. 25 cm/s) in a wall jet 

or free jet. 
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Fig. 2.4.2-l. Flow in model with big depth. 
The upper pieture shows the result for the 
pressure tight setup and the lower pieture shows 

the result for the setup where t he side walls are 

as high as the lower edge of the nozzle. h/H = o.o56, 

w/W = l.o, W/H = l.o and Re = 47oo. 
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At distances from the supply opening which ar e greater than 
the penetration the velocity is very l ow , sin ce the injected 

air is distributed over the whol e area , whil e at distances 
which are less than the penetration the velocities are very 
high, becaus e big velurnes of air are s et in motion by the 

injected jet . The penetration is therefore an important 
parameter in the discussion of room air distribution . 

Fig. 2.4.2- l shows the two different setups resulting in two 
different penetration depths . They both have the following · 
dimensions 

h/H = o . o56 

w/W = l . o 

W/H = l . o 

In the upper setup the side walls are made in such a way that 

they form a pressur e-tight seal against the floor and ceiling. 
The side walls are also extended into the nozzle itself by 

means of two spacers, see point (l) on the figure . 

The experiments show a penetration depth of l re/H ~ 4. 3 , 

independent of the Reynolds number from Re = 47oo to Re = 94oo. 

In the lower setup on fig. 2. 4 .2-l the side walls are as high 
as the lower edge of the nozzle . In this instance the experi

ments show that the penetration depth will be lre/H - 3.4 at 
Reynolds numbers from 29oo to 93oo . It will thus be seen that 
t he penetration depth is greatly dependent on minor details 

in the construction of the model , and the latter result eannot 
be regarded as characteristic of a closed room. 

Urbach ( 34 ] has with the aid of smoke visualization found a 
penetration at about 3 . o for values of h/H between o.l and 
o . o2 and Reynolds numbers between 35oo and l2ooo . The width 

of the model was W/H = l.o . 
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Katz [ 14] has measured the penetration depth in models built 
up in an open water channel. He has found the penetration 

depth l re/H between 3 and 4.5 . His experiments show that the 
penetration depth is to some extent dependent on the location 
of the end wall. He explains this as a tendency of the water to 
fo r m circular movements between the end wall and the point of 
reattachment so that this distance beoornes a multiple of H. 
The models used for the experiments had a small width W/H. 

It will be seen that there is some difference between the 

penetration depth in the various experiments referred to. 
This is probably due to the influence of the supply opening 

itself and the contraction forme d before this opening. 

A completely new situation arises when we extend the width 

W/H of the model. On fig . 2.4.2- 2 the geometry is specified 
as follows 

h/H = o. o56 
w/W = l.o 

W/H = 4 . 7 

The two pietures on the figure show two instantaneous situations 
of the flow which occur. From the top pieture we see that the 

illuminated part of the jet penetrates deep into the model . 
The jet entrains air from part of the jet outside the illuminated 

ar ea , i . e . there occurs a instantaneous flow in the x
3 

direction. 
A moment later it is the ·jet under the light opening which 
deflects in the direction of the x 3 axis, entrained by the j et 
b eside it , as is evident from the bottom picture . Unsteady 
f l ow conditions are in evidence throughout the examined 

velacity ranges f r om Reynolds number 2ooo to loooo . 

The tests were repeated wi th a supply opening having an h/H 

dimension of o .o25 . This did not bring about any change in 

the flow , which remained unsteady throughout the examined 
velacity ranges . 
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Fig. 2 .4.2-2. Unsteady flow in a model of great 

depth. h/H = o.o56, w/W = l.o, W/H = 4.7 and 
Re = 98oo. 
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The big width of the model makes unsteady flow possible and 

must therefore be considered an important parameter. No 
systematic determinati on of the influence of the width has 

been carried out,. though it has been observed that with a 

width of W/H = 3 the flow is still unsteady . 

The different forms of flow occuring in f ig . 2.4.2- l and in 

fig. 2.4.2-2 as the result of varying widths show that care 
must be displayed when making model tests or full scal e tests 

which only represent a part of the room. As we have seen, 
it eannot be concluded that two-dimensional boundary condi

tions give two-dimensional flow. Later we shal l see t hat 
boundary conditions that are symmetrical to a plane 
do not necessarily give a symmetrical flow. 

Forthmann [9] has measured the vel ocity profiles in a deep 

model having the dimensions h/H = o.l7 and W/H = 3.6. He has 
apparently not observed any unsteady flow. He has calculated 
the stream line distribution on the bas i s of the measured 

velocity profiles and finds a penetration depth l /H of 5 .3. re 

In the next series of tests the width W/H is still 4 . 7 but 

an attempt has been made to damp the unsteady flow by 
means of longitudinal fins placed in the main flow direction 
having the height H/2. At the top of f ig. 2.4.2-3 can be seen 

a sectional vi ew in the direction of the x
3 

axis showing.the 

location of the fins. The flow will be partly two-dimensional 
because the injected jet is not di stur b ed by the side walls 

and because transverse unsteady flow is prevented by the fins~ 

Fig. 2.4.2-3 shows the stream line pattern at three different 
Reynolds numbers. An examination of photos shows that the ave

rage penetration lr
9
/H is 4.o to 4 .5 for h/H = o.o56 and that 

the flow oseillates somewhat in the area of the reattachment 
point. The penetration is independant of Reynolds numb ers in 
the range examined from 24oo to 93oo. 
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Re = 2300 . 

Re = 4600 

Re = 6300 
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Fig. 2 .4. 2-3. Flow in model with great depth and 

longitudinal f i ns. h/H = o.o56~ w/W = l.o and 
W/ H = 4. 7. 
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The last series of tests with a deep model concerns cases 

where the width of the supply opening is only part of the 

width of the model. The geometry is specified by the followin g 

dimensions 

h/H = o.o25 
w/W = o.2 

W/H = 4.7 

At the top of fig. 2.4.2-4 will be seen a drawing of the flow 

which now occurs. The drawing shows the model from above. 

The injected air will after some distance stick to one side of 

the model owing to the Coanda-effect. With this deflection of 

the jet the vertical velacity gradient in the first part 

of the jet will be deflected onto a horizontal plane deeper 

in the model. This effect has two consequences of practical 

importance to room air distribution: Firstly, the primary jet 

will reach the bottom and therefore give rise to a rather high 

velacity in the area corresponding to the occupation zone. 

Secondly, the air which is entrained with the injected jet 

will return on the opposite side of the model, thus creating 

a quite rapid rotating mavement below the supply opening. 

This flow is represented by the dotted line on fi g. 2 . 4 . 2-4, 

and it runs in what corresponds to the occupied zone in a 
ro om. 

At the start of a test the injected jet may tend to stick to 

either side, but once the flow is established it is completely 

steady and similar at the different Reynolds numbers throughout 

the examined velacity range from Re = 2ooo to Re = 48oo. 

The two photos on fig. 2.4.2-4 show the stream line pieture 

at two different Reynolds numbers. The horizontal rotating 

motion below the supply opening isclearly marked by 

particles of metaldehyde accumulated in this area. 

The example demonstrates that boundary conditions which are 

plane symmetrically do not always result in a symmetrical 

flow. 
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Re = 3200 

Re = 4400 

Fig. 2.4.2-4. Flow in model with big depth and 

small width of supply opening. h/H = o.o25, 

w /W = o .• 2 and W /H = 4. 7. 
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2.4.3. Flow in models with width W/H = 4.7 and 

different depths. 

In this paragraph we shall examine a series of tests in which 

the depth has influence on the flo w. The object is to limit 

those dimensions of the model which, qualitatively, give two

dimensional flow. All of the tests are based on the geome try 

shownon fig. 2.4.2-2,except that an end wall has been 

introduced. The geometry is specified by the followingparamet er~ 

h/H = o . o 56 

w/W = l.o 

W/H = 4.7 

and by the location of the end wall L/H which l ies between 

6.o and 2.o. The height of the return opening u/H is o.l6. 

Fig. 2.4.3-l and fig. 2.4.3-2 show that the original unsteady 

flow in wide deep rooms is still present with lengths of 

respectively L/H = 6.o and L/H = 5.o. 

On fig. 2.4.3-3 we see three typical photos of the flow for 

L/H = 4.o. There still occurs a weak oscillation of the stream 

line pattern on the right side of the model, but in practice, 

however, we may consider the flow as steady in the main part 

of the model. Visual observation of the f l ow shows that it 
is two-dimensional in this area. The penetration lre/H ranges 

from 3.7 to 3.8. 

Fig. 2.4.3-4 shows a single photo of the stream line pattern 

for L/H = 3.o. The flow is steady and two-dimensional both 

in the area of high velocity on the lower right side of the 

model and in the area of very low velocity on the lower left 

side of the model. 

For L/H = 2.o the flow is still two-dimensional throughout , 

see fig. 2.4.3-5. 
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Fig. 2.4.3-1 •. Unsteady flow in model with length 

L/H = 6.o and big width. h/H = o.o56, w/W = l.o, 

W/H = 4 . 7, u/H = o.l6 and Re = 7ooo. 

---

-

Fi g. 2 . '1 . 3- 2 . Unsteady flow in model with length 

L/H = 5.o and big width. h/H= o.o56, w/W = l.o , 

W/H = 4.7 , u/H = o.l6 and Re = 7ooo . 
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Fig. 2.4.3-3. Flow in model with length L/H = 4 . o 
and big width. h/H = o.o56 , w/W = l. o , W/H = 4 . 7 , 
u/H = o.l6 and Re = 66oo . 

--
Fig. 2.4.3-4. Flow in model with length L/H = 3. o 
and big width. h/H = o . o56, w/W = l . o , W/H = 4 . 7 
u/H = o.l6 and Re = 7ooo . 
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Re=2100 

--
Re :4500 

-
Re= 7000 

Fig. 2.4.3-5. Flow in model with length 
L/H = 2.o and big width. h/H = o . o56, w/W = l.o, 

W/H = 4.7 and u/H = o.l6. 
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In the experiments discussed in this section, the supply opening 
has had a width equal to the width of the model , i . e . w/W 

is l.o. In practice, the supply openings will often comprise 

a lineof diffusers distributed across the width of the room. 
If these diffusers are placed at short distancesfrom each 
other , the jets will , at a certain depth of the room , form 

a single, two - dimensional , wall jet . This means that the 

results also apply in this instance, provided that the 

line of single diffusers is replaced by one equivalent diffuser 

with w/W= l . o, see section 3 . 3 . 1 . 

To exemplify what happens when there is a great distance 

between the diffusers, we shall examine a situation where 

there is only a single supply opening of the size w/W = o . 2 

and h/H = o .o25. The length of the model is 3.o and the 
width is 4.7. The height of the return opening u/H is o.l6. 

