Abstract—By using large point-to-point multiple input multiple output (MIMO), spatial multiplexing of a large number of data streams in wireless communications using millimeter-waves (mm-waves) can be achieved. However, according to the antenna spacing and transmitter-receiver distance, the MIMO channel is likely to be ill-conditioned. In such conditions, highly complex schemes such as the singular value decomposition (SVD) are necessary. In this paper, we propose a new low complexity system called discrete Fourier transform based spatial multiplexing (DFT-SM) with maximum ratio transmission (DFT-SM-MRT). When the DFT-SM scheme alone is used, the data streams are either mapped onto different angles of departures in the case of aligned linear arrays, or mapped onto different orbital angular momentums in the case of aligned circular arrays. Maximum ratio transmission pre-equalizes the channel and compensates for arrays misalignments. Simulation results show that, although the DFT-SM-MRT scheme has a much lower complexity than the SVD scheme, it still achieves large spectral efficiencies and is robust to misalignment and reflection.

Keywords-component: Spatial multiplexing, precoder, DFT, maximum ratio transmission, large MIMO, millimeter-wave, orbital angular momentum, misalignment, 5G.

I. INTRODUCTION

An air interface such as the 60GHz WIFI standard [1-3], can provide throughputs of several Gigabits per second in indoor, by using millimeter-waves (mm-waves). Recent investigations, as illustrated by Fig. 1, propose to extend the use of mm-waves to the outdoor mesh networks [4-6] or to 5G networks [7], for both the direct link and the backhaul link.

![Fig. 1. Example of outdoor wireless meshed network](image)

The well known multiple input multiple output (MIMO) spatial multiplexing techniques, enable to improve the spectral efficiency of a wireless link, by using several antennas at the transmitter and the receiver, provided that the rank of the MIMO channel is large enough [8]. For millimeter waves, a rank much higher than 1 can be achieved even in line-of-sight (LOS) conditions, as long as the spacing between antennas of the same array is chosen large enough compared to the transmitter-receiver distance (which is typically of tens to a few hundreds of meters) and the wavelength. For instance, in [9], the diffraction theory in optics is used to compute the inter-antenna spacing which ensures that the angular separability of antennas of the transmit array and the angular resolution of the receiver array are equal. The computed inter-antenna spacing is a function of the distance between the transmitter and receiver and of the wavelength. It ensures that the MIMO channel is well conditioned. It thus allows the use of low complexity spatial multiplexing schemes such as the zero forcing (ZF) [10], the minimum mean square error (MMSE) [11] or the maximum ratio transmission (MRT)[12] precoders. Similar observations have been made in [13] for short-range communications exploiting the spherical wave.

One could extend the approach of [9] to the mm-waves and the large MIMO systems, which exploit hundreds of antennas to reach huge energy savings [14]. However, in practice, it seems difficult to deploy arrays with the inter-antenna spacing optimized for each possible distance between transmitters and receivers, and for each carrier frequency. If, contrary to what is shown in [9], the inter-antenna spacing is arbitrarily chosen, then the MIMO channel has a great risk to be ill-conditioned. Singular value decomposition could be applied [15,16] to determine the number of data streams to be sent, assuming that channel state information are available both at the transmitter (CSIT) and the receiver (CSIR). However, in large MIMO systems, the complexity of the processing rapidly grows with the number of antennas, at both the receiver and the transceiver [14]. We acknowledge that for backhauling in the outdoor, the complexity is not an issue, because the channel is static or slowly varies. Indeed, in this case, the SVD processing can be done with a slow update rate. However, in cellular networks [7], where a frequent and fast update is required, low complexity schemes are preferable.

In this paper, we propose a new low complexity system for large MIMO mm-wave communications, with arbitrary inter-antenna spacing. This technique, called Discrete Fourier Transform based spatial multiplexing with maximum ratio transmission (DFT-SM-MRT) combines two techniques:

- DFT based Spatial Multiplexing (DFT-SM);
- MRT beamforming.

The DFT-SM scheme uses an inverse Discrete Fourier Transform (IDFT) performed in the spatial domain [17,18] at the transmitter, and a Discrete Fourier Transform (DFT) also in the spatial domain, at the receiver. When the DFT-SM scheme is used with linear arrays, the data streams are mapped onto
beams of various angles of departures [17,18] which are then detected at the receiver side, by beams with various angles of arrivals. When the DFT-SM scheme is used with circular arrays, data streams are mapped onto vortices with various orbital angular momentums [19]. The DFT-SM scheme is better suited for arrays being aligned according to Fig. 2 and Fig. 3, for linear and circular arrays, respectively. The authors of [18] have in fact demonstrated that the DFT-SM achieves the SVD performance, if the circular arrays are perfectly aligned. Also, based on a spherical wave channel model, [13] has shown that the alignment of linear arrays provide better conditions for spatial multiplexing in LOS conditions. In practice, slight misalignments (which are expected to reduce the number of streams which can be spatially multiplexed) cannot be avoided. We therefore introduce the MRT precoder based on CSIT, in order to pre-equalize the channel [11] and compensate for misalignments.

This paper is organized as follows. Section II introduces the common system model, section III presents the SVD, DFT-SM, DFT-SM-MRT schemes and a fourth scheme called “DFT-SM-MRT filtered”. Section IV presents the performance evaluation methodology. Section V presents some numerical results and section VI concludes this paper. The following notations are used throughout this paper: A^H is the transpose conjugate of A, $E[|.|^2]$ is the expectation operation. A^{DFT} and A^{IDFT} are the butler matrices corresponding to the DFT and IDFT operation respectively [21,22].

