Using metagenomics and metatranscriptomics to study specific bacterial species involved in biological phosphorus removal from wastewater

Albertsen, Mads; McIlroy, Simon Jon; Stokholm-Bjerregaard, Mikkel; Karst, Søren Michael; Nielsen, Per Halkjær

Publication date: 2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Using metagenomics and metatranscriptomics to study specific bacterial species involved in biological phosphorus removal from wastewater

Mads Albertsen, Simon J. McIlroy, Mikkel Stokholm-Bjerregaard, Søren M. Karst & Per H. Nielsen
Center for Microbial Communities, Aalborg University, Aalborg, Denmark

Introduction
Enhanced Biological Phosphorous Removal (EBPR) from wastewater treatment plants is managed by Polyphosphate Accumulating Organisms (PAOs). The model PAO is "Candidatus Accumulibacter phosphatis" (Accumulibacter) and despite a large body of knowledge, their detailed physiology remains elusive.

In this study, we combined metagenomics, metatranscriptomics and laboratory scale enrichments in order to examine the gene expression of the uncultured Accumulibacter and the co-enriched associated community.

Methods

Enrichment
Wastewater treatment plant → Sequencing Batch Reactor

Genome recovery

<table>
<thead>
<tr>
<th>Samples</th>
<th>Metagenomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-06-06</td>
<td>TruSeq PE Miseq 2x300bp HiSeq 2x150bp</td>
</tr>
<tr>
<td>2013-06-13</td>
<td>TruSeq PE Miseq 2x300bp HiSeq 2x150bp</td>
</tr>
<tr>
<td>2013-06-20</td>
<td>TruSeq PE Miseq 2x300bp HiSeq 2x150bp</td>
</tr>
</tbody>
</table>

Assembly

- Taxonomic classification (PhyloPython)
- rRNA genes
- Ecotype specific genes
- Paired-end connections

Binning

A toolbox for reproducible genome extraction from metagenomes

Transcriptomics

- 400 million reads
- 9 timepoints
- 27 samples

Results

- Combining metagenomics, metatranscriptomics, and laboratory scale enrichments enables transcriptome studies of most individual species in the community.
- For the first time, we reveal the detailed transcriptome landscape of Accumulibacter during the anaerobic feast and aerobic famine conditions of the EBPR process.
- A new GAO (competitor to PAOs with a negative impact on EBPR) was discovered. Propionivibrio is closely related to Accumulibacter and hit by the current FISH probes used to define PAOs.

Conclusions

- Enhanced Biological Phosphorous Removal (EBPR) from wastewater treatment plants is managed by Polyphosphate Accumulating Organisms (PAOs). The model PAO is "Candidatus Accumulibacter phosphatis" (Accumulibacter) and despite a large body of knowledge, their detailed physiology remains elusive.

- In this study, we combined metagenomics, metatranscriptomics, and laboratory scale enrichments in order to examine the gene expression of the uncultured Accumulibacter and the co-enriched associated community.

- Using metagenomics and metatranscriptomics to study specific bacterial species involved in biological phosphorus removal from wastewater.