Fig. 2 . 4 . 3- 6 shows a drawing of the flow conditions in the 
model as seen from above. The jet below the top of the model 

is a two-dimensional wall jet. When the jet reaches the end 

wall it is dispersed over an angle of 18o0 and acquires a 
character similar to that of a radial wall jet , where the 

decrease in velacity a long the jet will be far greater than 

in the two-dimensional wall jet . The upper part of the radial 
jet from the end wall reaches the side walls and runs back 

and down these sides . This is indicated by a solid line on 
fig . 2 . 4 . 3-6 . The battom and middle parts of the radial jet 
from the end wall run down the wall where they are dispersed 
over the floor as illustrated by the dotted lines on the 

drawing . Part of this jet reaches the side walls and runs 

up these, meeting the downward jet in the area near the end 

wall. Together, the two jets run into the centre of the model . 

In the two corners below the diffuser a rotational upward 
motion occurs , the effect of which maybe seen from the 
pieture of the stream lines on fig. 2.4. 3- 6. 



- J8 -

-~ f ' 

. "'- "" \ "'- ' 

'""' ~-"'-
-·----- -------

~- l' 

/ / 
( ./· / 
' / 
~-_/' 

--

---

--

-

--

Fig. 2.4.3-6. Flow in model with the length L/H 
' = 3.o and a narrow supply opening. h/H = o.o25 , 

w/W = o.2, W/H= 4.7, u/H = o.l6 and Re = 45oo. 



- 39 -

We see that t he dimensions usedforthe suppl y opening result 

in a complicated , t hree-di mensional , but st eady fl ow. Unlike 
t he corresponding situat ion in deep rooms , fig . 2 . 4 . 2- 4 , the 

fl ow is symmet r ical around the median p l ane thr ough the 
supply opening. 

However , this is only one example of a fl ow which may ar ise 
i n a room having one supply opening . Another wor k worth of 
mentioning is that of Malmstram and Svensson [ 21] showing 

that a jet from a single circular supply opening in the 

median plane of a room may tend to move back and for th in 
front of the opposite wall . 

2 . 4.4. Flow in models with width W/H = 1.6 

and different depths. 

This series of experiments is primarily characterized by a 
limited width in the model. Also the supply opening is smaller 

than in previous experiments, h/H = o . o2o. The size of the 
return opening is u/H = o.l5. 

When discussing the results it is convenient to divide the 

flow area intothree sub areas in the model . The first area 
is the upper third of the model . Fig. 2 . 4.4-l and fig. 
2 . 4.4-2 show that at all lengths of model L/H = 4.9 , 4.o, 
3 . o , 2.o and l.o there is a f l ow in this area which , qualita
tively, can be characterized as a two- dimensional wall jet . 

With the length L/H = 4 . 9 the flow is somewhat unsteady at the 
farthest point from the supply opening , but the damping from 

the side walls is significant compared to the flow in a wide 
model of this length. With the lengths L/H = 4.9, 4.o and 

3 . o there are two characteristic areas in the lower t wo 

thirds of the model. Farthest away from t he supply opening 

there is a recirculating two-dimensional flow ariginating 
f r om the top wall jet , which is turned twice 9o 0 at the 
end wall. The velocity is relatively high in tpis area. J ust 

below the supply opening there is an area of very low 

velocity , containing a horizontal circulating motion 
which sametimes occupies the whole width of the model • 
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Fig . 2 . 4 . 4-1 . Flow in models having a width of 
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With the lengths L/H = 2.o and l.o the lower two-thirds of 

themodel arecompletely controlled by the two-dimensional 

recirculating flow ,figs. 2.4.4-l and 2.4. 4-2. 

So far, we have only studied the stream line pattern in the 

median plane of the model. Fig. 2.4.4-2 shows two pietures 
o f stream tines, one from the median plane, x

3
;w = o. 5, and one 

from the area close to the side wall, x
3
;w = o.o5. For L/H 

2.o in particular, there is a characteristic difference in 

stream line distribution. We see that the injected jet has 
a tendency to run down the side walls, something which has 

also been shown by Linke [l9], Urbach [34] and Nagasawa [26] . 
With the experimental method we use, it is not possible to 

establish whether this three-dimensional effect has any 

significant infl uence on the flow inside the model, i . e. 
whether the flow inside the model is quantitatively two
dimensional without influence from the side walls. 

Fig. 2. 4.4-3 shows two situations related to the previously 
mentianed flow in the area below the supply opening. The f l ow 

is a horizontal circulating flow, which sometimes occupies 
the whole width of the model. It is unsteady and changes i ts 

direction every few seconds in the case of V = lo-15 o 
m/s, equivalent to a Reynolds number of 47oo , to 7loo. The 
pietures of the stream lines apply to L/H = 3.0 and illustrate 
the flow close to the side wall, x

3
;w = 0 . 05. The drawings 

show the two situations as seen from above. The dividi ng line 
between the horizontally circulating f low and the return f low 
along the side wall is clearly visible on the bottom picture. 

With the lengths L/H = 4 .0 and 4.9 the velocities are lower 
than at L/H = 3.0, and the horizontal motion sametimes ceases 

completely . At all events, flow vel ocities are so l ow that 

t hey are of nosignificance t o the situation in practice i n 
an air conditioned room. 
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x31W=0.5 

x3 J W= 0.05 

Fig. 2.4.4-2. Flow i n median plane of model, 
x

3
;w = o.5 , and at one side wall x 3;w = o.o5. 

h/H = o.o2o, w/W = l.o, L/H = 2.o , W/H = 1.6, 

u/H = o.l5 and Re = 47oo. 
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Fig. 2.4.4-3. Two different stream line pietures 

at the side wall of the model, x
3
;w = o.o5. 

h/H = o.o2, w/W = l.o, L/H = 3.o, W/H = 1.6 , 
u/H = o.l5 and Re = 47oo. 
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::' . Jt . 5. Verticnl velacity profile in n model . 

Veloci t y pr ofilcf> o.rc muasured in model r~ having a length o f 

T./li = ) , ~· . l .::mcJ '-1 o.nd widt h;; of W/ H= Lt . 7 , l and 0 . 5. rrhe 
other dimensions are 

h/H =- o . o~C 

w/W = l .o 
u/H =-= o.l6 

The vertical velacity profile is measured at x1/H = ? . o . 

The position is chosen in such a way that it is in the 
range where the velacity is at a maximum in the lower p srt 

of the recirculating flow in the cas e of a length of J1/J ~ 

3 . 0 . This vel acity is important in air conditioning because 
it corresponds to the maximum velacity i n the occupied zone 

of a room . 

The velacity profile is also measured close to the cent re of 

the recirculating flow . This gives simple mathematical 
expressions for the transformation of the signal from the 

anernorneter to velacity and intensity , because the mean 

velacity in this areais parallel with the x1-axis. 

In a turbulent flow the i nstan t aneous veloci ty vi may b e 

expr essed as the sum of a mean velacity vi and a time depen

dent fluctuation Vi . 

v i = v i + v i ( 2. 4 . 5-l ) 

When the mean v elacity is parallel with the x1-axis, t he 
total i nstantaneous velacity should be expressed as 
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• 11( ')2 .2 .2 
v tot = V v1 • v1 • v2 • v 3 (2.4.5-2) 

The hot-wire is placed so that the mean velacity v1 forms 

a right angle to the probe support , i.e. the x 2 axis is 

parallel to the probe support and the x
3
-axis is parallel 

to the hot-wire probe. 

A hot- wire is sensit ive to the direct ion of flow , and there

fore the effective cooling velacity deviat es from formula 
(2 . 4 . 5- 2), and becomes 

. V< , )2 K2 . 2 K2 .2 
Veff = v1 . v1 • 1v2 • 2v3 (2.4.5-3) 

where Kf is about l and Ki about 0 .1 because the hot-wire 
is only very slightly sensitive to velacity components 
parallel to the hot-wi re. The value of K1

2 and K2
2 also 

depends on the type and geometry of the hot-wire. 

If we limit ourselves to situations where fluctuations are 

small compared to the mean velocity; we may ignore t heir 

second power and formula (2 . 4 .5-3) can be written as 

. ,/ 2 2 ' ' 
veff 'V yv1 • v1v1 rV v1.v1 ( 2.4.5-4) 
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~~e signal from the anernorneter is linearized , and by cali~ra

t ion a t a known velacity having a low turbul ence intensity 
the proportionality constant K is determined from the 

fallewing expression 

E +E' = K veff (2 . 4 . 5- 5) 

where E i s the mean value of the vo l tage signal and E ' is 
the fluetuating par t . If we suppose that formul a ( 2 . 4 . 5- 1+) 

can be used in large areas we get the fallewing express:i.ons 
of the mean veloc-:i ty v

1 
and the turbulenc e intens i ty f:,~ . 

v, 

V v·2 
1 

= E l K 

= VE· 2 /K 

(2 . 4 . 5- 6) 

( 2 . 4 . 5-7) 

Fig . 2 . 4 . 5- l shows the velacity profile v1/V
0 

at a Reynolds 
number of 47oo in the model having the length L/H = 3 and 

the width W/H = 4 . 7 . We see that the upper part of the velacity 

is 0 . 62 times t he supply velocity , which a l so agrees well 
with the corresponding velacity of 0 . 64 calcclamd for a wall 

jet after Schwarz and Cosart [ 32 ] • 

I n the middle range of the profil e the mean velacity is much 

lower than the fluctuations. Formula (2 . 4 . 5- 3) shows that 
the effective cooling velacity does not become correspon

dingly low , and Miller and Comings [ 22] have demonstrated 
that the signal E/K in this area is an expression of the type 

V v;2• v~/ 
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Since there exists a mixing layer in the middle range with 
a fairly constant velacity gradient, the dotted curve is a 

reasonable expression of the mean velocity. 

Fig . 2 . 4.5- 1 also shows the profile for intensity Vv;2/V0 • 

We have chosen to plot this value on the same side as the 
respective mean velocity, even though it is not to be cal

culated with signs • In the upper part of the profile the 
measurements are in good agreement with the results from a 
wall jet. Thus Nelson [ 27 ] , for example finds that the 

maximum value of Vv;2/V
0 

is o . l 4 i n a jet of si~ilar 
length. It is very c·haracteristic that the i ntensity reaches 
a maximum where the gradient of the mean velacity is greatest , 

and this is due to the produetion of turbulence by the 
gradient. 

Fig. 2 . 4 . 5-2 shows the velacity profi l e v1;v0 and the inten

sity V~2/V0 at a Reynolds number of 7100. If we compare this 

with f i g. 2 .4.5-1, where the Reynolds numb er i s 4700, we s ee 
that both the mean velacity and the t urbulence are similar 
at the t wo supply velocities. 

Note the maximum intensity at the lower surface. This maximuro 
is due to the considerable local produetion of t urbulence i n 
the mean velacity shear layer. The correspondi ng maximum 
at the upper surface was not found because the hot-wire 
probe has only been taken a small di stance past the 

mean velocity maximum. 

Fig. 2 .4.5-3 shows the velacity profil e in a model with the 

length L/H = 3 .1 and the width W/H = 4.7, i .e. in practice 
the same dimensions as those applicabl e for f i g. 2.4.5-1 and 

2.4.5-2. The measurements are carried out wi t h a 55K01 ane
rnorneter system while the measurements for the two previous 

figures are made with a 55D01 anernorneter system. There is a 

slight difference between the results for L/H N 3.o. The 

reason may be that the different dimensions of probe support 

influence the results, because the air flow is at right angles 
to the probe and the support. Sine~ the sub model used in all 

the measurements is very small (H = 12 .65 cm) and the supply 
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Fig . 2 . 4 . 5-l. Vertical velacit y pr ofile 

v1/V 
0 

and turbulene e intensi ty V v; 2 1 V 
0 

in a model of big width. h/H = o . o56 , w/W = l . o , 

W/H = 4 . 7 , L/H = 3 . o and Re = 47oo . The profile 
is measur ed at the coordinates x1/H = 2 . o and 

x 3/h' = o. 5 .. 
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and t urbulence intensity Vv'2/y in a model 
1 o 

of big width. h/H = o.o56, w/W = l.o, W/H = 4.7, 
L/H = 3 . o and Re = 7loo. The pr ofile is measured 
at the coordinates x1/H = 2.o and x

3
;w = o.5. 
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opening is difficult to align it is also difficult to recreate 

a measuring s i tuation with great accuracy. 

In the case L/H = 3.1, fig . 2.4.5- 3 , the velocity profile is 

also measured at width W/H = l and 0 . 5. There is a tendency 

for the signal to increase in the lower part of the profil e 
especially in areas just about of the maximum velocity. 
Owing to the small dimensions and the possibility of distur

bancesfrom the probe support , however, it eannot be concluded 
with certainty, that thechange in profile is produ ced 

by a three-dimensional effect at the side walls. 

Linke [19 ] is one of the first to show how a three-dimensional 
effect at the side walls can influence the flow on the median 
plane. By means of some measurements made in a model with t he 

width W/H = 1.0 and the length L/H = 3.0 he shows that the 
velocity profile on the median plane does not meet the equat i on 

of continuity if the flow is cons idered two-dimensional. 

Obviously , the flow in the lower .part of the profile is too 
large . He concludes that the reason is dispersion of the 

injected jet down and along the side walls, as. is also shown 

on fig. 2.4.4-2, forming a three- dimensional flow. 

Urbach's [ 34] measurements of the velocity profile in a model 

with the width W/H = l show that in practice the fl ow may be 
considered ·two-dimensional in the case of length L/H = 2.0 

(the two-dimensional continuity equation was met in the 

measured velocity profile). At L/H = 4 .0 he registers devia
tions as measured by Linke. 

Nagasawa [ 26 ] has carried out a complete - though qualitative -
measurement of the velocity field in a model having the 

dimens ions h/H = 0.02, L/H = 4.0 and W/H = 1.0. These measure
ments show how the horizontal velocity profile in the lower 
part of the model reaches a maximuro in the middle and decreases 
in velocity out to the side walls, i.e. a three-dimensional 
flow. 
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Fig. 2 . 4 . 5-4 shows the velacity profile in a model with the 
length L/H = 4.0 and t he width W/H = 4.7. The velacity profile 

is as previously measured at x1/H = 2 . 0. Fig . 2 . 4 .3- 3 shows 

that we must expect that the mean velacity in the lower part 
of the model will have a component in the negative direction 

of the x2- axis. We must therefore observe that the velacity 
on fig . 2 . 4 . 5- 4 is the total velocity. 

2 . 5 . Model tests with temperature distribution . 

We shall use a model having the following dimensions 

h/H = 0 . 056 

w/W = 1. 0 

W/H = 4 . 7 

L/H = 3 . 0 
u/H = 0 . 16 

The flow in the model is steady and two - dimensional , so that 

the measured temperature distribution is suitable for compari
son with the results from the prediction method. 

The temperature distribution is created by supplying heat 

from an ESWA-heating film , placed on the battom of the model . 
The temperature is measured at lo points by means of thermo

couples. Three thermocouples are placed on the heating film 
at distance x1/H = 0 . 5 , 1 . 0 and 2 .0. One thermocouple is placed 
in the supply opening and two thermocouples ar e placed verti

cally above each other in the return opening . The temperature 

pr ofile in the model is measured on the horizontal plane H/4 

correspondi ng to the coordinates x2/H = o . 75, and the posi
t ions in the x1-direction are x1/H = 0.1 , 0 . 5 , 1 . 0 and 2 . 0 . 
All thermocouples are placed on a vertical plane at x

3
;w = 

0.66. 

In addition to the geometri cal dimensions, complete specifi
cation of .the individual exp eriments ineludes Reynolds number 

and Arch imedes number according to the formulas(2.2 . 3-2) and 

( 2 . 2 . 3- 3) . 
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The measured temperature fluetuates just like the 

velacity and can therefore be expressed as a sum of a mean 

temperature T and a f luctuation T'. 

t = T + T' (2.5-1 ) 

Since the thermocouples have a small time constant it is 
possible to get a qualitative pieture of this effect by deter

mining t as a function of time on the pen recorder. The mean 

temperature T is determined graphically. 

Figs. 2.5-1, 2.5-2 and 2.5-3 show the horizontal temperature 
profile in the model at the three Reynolds numbers Re = 24oo , 

47oo and 7loo. The temperatures are given dimension l ess 

according to formula (2.2.1-5). The supply temperature will 

be T~= O and the return temperature ( T
0 

+ ~ T0 )* = l. We 

see how the temperatures increase in th~ direction of the 

recirculating flow and reach their highest leve l below the 

supply opening. 

The three f igures also show the distribution of the surface 
temperature Ts. Although constant electrical power is supplied, 

the heat flow is not uniform along the bottom owing to the 

temperature coefficient of the heating film res i stance. 

The measurements in fig. 2.5-3 were made at Archimedes numbers 

so small that the buoyancy is of no importance to the flow, 

see section 2.2.3. The stream line distribution and the 
veloci ty profiles that have b e en found for i sothermal f l ow 

in the same model are therefore also applicable for the 

situation of fig. 2.5-3. 

Fig. 2.5-1 shows that the air temperatures are significantly 

lower than the corresponding temperatures on fig. 2.5-2 and 

2. 5-3. Thi s change is presumably due to the influence o f 

buoyancy on the flow at the higher Archimedes numbers. 
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If there is a sufficiently big temperature difference it is 
likely that the supply jet will run down the wall beneath the 
supply opening and reverse the direction of flow in the model , 

as is demonstrated by Mullejans [ 25] in a simil ar model at a 
smaller Reynolds number. 
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3. Numerical prediction of the flow in a room. 

In the following section we shall examine a prediction method 

for determining the air distribution in a room. The method is 

well suited for the purpose since it predicts air distribution 
in all areas of the room. This is not the case with the ordina

ry prediction method, where it is only possible to follow a 
wall jet or a free jet in the first part of its progression. 

The prediction method is based on a numerical solution of t h e 
flow equations on a computer . The method requires so much 
computer space that it is necessary to limit the prediction 
to steady, two-dimensional flow (The situation in 1971-73). 

Section 3.1 to 3.3 gives general information on the numerical 

method. For more detailed information reference is made to 

the literature and to appendicesi to III. Section 3.3.1 is of 
special interest, because i t shows how the calculations are 

made for various types of diffusers. 

In section 3.4 a comparison is made between measured and pre
dicted results. The primary purpose qf this section is to 

illustrat e the applicability of the numerical method. But 

the section also contains conclusi ons of general interest to 
air condi tioning , and is therefore recommended to readers 
even if they have no special i nterest in the numerical pre
diction method. 

3.1. Two dimensional eguations and turbulence model. 

I f we consider the set o f general equations in section 2 .l. , 

comprising the equation of continuity (2.1-1 ) t he t hree 
equations of motion (2.1-4) and the energy equation (2.1-5), 

with the fiveunknownsv1 ,v2 ,v3 , ~and t, we see that they 

together with the boundary conditions represent a complete 

description of the flow. 
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At the velocitiesand temperature differences prevalent in 

air conditioned rooms the flow will always be turbulent. The 

turbulence is deseribed by the fluctuations in the vari.ables 

involved , and t hes e fluctuations t ake place at dimensions down 
to l o-3 t imes the main s iz e of the pr oblem , e.g . the height H. 
W e se e that i t is difficul t to sol ve the set of gener al equa-

t ions by means of a numer ical me thod becaus e such a method 
requires several difference equations within the length 

lo- 3 H, which leads to an untractably large 
number of differ ence equations when the whol e flow r egion lS 

to be described. 

Instead we shall choo s e to consider t h e mean value of the flow 

as t he unknowns. The r eason is that the variations in t l:.e 
mean values over a given distance are considerably smaller 
than the · variations i n t he instantaneous values , and the mean 

values may ther efore be deseribed by a limited number of 

difference equations . 

As a s tep towar ds the ·s et o f equati ons which is sol ved 

by the numerical method, equations (2.1-1) , (2.1- 4) og (2 . 1- 5) 
ar e rewri tten to the following set o f equations .• 

av. - o -1 -a x; 

( av. v av. ) 
Po a t 1 + j a x~ 

j 

= - P 0 ~g i (T -T0 ) 

ap a ( av. --;---;-) -- + - 1! 0 -1 - p v. v. ax ax ax . o l J 
i j J 

( al.vE..I.) = 
Po at jax . 

J 

a (x ar -.-T.) - - - - - PoV· 
ax. cpax . J 

j j 

(3.1- 1) 

(3 . 1-2) 

(3 .1-3) 
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where 

v. • v.' = v. 
l l l 

(3.1- 4-) 

p + p' = p (3 .1- 5) 

. 
T + T' = T (3.1-6) 

Cerrelations of typ.e - Po v j v j and -Po c p vjl' may b e considered as 
a stress and a heat flux respectively, caused by turbulence. 

The idea behind the turbulence model is now to replace these 

cerrelations by terms containing a turbulent viscosity ~t 
according to expressions of the type 

p • • · (av a ) - o v, v 2 = Il t -1 + _y_2 
. ax2 ax, 

(3 .1-7) 

-P v' T' = l:.t li 
o 1 o h a x, 

(3 .1-8) 

where oh i s. the turbulent Prandtl number, s ee for example, 

Launder et al.[l7 ] 

The new variable Ilt describes the t urbulence on the basis of 

turbulent kinetic en ergy k and dissipati on of t urbulent kinetic 
energy E. 

k2 
Il t = C Il Po t (3 .1-9) 
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c~ is an empirical constant, and k and € ar e defined as 

k 1 -. -. =-v. v. 

E: = 

2 J J 

llo av : av: - --1 _, 

Po axj axj 

(3 . 1- lo) 

(3 .1-11) 

Turbulence at a given point is not only dependent on local 

conditions . It can , via the energy k, be transported araund 
in the flow area , and i t is therefore necessar y to descr:~be 

it with the aid of transport equations for k and G • Launder et 
al.[ 17 ] has developed transport equations for these values and 

reduced them, so that together with the equations for the mean 
flow they repres en t a complet e description o f the flow. ~~he 

equations are given at the end of this section, and they are 

disignated (3 . 1-18) and (3.1- 19). 

As mentianed we shall confine ourselves to two-dimensional 
steady flow. We shall also make a reduction of the numbers 
o f equations by leaving the variabl es v

1
, v 2 and p and 

introducing the vorticity w and the stream function ~ 
as new variables. 

The vorticity is twice the angular velacity of the air at 
the examined point and is given by 

w = av2 
a x 1 

a v1 
a x2 

(3 . 1- 12) 
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The stream function describes the vector field (v1 , v2 ) by 

a single scalar quahtity ~ -

The stream function is a practical variable when describing the 
solution to an air conditioning problem, because lines of 

constant ~ values are stream lines, i.e. lines parallel to the 

velacity vector. The connection between velacity and stream 
function is basedon the equation of conti nuity (3.1-l ), and 

it is given by the following expressions. 

v -1 -
~ 

Po ox2 

v2 =_.l~ 
Po ax 1 

(3.1-13) 

(3.1-14) 

We arenowable to show the totalset of equations in the form 

which is used in the numerical model. The first equation 
(3.1-15) is the vorticity transport equation derived from the 
two equations of motion in the x1 and x2 directions . The second 
equation ( 3 .l-16) is the relation by definit ion between the · 

vorticity and the stream function, and the third equation 

(3.1-17) is the energy equation. The l as t two equations are · 
transport equations for k and € , i. e. e qua t ions that repres en t 
the model of turbulence. 

The set of equations consists of five non-linear partial 
differential equations. These are all built up with convection 
terms on the left side and diffusion terms, produetion terms 

and dissipation terms on the right side, except equation 
(3.1-16) in which the diffusion terms are on the left side . 
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a (w~) a (w~) ax, ax2 ax2 ax, 
_a (a~tw) - a x 1 a x1 

+ __2._ (a Il t w ) + Po Ø g a T 
ax2 ax2 2 ax1 

a ( 1 a$ ) a ( 1 atP ) 
a x1 Po a x 1 • a x 2 Po 8 x 2 = - w 

a (r a q, ) a (T ~) _ ax, ax2 - ax2 ax, -

a (Ilt aT ) 
+ ax2 ah ax2 

a (Ilt a T ) 
a-x, oh ax, 

(3.1-15) 

(3.1-16) 

(3.1-17) 

a ( k ~ ) a ( k ~ ) _ _a_ (~t a k ) • .L ( !:.t ~ ) 
ax, ax2 - ax2 a x, - ax, a k ax, ax2 o k ax2 

• 11 t [ 2 (( ~ 1 ) 
2 
• ( a v 2 ) 

2 
) • ( a v 1 • a v 2) 

2
] a x1 a x 2 a x 2 a x1 

- Po e: (3.1-18) 

a (e: ~ ) a (e: ~ ) a x1 a x2 a x 2 a x1 
_ _Q_ (H.. t ae:) • ~ (~t ~ ) 

a x, a € a x, a x 2 o e: a x 2 

• c , Il t [2 fl( a v, ) 2 • ( a v 2 ) 2 ) • ( aa v, • a v 2) 21 ~ - c 2 P o ~ 2 c 3 • l-l 9) 
- ~ ax, ax2/ x2 ax, J 
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The values c1 , c 2 , cll, oh .' ok and o6 are empirical constants 
whose values are given in table 3.1-l . 

The constants are optimized for general fluid mechanics 
problems, and no changes are made in connection with prediction 
of the air motjon which takes place i n air conditioned rooms. 

Use of the turbulence model assumes a high Reynolds number 
flow. It is possible to check whether this assumption is 
fulfilled in a prediction. The method is deseribed i n more 

detail in appendix I. 

3.2. Numerical method. 

The principle of the numerical method is t o repl ace the diffe

rential equations by a number of difference equations which 
are solved by means of a modified Gauss iteration. The examined 

section is divided up into a number of points in a rectangular 
grid. The distanc e between the points is chosen i n su ch a 

way that i t is permissible to consider w , "' , T, k and e as 
linear between two points. In areas where gradients of t he 
individual values are great, the points are relativel y close 

together , and in areas where the gradients are small there 
is a greater distance between the points. We see t hat the chosen 

rectangular grid is important to the resul ts of the numerical 
solution, both with respect to the number of points and the 

distribution of a given number of points. Appendix II gives a 

more detailed discussion of how these problems are solved 

by the numerical predictions. 

Evaluation of the difference equations and the lay out of the 
computer programme which carries out the iteration is deseribed 

in detailbyGosman et al.[lo], and[l l]. It wi ll therefore 
suffice here to mention the principle of the iteration and 

introduce one or two ideas of importance in connection with 

the numerical method. 
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c, c2 c~ oh ok o 
e 

1,45 2,0 0,09 0, 5 1,0 1,3 

Tab1e 3 . 1- 1 . Empir ica1 constants in the equa tions 

(3 . 1- 15) to (3 .1-19) and (3 . 1- 9). 
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The five differential equations are replaced by five difference 

equations at each point. At point P on fig. 3.2-1, for example, 
we get 

'Pp = C E '9 E + Cw 'P w + C N 'P N + C S 'P S + D (3.2-1) 

where t.p denates w, q, , T, k and E . The in di vi dual C-co effi

cients and D are dependent on the unknown variables and the 
equations are therefore non-linear. 

During the iteration the following fo r mula is used 

'P n+ 1 
p 

C n n cn•1 n+1 C n n cn•1 n+1 D = E'PE• w'Pw• N'PN· s~.Ps• (3.2- 2) 

We will begin by choosing an arbitrary distribution of t.p 

called t.p1 • Row by row, we shall now determine a new '9 which 

we shall callt.p2. Equation (3.2-2) shows the calculation of 
'Pp at iteration n + l. For points E and N values f rom 

iteration n are used and for points W and S values 

from iteration n + l are used , i.e. the latest obtained 
values are used all the time. 

The difference between t.p 8+1 and t.p~ is called the residual 
R~+l • When convergence takes place, the distance between two 

successive I.J>p val u es will approach zero, and the iteration will 

b e cut-off when R~· 1 have all dropped below a certain value 



- 68 -

l IN 
-

--- - - - - --- -

w p l 
l E 
T 

-

L - ·-
iteration n ·1 

- s 
J j l 

Fig . 3.2- 1. Rectangular grid with nodes . 
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< o. 001 (3.2- 3) 

It must be pointed out, however , that the condition (3 . 2- 3) 
is not always sufficient to ensure that the converged so
lution has b een found. By way of a check, the change in some 

of the individual val ues IP shoul d be followed to see whether 

t h ey converge t owards a fixed value . 

The iteration can be made with successive over-rel axation or 

under-relaxation using the formula 

n+1 n n+1 
IP p = 'Pp + a IP R IP (3 . 2-4) 

where a 19 is t he relax ation parameter . By using over- relaxati on 
where l < alP < 2 , we can accelerate the change in 'Pp of 

which RIP is an expression , and we can , in some cases, r educe 
the number of iterations."Similarly with under-relaxation, 

where O < alP < l, we can damp the oscillations in the residual 
RIP in an otherwise oseillating iteration, and it is perhaps 
possible to bring it to convergence. Owing to the non- linearity 

of the equations we often have to resor t to under-relaxation 
on cer tain var iables in order to ensure convergence, and 

over- relaxation on other vari abl es to avoid using extensive 
computer time . 

It is gener ally known that the rel axation parameter ought to be 

ab out l . O for w- and ~ - equations and . ab out O. 5 for k- and 
E - equations . A change in the Reynol ds number and a change in 

gr id type may r esult in diver gence in an iter ation which would 

otherwise conver ge . 
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Because of the high number of equations a computer of the 

size 1oo k bytes must be used. If, for examp1e, a grid with 

21 x 21 points is used, we get 21 x 21 x 5 = 22o5 equations 

and 22o5 unknowns. 

3.3. Boundary conditions. 

As mentioned ear1ier, the boundary conditions are a necessary 

part of the description of a problem, and they are dealt with 

in the following section on supply opening, return opening and 

boundary values along surfaces and symmetry planes. 

3.3.1 Supp1y opening. 

We shall choose to ignore the details of the f1 ow in the immediate 

vicinity of the supply opening, and instead describe t he 

supp1ied jet by values a1ong surfaces "a" and ''b" , see fig. 
3.3.1-l. We obtain two advantages by using these boundary 

conditions. First1y, we do not need to use such a fine 
grid as is necessary to describe the development of 

the injected jet to a wa1l jet. Secondly, we can make predic

tions for supply openings that are three-dimensiona1, provided 

that the jets develop into a two-dimensiona1 wall jet or 

free jet at a certain distance. 

Ca1culation .of the boundary values along the surface ·"a" is 
started by determining the maximuro velacity Vm and t he thickness 

6v of the wall jet that has developed at the distance xa 

from the supply opening , see reference [32] • 

V m 
V o 

6v 

h 

= K v 

= D v 
Xo + Xa 

h 

(3.3.1-l) 

(3.3.1-2) 
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x a 

Fig . 3.3.1-1. Boundary and boundary va1ues for a 

two-dimensiona1 supply opening. 

V m 
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x
0 

+ xa is the distance to the virtual arigin of the jet, and 
K , D and the exponent e are constants. The calculations v v 

use the constants determined by Schwarz and Cosart [32] . 

Kv = 5.4 

D v = 0.068 

x
0
/h = 11 . 2 

e = 0.56 

If data are available for the actual diffuser, these data 

should b e used . 

For maximum or minimum t emperature Tm and thickness OT we 
get correspondingly 

Tm- Tu 

To - Tu 
=Kr('o~x 0 )-e 

~ 
h = D T 

Xo + Xa 
h 

(3 . 3.1- 3) 

(3. 3.1- 4) 

Tu is the surrounding temperature , i.e . the mean temperature 
along surface 11 b 11 on fig . 3 . 3 . 1-1 . 

The surrounding temperature is not a fixed value but a function 

of the maximum or minimum temperature Tm via the f l ow condi
tions to be predicted. This connection may give rise to a 

very slow convergence of the temperature distribut ion. 

J 
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The velocity profile~Vm and the distribution of the inten

sities v; v2 l v~ ' v;2 l v~ ' v2_2 l v~ and vj2 l v~ 
at the surface 11 a" ar e universal, and ar e gi ven for ex ample , 

by Verhoff [35] and Nelson [ 27] respectively. By means of 

these profiles we can determine the distribution of the 
vortici ty w , stream function 4J , and tur bulent kinetic energy k 

as well as dissipation € . Determination o~ the diss ipat i on 
profile involves an evaluation of the distribution of length 
scale in a wall jet, and t his is deseribed in more detail in 
appendix III. 

There is a simi l arity between temperature profile and velocity 
profile except in the inner layer, where there is tbought to 

be a constant temperature equal to Tm, which corresponds to 
an adiabatic surface along the wall j et . 

Along the surface "b" the boundary condit i ons for the stream 

f unction are gi ven linearly between the value it has on the 
surface below the supply opening and the value it has on the 

profile and the surface "a" . 

The boundary conditions for the other values along the surface 
"b" a.re given as 

alf> 
a x = o (3.3.1-5) 

where the x-direction is at right angles to "b" and where 4> 

denotes w, T, k and e. 

The predicted flow conditions are greatly dependent on 

boundary values and nodal distribution areund the supply 
opening. Therefore, the predicted velocities should always be 
compared with the velocity in a free jet or wall jet of same 

l ength. Such a comparison is shown on fig . 3 . 4 . 1- 2 . 
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As mentioned previously , it is also possible to predict the 

flow conditions in the case of special diffuser arrangements. 

Fig . 3.3.1-2 shows the supply opening of a plane jet 

at a distance xs from a parallel surface. Measurements made 
by Schwartzbach [33] show that the jet is deflected due to 

the Coanda effect and develops into a wall jet at a distance 

xa from the supply opening. The curves on fig . 3. 3.1-2 show 
the values for x./h, x /h, V /V and 6v /h . Basedon these data a o m o 
the boundary conditions for a wall jet aredetermined as 

before, though it must be pointed out that the turbulence 

is higher in this case owing to the deflection of the 
jet. 

If a linear supply opening is located at a great distance from 
parallel surfaces, a two-dimensional free jet may be used as 
boundary conditions. To examplify the treatment of a three
dimensional supply opening we can mention the arrangement 

comprising a row of circular openings. Knystautas [15 ] hss 
shown that the jets develop into a two-dimensional f r ee 

jet at a distance of about 15 times the distance between the 

single openings . Assuming that this distance is small compared 

to H or L, the diffuser arrangement may be replaced by a free 

jet. Eecher [ 3 ] has also shown how other types of diffusers 

may be converted into single wall jets or free jets. 

All of the examples shown later are jets which are supplied 

parallel to a ceiling . The boundary conditions for the 
supply opening can, of course, also be arranged so that they 

correspond to supply openings in the floor or in the sill 

below the window. 

In those cases where h/H ~ O.l , the supply opening is used 

direct as boundary condition , because xa will otherwise be 

too great compared to H and L, and because the opening 
itself can be deseribed by a reasonable number of nodes in 
this instance. 
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Fig. 3.3.1-2. Two~imensional jet supplied parallel 

to a surface. After Schwartzbach [33] • 
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3. 3. 2. Return opening. 

The boundary conditions for the return opening do not have a 

great influence on the flow. The vorticity w is assumed to be 
zero, and the stream function 41 is vari.ed linearly across the 

opening , corresponding to a parallel flow with rectangular 
velacity profile. For the other variables we use 

alP _ o --a x 
(3.3 .. 2- 1) 

in the direction of the flow, where 4> denotes T, k and 

€ 

3.3. 3. Boundary conditions at surfaces . 

The gradients in a turbulent boundary layer are b ig, and 
a high number of points is required because linearity 

is assumed between the points right up to t he surface. We 
shall choose instead to let the first point in the f low 
area, called P , lie just inside the equilibrium layer . 
Then we use the knowledge we have about the flow in 

this layer to calculate a slip value at pointNon the .surface , 

knowing the value at point P . The slip value is the boundary 
value which gives the correct slope at point P , assuming a 

linear variation between N and P, see fig. 3.3 . 3-1 . It is 
defined by the equation 

IP p- 19sl 

n p = (:~)p (3 . 3. 3-1) 

Wolfshtein [ 37 ] has predicted the slip values for v, T and k as 

functions of the conditions at point P and at point N and 

has converted them to a l gebraic forms , which in the fo llowing 

are called the wall functions. 
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The slip values are used as boundary conditions for 
T and k. Between each iteration there occurs, of course, 
a calculation of new slip values in accordance with the new 

conditions at P after a single iteration , and not until the 

end are the true values~ at the surface calculated. 
N 

Variation of the vorticity w between N and P is moderat e, and . 
its boundary value may be used direct. It is calculated from 

the shear stress which is also determined by the wall functions. 

In the equilibrium layer between N and P a lengt h scale is 

used which is proportional to the distance from the surface. 
The dissipation € is calculated at point P from this length 

scale and the turbulent kinetic energy. The difference 
equation for € thus has the boundary value located at the 

distance np from the surface. 

The boundary value for the stream function $ is a f ixed given 
value on the surface between supply and return opening. ~~he 

gradient of the stream function close to the wall is small, 

so linearity between N and P is reasohable. 

In sufficiently large rooms persons and furniture may · be 

simulated by an equivalent roughness in the wall functions 
and an 11 effecti ve height" H. Thermal load from, for example, 
persons may be simulated by a gi ven heat flux, as shown, 

for example, on fig. 3.4.2-l. 

3.3.4. Plane of symmetry. 

In certain situations a section of a two-dimensional flow 

area will contain a plane of symmetry. This is the case, for 
example, when two rows of supply openings are placed in a 

plane symmetrical geometry with plane symmetrical boundary 

conditions. The discharged supply air will, after possible 

deflection.s,meet on the symmetry plane and proceed parallel 

with this. 
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In this situation it is sufficient to consider the flow in 
one area. On the symmetry plane boundary conditions are 

based on the vanishing of all ~ gradients at right 
angles to this plane. 

a~ 

a x = o 

3.4. Results . 

3.4.1. Predictions at small Archimedes numbers. 

(3.3.4-1) 

The following predictions apply in situations where velocities 

are high and temperature diff erences are low. The forced con
vection is dominant compared to the free convection , and this 
means that we can ignore the source term of buoyancy in the 

transport equation for vorticity. A predi ction is completely 

characterized by the Reynolds numb er and the geometry of the 

room, while theinfluence from the Archimedes number is vanishing. 

First comparisens are made with some measurements from 
a full scale test room at the Technical University of Norway, 
Trondheim [12] • The test room is 8.3 m long, 3 .4 m wide, and 
2.8 m high. The supply is located below the ceiling at a 
distance of 22 cm from the one end wall. The opening runs 

along the width of the room and has a height h of 15 mm. Two 

return openings are located in the battom corners of tbe 
opposite end wall . The velacity is measured by spherical 
anemometers , and the air flow di rection is determined by 
injecting smoke into the room. 

The upper section on fig. 3.4.1-1 shows the predicted and 

measured velacity distribution in the room. Tbe velacity is 

indicated as "i sovels 11
' i. e. lines o f constant veloci ty' 

and both the predicted and the measured velacity field 
vtot/V

0 
are given dimensionless by dividing witb the supply 

v elocity . 
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Fig . 3 . 4 .1-l. Velacity distribution , stream line 
distr ibution and distribution of turbulent kinet i c 

energy . Comparison witb measured velacity distribu

tion [ 12 ] • b/H = o . oo5, xd/H = o . o8 , L/H = 3 . o , 

u/H = o . l, 15 x 21B and Re = l8oo . 
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(3.4.1-1) 

The velocity is 8 per cent of the supply velocity at floor 
level in the right side of the occupied zone and then decreases 

to less than 2 per cent in the upper and left section of the 

occupied zone. The predictions and the test have been made at 

a Reynolds number of 18oo, corresponding to a supply velocity 
of 1.8 m/s. The velocity in the occupi ed zone, therefore, lies 
between 14 and 4 cm/s. 

It appears that in practice the dimensionless velocity is 

rather independent of larger variations in supply velocity, 
because the structure of the turbulence in the recirculating 

flow will be similar and thereby independent of Reynolds 
number. If the supply velocity increases to 3.6 m/s, it resul t s 

in a velocity in the occupied zone which l ies between 28 and 
8 cm/s. It will be seen that a doubling of the supply velocity 
means both a doubling of the maximuro velocity and a doubling 
of the velocity gradients. It is thus more di ff i cul t to 
obtain a uniform state of thermal comfort in the whole 

occupied zone at high velocities than at l ow velocities in the 
case of isathermal flow. 

The middle section on fig. 3.4.1-1 shows the distribution of 
the stream lines in the room. The amount of air which lS 

transported between two stream lines is constant, and therefore, 
the velocity is high where the stream l ines are close and l ow 

where the distance is great. The stream function is made dimen
sionless by division with the supplied mass f low . 

q,* = IJJ l h Po V 0 (3.4.1-2) 

Between stream lines 4 and 6, for example, twice the supply 
amount is transported, and in all, an amount of air approxi

mately seven times the injected amount is set into motion. 
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It must be pointed out that the stream lines are onl y 

expressing mean values. At a f ixed point, the stream line is 

.parallel to the mean veloci.ty , but because of the various 
directions of the instantaneous velocities a transfer of mass 

and energy takes place across the stream lines. If the air is 

injected at a high temperature , heat diffusion will take place 

across the upper s tream lines down into the room. 

The bottom s ection of fig . 3 . 4 .1-1 shows the distribution of 

dimensionless turbulent kinetic energy k/V 2 • Turbulent kinetic . o 
energy is produced by the turbulent str esses. These stresses 
are, in the applied model of turbulence , expressed as velocity 

gradients of different types as will be seen from t he produetion 

term forturbulent kinetic energy in the transport equation 
(3.1-18). 

~t [2((av1)
2
·(av2)

2
).(av1. av 2)

2
] ax, ax2 ax2 ax, ( 3 .4. 1- 3) 

If we compare the turbulent energy with the distribution of 

isovels we may see that the energy is high where the velocity · 
gr adient betweert the discharged jet and the surrounding air 

is great . The ener gy is also high in the thin shear layer 
between jet and ceiling. 

Glose to the return opening there is an area where the energy 

has a l ocal maximum. This energy is due to the deceleration 
of the jet and is produced by turbulent normal stresses . 

It should be noted that distribution of energy does not follow 

the distribution of energy productioneverywhere . Tur bulent energy 

is produc~d in certain areas and transported in the mean flow 
direction by convection and, perpendicular to the mean flow 
direction, by turbulent diffusion. The figure shows that the 
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Fig . 3.4.1-2 . De·cay of velacity in a j e t in a 

closed r oom. h/H = o . oo5, xd/H = o .o8, L/H = :; . o , 
u/H= l.o , 15 x 21B and Re= 18oo. 
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velacity gradient between the dischargedjet and the s urroun
ding air gives the most important produetion of turbulence 

and that it diffuses from this area giving an even , high level 
of turbulence ever ywhere in the room. 

Fig. 3.4.1-2 shows -the decay ofthe maximum velacity in t he jet 

which runs along the ceiling, the end wall, and the floor . 

The dotted curve shows the decay of velacity in a wall jet of 
corresponding length. We see that the jet drops in velacity 
in the corners . It increases in velacity along the end wall 

and along the floor, but does not reach a velacity as high as 
a wall jet of similar length . The two open areas on the curve 
denote the length , which is added t o the jet because it is 

ignored that tbe jet does not follow tbe corners . 

Fig . 3 . 4.1-3 shows a compar ison between a measured and a 
predicted velacity profile in tbe fallewing case 

h/H = o.o56 

L/H = 3. o 
Re = 7loo 

The measurement of the velacity profile is mentianed in 
section 2.4.5. Both profiles are dimensionlessby division with 
the respective inlet velocities. It will be seen that the 
calculation gives a satisfactory velacity profile over tbe 
whole area. 

It is also possible to compare the calculated turbulent 
kinetic energy with the measured fluctuation Vv;2 · . If we 

assume that the flow may be characterized as a wall jet 
the following formula applies 

V v;2 rv ~ (3.4. 1- 4) 
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Fig. 3.4.1-3. Comparison between predicted and 
measured velocity- and turbulence intensity pro
file. h/H = o.o56, L/H = 3. o , 15 x 21B and 

Re = 7loo. 
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The . experimental results indicated in fig . 3 . 4 . 1- 4 are from 
Urbach [ 34 ] • They are made in a model 2m long , l m 
wide and l m high. The supply opening is situated b elow the 
ceiling at one end wall and runs along the whol e width of 
the model . The size of the opening h can be set at various 

values. The r eturn opening is situated at the bottom of the 
opposite wall . 

As can be seen from formula (3.4.1-2) the maximum value of the 
stream function is an expression of the amount of air set into 

motion compared with the supplied amount . Fig . 3 . 4 . 1-4 shows 

how this quantity increases with the decreasing height of supply 
opening. The supplied amount is always the same, i .e. the 
supply velocity increases with a decrease in supply opening . 

It is an advantage that the maximum value of the stream 

function ~~ is big . The following figs. 3.4.1-5 and 3 . 4 . 2-l . show 
how the temperature differences in a room become more even 

wi th a decrease in the height o f the supply opening, whieh al so 

means an increase in ~ ~ 

At a given amount of supply air - the quantity of which may be 

set according to a thermal orhygienic eriterion- the entrain

ment and the amount of air set into motion in the room must 
be limited. The reason is that the supply velocity increases 
with decreasing supply opening and eauses an increasing velocity 

in the occupied · zone. Thus this velocity and the noise 
generated by the diffuser limits the minimum size oS the 
supply opening. 

In section 2.5. the temperature distribution is measured in 
the following situation: 

h/H = o . o56 
L/H = 3 .o 
Re = 7loo 
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Fig. 3 . 4 . 1-4. Effect of supp1y opening geometry 
on recircu1ation . L/H = 2 . o , W/H = 1 . o , 15 x 19 
and Re = 74oo . 
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Fig •. 3.4.1-5 shows a comparison between these measurements 

and corresponding predictions. In section 2.2.2 we have shown 
that the influence from thermal radiation falls proportional 

to the decreasing value of the scale 1/M. Therefore, thermal 

radiation can be excluded from the calculations. The Archimedes 

number in the measuTements is so low that buoyancy is also 
neglected in the calculations. 

The temperatures in fig. 3.4.1-5 are given in dimensionless 

form. The reason is that a dimensionless solution contains 
many solutions if the Archimedes number is low. All temperatures 
T are given in reference to the supply temperature T

0 
by 

subtracting this temperature, because a solution is independent 
of the temperature level. A positive temperature T• is therefore 

greater than the supply temperature T
0

, and a negative tempera
ture is less than T

0
• At low Archimedes numbers a solution is 

independent of the difference ~ T between the supply o 
temperature and the return temperature. Therefore, the 

temperature distribution is made dimensionless by dividing 
with ~T0 • 

T*= T-To 
.åTo 

(3.4.1-5) 

o r 

T = T "'Il T0 • T0 
(3.4.1-6) 

At a supply temperature T
0 

of 22°C and a temperature difference 

h.T
0 

o f l °C, the dimensionles s temperature T il = l. 6 corresponds 

to 23.6°C, see .formula ( 3 .4.1-6). If the load is doubledat 
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the snme nir flow rate , so that åT becomes ?°C , the dimension-o 
less temperature distribution is unchanged. The dimensionless 
temperuture 'r tt ~- l. 6 corre~ponds in thi s instance to ?5 . 2°C . 

If the Archimedes number is so high that the buoyancy has a 

significant influence on the flow it is not possible to attach 
more values to å 'P

0
• I'redictions must be made for the actual 

values o f 6'J1
0 

and , therefore, o f all the Archimedes numbers , 
see sectjon ~.4.~. 

'J'he turbulent l'randtl number is, in principle, a function of 

the turbulence . However, it varies only slightly compared t o 
the other turbulent parameters, and is of the magnitude l . 

For boundary layer flow a value of o . 9 is often used, while 
for free turbulent flow a value of o . 5 is used • .D'o r the pre

dictions made here a value of o.5 is used. 

When the temperature distribution along the surface "a" at 

the supply opening is calculated it is assumed that KT is o . 9 Kv, 
see equations (3.3.1-l), (3.3.1- 3) and fig . 3 . 3 . 1-1 . 

So far , the predictions mentianed have embraced situntions 

where the flow is in practice steady and two- dimensional . If 

we predict the flow in a deep room, we shall of course, get 
a solution that also in this case represents steady two

dimensional flow. In the case of h/H = o . o56 a preliminar y 
prediction in a coarse grid gi ves a penetration of lre/H- 6. 5, 

and this is not much in conflict with the measurements showing 

that lre/H ..., 4-5, see section 2 .4. 2 . It is also in agreement 
with various values given by Bradshaw and Wong [5] for reattach
ment behind an obstacle in .a turbulent shear layer. 

Since , in this case, the flow really is unsteady or steady 

three- dimensional, it will be seen that one should always 
have knowledge of the nature of the flow before making a pre
diction. Section 2.4 gives some data on the nature of the flow 
in different situations. In special cases it i s recommended that 

a preliminary model experiment s hould be made . 
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Hitherta we have deseribed the supply opening by the ratio h/H. 

Al though t his r at io is a principal parameter , it is not , how
ever, suff ici ent to describe the two- dimensional flow from 
the jet. Constructive details such as turbulence- generating 

corners befar e the inlet, sectional division of the nozzle , 
grid arr angement and alignment with the ceil ing may be of 
importance to the established wall jet . These factors can be 
difficult to express geometrically , but their effect is 
expressed by the coefficients in formulas (3.3.1- 1), (3 . 3.1- 2) , 

(3 . 3 . 1- 3) and (3.3.1-4). 

Based on ForthiDanns measurements of isather mal velacity pro
files [ 9 ] the following set of coefficients can bederived 

Kv = 4 . 1 

Dv = o.o82 

x
0
/h = 6 . 6 

e = o.5 

The coefficients are formed by first describing 5v as a 

function of xa' formula (3.3.1- 2). This givesus x
0 

and Dv. 
I f we assume that e = o.5, K can then be found from formula v 
(3.3.1- l). 

If we compare this with Schwarz ' and Cosart ' s coefficients [ 32 ] 

it will be seen that there are some deviations . 

Myer s et al . [ 24] expresses the velacity decrease and the 
increase in boundary layer thickness in a wall jet as follows 

V m 
V o 

5v 

h 

1 
= z = v 1 + 0.381 (X~ h _ 1) 

2.05 
- z 2 Re1/5 ( 0.65 Re115 -1 + O 857rz) 

(3.4.1- 7) 

(3 . 4 . 1- 8) 
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where 

r = (o.523 z10 . 0.477 z-1 ) 4/5 

Fig. 3 . 4 . 1-6 shows a comparison of Vm/V
0 

in the three cases 
mentioned , reference [ 32 ] , [ 9 ] and [ 24] . In all three 
situations, the size of the opening is h/H = o . ool5 and it i s 
s een that this ratio does not clearly describe the center line 

velocity that will take place in the wall jet. Results from 
the linear diffusers used in air conditioning will undoubt,ly 

indicate even greater dispersion in Vm/V
0 

as a function xa . 

Fig. 3 . 4 .1-6 also shows prediction of the velocity decrease 
in the jet running along the perimeter of the room. In the 

full-drawn curve Schwarz ' and Cosart ' s wall jet [ 32 ] is used 
as boundary conditions while in the case of the dotted curve 

it is Forthmann's wall jet [9] that is used as boundary condi
tions. It will be seen that the results of the calculations are 
greatly dependent on the wall jet chosen as boundary conditions . 

We can thus conclude that the ratio h/H is not quite sufficient 

to characterize the supply opening, and this must be borne in 

mind when comparing with measuring results taken from tests in 

rooms . 

Matters may become further complicated by the faet that Vm/V
0 

may be sarnewhat dependent on the length L/H. Urbach [ 34 ] has 
established this dependency with the relatively large supply 
opening, h/H = o.o2, in models having a width o! W/H = l . o . 

If this effect is present at more realistic h/H and W/H rat ios, 

it can be suppressed to a large extent by selecting a small xa . 
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Ref . : 
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Fig . 3 .4.1-6 . Decay of center line velacity in a wall jet 
according to three different ref erences . Center line 

velacity in a c losed room using two of the different 

wall jets as boundary conditions is also shown. h/H = 
o . ool5, L/H = 3.o, u/H = o . l , 15 x 21 B and ~e = 2l4o . 
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3. 4 . 2 . Predictions at high Archimedes number s . 

we shal l now l ook at some predictions where t he Archi medes 

number is so high that the buoyancy has a considerable influence 

on the flow . 

Fig . 3 . 4 . 2- 1 shows the temperatur e and stream line di stribution 

in a r oom under the following conditions : 

h/H = o . oo5 

xd/H = o . o8 

L/H = 3 . o 

u/H = o . l 

Re = 36oo 

The dimensionless supply temperature is T; = O, and the retur n 
temperature is (T

0 
+ 6 T0 ) ~ = l. Cei ling and wall are adiabatic 

while a constant heat flux is supplied thr ough 
the flo or. These b oundary values are stated as gr adients on 

the respective surfaces , see fig . 3.4.2- 1 at the top . 

Th e contri bution from buoyancy to the vorticity appears from 

the last term of the equation (3 . 1- 15). It will be seen that 
it is proportional to the horizontal temperature gradient, 

which also seems physically reasonable . The upper section on 
f ig. 3 . 4 . 2- 1 shows the dimensionles s temperature distributi on 
given at low Archimedes numbers . The temperature distribution 

shows , in particular, steep horizontal gradi ents on the left 

s ide of the room below the supply opening . The lower sect ion 

on the figure shows the stream line distribution in the case 
of Ar = O and Ar = 4 • lo- 4 • We see that ther e is a big change 

in stream line distribution in the area with steep horizontal 

temperature gradients . The maximum value of the stream function 

rises from about 7 to about 8 . 5 with this increase in the 
Archimedes number . 

Fig . 3 . 4 . 2- 2 shows the stream line distribution in ·a room, 

where the wall opposite the supply opening may have a constant 

temperature as boundary value . This temperature may b e hi~her 
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or lower than the supply temperature. This corresponds , for 
example, to a window exposed to either low outdoer temper atur es 
or direct solar radiation. The other surfaces ar e consider ed 
adiabatic. The predictions apply to the following geometry 
and Reynolds number. 

h/H = o.oo5 

xd/H = o.o8 

L/H = 3.o 

u/H = o.l 

Re = 36oo. 

The upper figure shows the stream line distribution in the case 

of isathermal flow. The next figure shows the flow pattern 
when the end wall is calder than the supply air . It will be 

seen that cool downdraught has removed the rec irculating flow 

at the battom corner . The l ower figure shows the situation 
where the end wall is warmer than the supplied air. The warm 

current rising in front of the surface creates an area of 

recirculating flow and ~he injected jet leaves the ceiling 
befare it reaches the end wall. The flow conditions are i n 

accordance wi th the measurements made by Miller and Nash [ 23 ] 
in a sarnewhat similar situation . They use the ADPI index 
to express the thermal comfort in different 
situations. They ·show that it is advantageous to raise the 
velacity to a level such that there will only be a small ar ea 

of recircul ating flow in front of the warm end wal l. 

By comparing the isathermal stream line distribution in fig . 

3.4. 2-2 with the stream line distributiQn in fig . 3.4.1- l we 

can estimate the influence from changes in the position of 

t he return opening. The maxi mum value of the stream function 

~~ is, in pr actice , independent of the position of the 
return opening . If the return opening is moved from ane end 

wall to the other the amount of recirculating air in the 

lower part of the room will change by ~ ~= l, corresponding 

to the in j ected amounts. The change in air velocit y' in the 
occupied zone will thus be of the magnitude 1/~~ . 
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If ~~ is suitably high, as is the case with small supply 

openings, see fig. 3.4.1-4 , the influence from the position 
of the r eturn opening will te small. This is the case in 
practice, wher e the supply opening is aften of the size h/H < 
o.ol. 

Fig . 3.4 . 2-3 shows the hor izontal velacity profile at the end 
wall in the three situations examined on fig. 3 . 4 . 2- 2 . With 

isathermal flow the profile can be characterized as a wall jet . 
In the case of a cold surface the maximum velacity is increased. 

The buoyancy generates a strong vorticity in the 
shear layer at the surface where the hor izontal temperature 
gradients are greatest . This vorticity gives the shown change 

in the shape of the profile, and a typical velacity profile 

for downdraught is obtained. In the case of a warm surface the 
vorticity changes sign and gives the corresponding change in 

profile . The three profiles represent the same volume flow 
because the maximum value of the stream function $~ is the 

same in all three situations . 

3. 5. Extension of the prediction method . 

One of the cbjects of predicting the flow conditions in an air 
conditioned room is to obtain information on t he l evel of 

thermal comfort in different areas of the room. This can be 
done by examining the various factors: air temperature, mean 

radient temperature and air velocity. It is obvious , however, 
to extend the prediction method so that it integrates these 

physical quantities into a single variable, which in itself 

expresses the l evel of ther mal comfort in the ar ea. To this 
end we can use the distribution of "Predicted Percentage of 

Dissatisfied 11 persons - PPD - an index developed by Fanger [ 8] . 
The previously mentianed ADPI-index can also be used to make 

an integrated estimation of the thermal comfort conditions of 
a room, se~ Nevins and Miller [28] . 
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wall (x2/H = o.37) for three different temperatures 
of the wall. Same conditions as in fig. 3 . 4 . 2-2. 
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The prediction method can also be extended to apply to other 

physical factors. Transport equations of the same type as 

(3 . 1- 17) can be derived for humidity in air . Solution of a 
set of equations containing this equation will be of interest 

in connection with the design of, for example , cold stores . 
Similarly, a transport equation for the concentration of particles 

in air could b e used to examine the flow conditions in "cl e an 
rooms" , operating theatres etc. 
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4 . Numerical prediction of convective heat t r ansf er in 
cavities . 

Heat transfer in a cavity is a subject which is of interest 
in connection with insulation of buildings . In this section 

will be shown some results of numerical prediction of this 
type of heat t r ansfer. 

In cavity wall insulation, double glazing and similar applica

tions , laminar flow exists under normal temperature conditions , 
and we shall confine us to this type of flow. 

The flow conditions are dependent on the orientation of the 

hot and cold surfaces compared to the direction of gravity . 
In the following predictions the surfaces are placed parallel 
to the direction of gravity . 

Dr opkin and Somerscales [ 7] together with Probert et al.[ 29 ] 

have discussed the effect when the surfaces form and angle to 
the gr avitational acceleration . Hor izontal sur faces with the 

hot surface at the bottom have been studied by, among others, 
Wantland [ 36 ] . When the hot surface i s uppermost, a convective 
current may b e creat ed by a temperature distribution whi ch varies 

over the surface. This has been studied by Berkovsky and 

Fertman [ 4 ] • Also r elevant is a study made by Bankvall [ 2 ] 
regarding flow in cases where the cavity is filled with an 
insulating material . 

4 . 1 . Basic eguations and boundary conditions. 

The set of equations, which describes steady two- dimensional 

laminar f low, is 

a(w~) a(w~) 
ax, ax2 ax2 ax, 

ar 
+ Po 13 g 2 a x

1 

(a2w a2w) = J.l.o -2 + -2 a x1 a x 
2 

(4. 1- 1) 
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a (1~) a(,~) 
ax1 P0 ax1 ·ax 2 P0 ax 2 

-.!. (r ~ ) -_E_ ( r ~ ) 
ax1 ax2· axi ax1 

= - w 

_ x(a2r a2r) 
- Cp å72 + ~ 

1 2 

(4.1-2) 

(4 . 1- 3) 

These equations are identical to the equation s (3 . 1- 15) , (3 . 1 - 16) , 

and (3.1-17), apart from the following point s: They contain 

the viscous stress terms in (4 .1-l) and the molecular diffusion 

terms in (4 . 1-3), while the corresponding t urbulent contri
butions are disregarded. 

The boundar y conditions for this s et of equations are given 

on fig . 4.1- 1. The cavity is characterized by a height H and 

a width W. 

The gravitational acceleration acts in the direction of the 

x2- axis . The stream function has a constant value ~ = O along 
the whole closed surface. The boundary conditions for the 
vor ticityaregiven from the value of the s tream function at 

near wall node and wall n ode , see Gosman et al.[ ll]. The 
vertical sur faces have constant temperatures and the horizan
tal surfaces are adiabatic 

Since the solution domain is surrounded by a closed 

surface, it is appropriate to select other reference values 

than t hose used in the foregoing chapters . The following 

dimensionless numbers together with boundary conditions will 

specify the flow in the case of convective heat transfer . 

Pr = 

Grw = 

~o Cp 
~ 

2 3 
Po92Pl1T0 W 

.. 2 
. ,..0 

--------------
(4. 1- 4) 

(4. 1- 5) 
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Fig. 4.1-1. Cavity with specification of dimensions 

and b oundary conditions. 
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~T0 is defined on fig. 4 .1-1. 

When calculating heat transfer the Rayleigh number Raw is 

often used as a variable 

Raw = Grw. Pr (4.1-6) 

The heat transfer in the cavity is given by the Nusselt 

number. This number is the ratio between the actual heat 

transfer and that which would take place , if there wereonly 

conduction . 

Nuw = ")( w 
-A.- (4 . 1- 7) 

x is the coefficient of convective heat transfer. In the 
predictions x is gi ven by the following express ion 

-x ~ToH= 

4.2. Results . 

-JH(ar) A.dx 2 a x1 x =o 
1 o 

(4 . 1- 8) 

Fig. 4.2-1 shows stream lines and temperature distri bution in 
a cavity having the ratio H/W = l.O .The stream lines are given for 
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0.2, 0.4, 0.6 and 0.8 times ~m and the isotherms for o.2, o.4, 
0.6 and 0 . 8 times ~T0 • 

At a Grashof number below lo2 there is pure conduetion and the 
isotherms are straight lines which are equally spaced. The 

first prediction illustrated, applies to a Grashof number of 
2 . 4 • lo3. It will be seen, that the i sotherms are slightly 
deformed by the flow and a small part of the heat transfer 

takes place by means of convection. If the Grashof number is 

increased to 3 • lo4 a further change in the distribution of 
the isotherms is noticed and the maximum value of the stream 
function will increase. 

While the flow at Grw = 2 .4 • lo3 may be characterized as 

asymptotic, reference [2o] , the flow at a Grashof number of 
3 • lo4 and lo5 is a laminar boundary layer flow. This is 

confirmed by the faet, that the isotherms are close at the 
vertical surfaces, indicating that t here are large gradients 

at the surfaces and small ones in the middle of the cav i ty . 
The stream function shows two maxima, as have also been found 
by MacGregor and Emery ( 2o] • 

Fig. 4.2-2 shows the predicted heat transfer in cavities 
with different dimensions. For comparison purposes predictions 
by MacGregor and Emery [ 2o] are shown for H/W = 1.0 and 10 . 0 . 
An increase in H/W reduces the heat t ransfer through the 
cavity, as is seen from the results for H/W = 1.0 and 10.0 

and also from the results in [2o] • 

It is also evident that the heat transfer is reduced if the 

ratio H/W is reduced in the range H/W< 1.0. This is b ecause 
the convective flow is greatly restricted by the horizontal 
surfaces. In practice however, it should be borne in mind 

that horizontal surfaces give rise to conductive heat transfer. 
Predictions aremade for Rayleigh numbers up to ~ lo5 . At a 

Rayleigh number of lo6 the flow will become unsteady and in 
the range Ra > lo 7 the flow is turbulent. 

w 
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Fig . 4 . 2-l . The influence of Grashof number on 
the stream line- - and temperature distribution. 

H/W = l .o, Fr = o .7 . 



- lo7 -

log Nuw 

1.0 

0.8 

0.6 

0.4 

0.2 

o 1 

o H/W: 1.0, Pr: 0.7 

o H/W= 10.0, Pr= 0.7 

v H/W= 0.5, Pr= 0.7 

2 3 4 5 

H/W= 1.0 
Pr:l.O 

H/W:10.0 
Pr= 1.0 

6 log Raw 

Fig. 4.2- 2. Predicted heat transfer in a cavity 

at different Rayleigh numbers and heights H/W, 

Pr = o.7. The curves are from reference [ 2o ] , 
Pr = l.o. 
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5. Summary. 

Air distribution in air conditioned rooms is investigated by 

model experiments and by numerical solutions of t he flow 

equations. 

The theory of similarity for the flow in air condit ioned rooms 

and models is derived from the flow equations and i nelude 

evaluations of thermal radiation . 

A model (6o x 6o x l8o cm) is made and by dividing 

it into sections, isathermal air distribution is investigated 

in about 25 different model sizes. 

These experiments show that in a deep, wide model, very un

steady f l ow condi tions may arise. When the air supply opening 

is only a fract ion of the model width, steady unsymmetrical 

flow may result. 

In models of l imited depth, (where the length of the model is 

less than 3-4 times its height), steady two-dimens ional flow 

will take place. It is assumed that the supply opening is 

l ocated close beneath the 11 ceiling" and covers the full width 

of the model. 

Stream line measurements are made by illuminating met aldehyde 

particles and photographing or filming the flow. In a model 

which indicates steady two-dimensional flow, velocity profi les 

are also measured at different Reynolds numbers. 

It is found that the velocity and stream line d i s t ributionsare 

similar at the various Reynolds numbers covered by t he investi

gatiOn. 

Temperature di stribution is determined by a series of t ests 

in which heat is supplied from the bottom of the mo del . 
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Numerical solution of the flow equations is used to predict 

the air distribution in a section where the flow may be con
sidered steady and two-dimensional . Compar isens are made 
between predicted values and values measured by full-scale 

and model- scale experiments. Comparison with test results 
shows that the pr ediction method used is suitable for investi
gation of air distribution in air conditioned rooms. 

The method ful l y takes account of situations where the free 
convection is significant compared to the forced convection . 

For instance an example is given of air distribution in a room 
into which air is injected from one end wal l while along the 
other end wall air is forced thermally up or down, gaver ned by 
temperature differences. 

The prediction method provides everywhere in the room the 

information necessary for evaluation of thermal comfort , i.e. 

air velocity, air temperature , surface temperature, velacity
and temp erature gradients and tur bulent kinetic energy . 

Finally , it is shown how convective heat transfer in a cavit y 

is predicted by means of a numerical method. 
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Appendix I . Low Reynolds number fl ow . 

Jones and Launder [ 13] have developed a set of equations with 
a turbulence model suitable f or both low and high Reynolds 
number flow. In principle, this set of equations differs from 
the one used here in the following points: It contains the 
viscous stress terms and the molecular diffusion terms in the 

t ransport equations, and the coefficients c~ and c2 are 

func t i ons of a t urbulent Reynolds number . 

The turbulent Reyno lds number is a local parameter t hat can 

be expressed as 

R t = ~ 
c~ ~o 

(I-l) 

The coefficients c ~ and c 2 ar e given as the followi ng functions 
of the turbulent Reynolds number, Launder [ 16 ) • 

c~ 

c 2 

2 = 0.09 exp( -3.0/(1•Rt/50)) 

2 = 2.0(1-0.3exp(-Rt)) 

(I-2) 

(I-3) 

A model of turbulence for high Reynolds number flow may be 

considered as a special version of the above menticned model. 
When the turbulent Reyno l ds number exceeds 4oo , the contribu
t i ons from the viscous stress ter ms and molecular diffusion 

terms are negligi ble compared t o the turbulent contributions. 
From formulas (I-2) and (I-3) it will be seen, that c ~ and ~2 
have attained their constant values for Rt ~ L~oo , and the two 
models of turbulence are identical. 

This means that a prediction i n which the turbulent Reynolds 

number is greater than 4oo in every point of the flow domain 

lS correctly deseribed by the turbulence model used in section 

3. 
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For c iJ. = o . o9 and Rt > 4oo the following condit ion i s obtained 
by means of formula (I- 1) . 

Ilt > 40 · IJ. 0 (I-4) 

The turbulent Reynolds number at a point, Rt, increases with 
an increase in the Reynolds number Re , but it is also a 
function of the geometry of the room. In a prediction specified 

by 

h/H = o. oo5 
L/H = 3.o 
u/H = o.l 

Rt is greater than 4oo at Re = l 8oo . If h/H is increased to 
o.o56, it is necessary to raise the Reynolds number to about 

4ooo- 5ooo in ar der t o obtain an Rt greater than 4oo . In bo th 

cases t here exists , even at high Reynolds numbers , a very small 

area at t he end wall opposite the injected jet wher e Rt is less 
than 4oo . This is assumed to be negligible 

Near the surfac es the v i s cous stress and the molecular diffusion 

wi ll always be of significance , but these effects are t aken 

into account through the wall functions. 
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Appendix II . Choice of grid distribution. 

In section L~ a grid having a constant distance between nodes is 
used . The accuracy of the results is evaluated , making predic

t ions for the grid with various numbers of points and obsar-
ving how the predicted value approaches a fixed value at an 

increasing number of points . Although the difference between 
the predicted and the analytical solution decreases with an 

increase in the number of points the accumulated round- orf 

error on the computer will increase. Therefore, al? opt imum 
numb er of grid points exists, oeyond which the predicted 
solution diverges with a further increase in the number of points. 

Experiments with grids of the type ll x 11, 15 x 15 , 17 x 17, 

21 x 21, and 31 x 31 all gave a ~m which only deviated 1- 2 % 
fo r Gr = lo4 and H/W = l.o. This implies that a grid of the 
type 11 x 11 is sufficient for practical predictions . 

In section 3 a grid with non-uniform distance between the nodes 

is used . The gradients are , in some areas, so large that we must 
rule out the use of a grid with uni form node distance if we wish 

to confine ourselves to a number of nodes of about 3oo , and this 
is necessary (in 1971-73) taking the number of difference equa
tions into consideration. 

A primary rule in the distribution of nodes is to place them 

close together where velacity gr adients are large , i.e. wherewis 

great. Velacity gradients occur in source terms in the k- and 

e -equations and therefore have great influence on the turbulence . 
Generally speaking, this mean s that the greatest number of 

nodes is in the x2 direction , and that they are very close 
together at the uppermost surface and fairly close together at 
the lowest surface. 

Two types of gridsare used. Grids of type A having a rather 

great number of nodes close to the surfaces , and type B having 

a more even distribution, though still with small node distance 

close to the surfaces compared to the node distance in the 
middle of the area. 
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In the case o f h/H = o . oo5 and Re = 18oo the variation i n q, m 
is 1ess than 7 % for grids of the type 13 x 17A, 15 x 21A and 
1 5 x 21B . It must be borne in mind that the node distribution 

a1ong surface "a" on fig . 3 . 3 . 1- 1 is different for each grid 
type, and this has a great inf1uence on the resu1ts . If surfaces 
"a" and ''b" ar e gi ven a sui tab1e 1ocation, fig. 3 . 3 . 1- 1 , i t 

is possib1e especia11y wi th a grid o f the type 15 x 21B, to 
obtain a continuous progression of the ve1ocity profi1e, see 

figs.3.4.1- 2 and 3.4.1-6. 

Since the computer time is increased considerab1y when the 

number of points exceeds approx. 4oo, it has proved necessary 
to deve1op the grid distribution by compar ing the predictions 

obtained with measuring resu1ts. 
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Appendix III. Turbulent viscosity and dissip ation in 
a wall jet . 

By mean s of the measured_ values fo r the meqn velo city v1 , 

turbulent kini t i c energy k and the intensi ty v1 v2 in a wal l 

jet, Verhoff [ 35 ] and Nelson [ 27 ], it is possible to calculate 
turbulent viscosity and dissipation. The turbulent viscosit y 

may be determined ·from the Boussinesq hypot hesis . 

-PoV1V2 av, 
= IJ.t ax2 (III-l ) 

This hypothesis assumes that there is a vanishing shear str ess 

at the velocity maximum. This is not the case in asymmetr ical 

jets such as wall jets, and if IJ.t is de t ermin ed according to 
(III-l) it will thus approach plus and minus infinity around 
the velocity maximuro in the wall jet. Uppermost in fig . III-l 

this progression is shown with the dotted curve as a functio n 

of ~ where ~ is a dimens i onless t hickness of the wall jet . 

~ = x 2 l o v (III- 2) 

If the turbulence length scale is determined by the calculated 
IJ.t distribution and by the formula 

0.5 
= IJ.t/ciJ.k p0 (II I - 3) 
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we get the distribution shown by the dotted curve at the 

bottom of fig. III-l. 

It is not reasonable to use these values as boundary values, 

since they assume conditions which are disregarded in the model 
of turbulence. Instead we shall develop some new values based 

on the length scale and the following points: 

l. The length scale is proportional to the distance from 

the wall in the near wall area . 

2. In the range~> o.5 the results are not disturbed 
by the definition problems , and the length scale has 

a constant value. 

The cho sen l ength scale is shown on the lower figure. This length 

scale is used to determine ~t according to (III-3) , and the 
result is the curve on t he upper f igure . In addition the length 

scale is used to determine the distribution of the dissipation 
according to the formula 

€ = k3/2 /l (III-4) 
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Fig . III-l . Distribution of turbul ent viscosity 

and turbulent l ength scale i n a wall jet . 