II. COMMON SYSTEM MODEL

A. System Description

A wireless link between a transmitter and a receiver, both having an identical array of N antennas, is considered. In this paper, we restrict our analysis to a narrowband single carrier transmission, and we therefore consider the channel as being flat in the frequency domain. The results of the paper could easily be extended to the wideband multi-carrier scenario, by considering each sub-carrier, independently. Indeed, the 60GHz WIFI standard is based on orthogonal frequency division multiplex (OFDM) [1-3].

Assuming flat fading, one can model the MIMO propagation channel by a complex $N \times N$ matrix H. The Time division duplex (TDD) mode is considered, and CSIT and CSIR are assumed to be perfectly known. The transmitter sends a vector a of N complex data symbols with an average power $P_{data} = E[\sum_{n=0}^{N-1}|a_n|^2]$. The power is equally shared between data streams. The transmitter multiplexes data streams by multiplying to the vector a with the precoding matrix ρ_P.

where ρ is a normalizing factor ensuring that $\sum_{n=0}^{N-1}|\rho_{p,n}|^2 = 1$. The receiver de-multiplexes the data streams by applying the decoding matrix ΓQ, with γ being a normalizing factor ensuring that $\sum_{n=0}^{N-1}|\gamma_{Q,n}|^2 = 1,\forall n$. Let w be the vector of the additive white Gaussian noise samples at the N receive antennas, with average power $P_{noise} = E[|w|^2]$. With these notations, the expression of the vector b of the N received complex data symbols is given by:

$$b = \Gamma a + Qw;$$

where, Γ is the equivalent channel defined by:

$$\Gamma = QHP.$$

B. Performance metrics

Based on the diffraction theory, we expect the performance to increase with the following “physical metric” m:

$$m = \frac{R^2}{\lambda D},$$

where, R is the radius of the circular array or half of the length of the linear array, λ is the wavelength and D is the transmitter-receiver distance. In fact, m is simply proportional to the ratio of the transmit array maximum angular separation A/D (i.e. the angle between the two antennas located at the array borders, thus separated by A, and viewed from a distance D [9]) over the receive array maximum resolution λ/A (i.e. the smallest angle between two objects that the receiver is able to resolve with an aperture A [9], where A is the common aperture of the transmitter and the receiver (with $A = 2R$). We expect that a scheme (either SVD, DFT-SM or DFT-SM-MRT) tested with the same number of antennas and the same value of m but with different combinations of R, D and λ values, and therefore different values of inter-antenna spacing, may result in a similar performance.

All the following performance metrics (defined hereafter) will be assessed as a function of the physical metric m: the SINR x_n and the spectral efficiency Φ_n of data stream n and the number of active data streams N_a. The data symbols and the noise samples are considered to be independent Gaussian variables with zero mean. The same assumption is taken for the interference which is supposed to be a large sum of independent variables. With these assumptions, and based on (1), one can derive the following SINR expression for x_n:

$$x_n = \frac{||\Gamma_{nn}||^2 P_{data}}{P_{noise} + \sum_{q=0,q\neq n}^{N-1}||\Gamma_{nq}||^2 P_{data}}.$$
Per sub-carrier and per data stream Adaptive modulation and coding (AMC) is assumed. \(\varphi_{\text{min}} \) and \(\varphi_{\text{max}} \) are the minimum and maximum spectral efficiencies, achievable with practical modulation and coding schemes (MCS). We set \(\varphi_n = \log_2(1 + x_n) \). The expression of \(\varphi_n \) is given by:
\[
\Phi_n = \varphi_n \text{ if } \varphi_{\text{min}}\leq \varphi_n \leq \varphi_{\text{max}}, \Phi_n = 0 \text{ if } \varphi_n < \varphi_{\text{min}}, \text{ and } \Phi_n = \varphi_{\text{max}} \text{ if } \varphi_n > \varphi_{\text{max}}.
\]

If \(\Phi_n = 0 \), the stream \(n \) is considered ‘inactive’, if \(\Phi_n > 0 \), the stream \(n \) is considered ‘active’. \(N_a \) is the number of active streams. The inactive streams are sent, consuming power and creating interference. This is sub-optimal, of course. Ideally, a reduced and optimum set of data streams (after an exhaustive search over all possible combinations of streams) would be selected, at the cost of extra complexity. However, the main objective of the study is to see the potential benefit of the precoders/decoders alone, without smart power allocation and stream selection.

III. STUDIED SYSTEMS

This section presents the specific expressions of the \(P \), \(Q \) and \(\Gamma \) matrices introduced in section II for the SVD, DFT-SM, DFT-SM-MRT and “DFT-SM-MRT filtered” schemes. We here define the matrix \(\Phi \) by: \(\Phi = H(\Omega)^H \). We recall that the expression of the MRT precoder is \(H^H \) \cite{12}.

A. SVD

In the studied SVD scheme, the data stream \(n \) is mapped onto the \(n\text{-th} \) singular value of \(\Phi \). The SVD of \(\Phi \) is given by \(\Phi = U \Sigma V^H \), where \(U \) and \(V \) are unitary matrices and \(\Sigma \) is a diagonal matrix with the singular values as coefficients. The expressions of \(P \), \(Q \) and \(\Gamma \) are given by:
\[
\begin{align*}
\Phi &= H(\Omega)^H; \quad Q = U^H \\
\Gamma &= \rho \Phi
\end{align*}
\]
where \(\Phi \) is a square matrix, therefore one could simply make the SVD of \(\Phi \) and use the following equality to simplify the system: \(\Phi^2 = U \Sigma^2 V^H \). However, we prefer to study the SVD of \(\Phi \), as it has the advantage to be applicable to non-square MIMO matrices.

B. DFT-SM

The expressions of \(P \), \(Q \) and \(\Gamma \) are given by:
\[
\begin{align*}
P &= \Lambda^{\text{DFT}}; \\
Q &= \Lambda^{\text{DFT}}; \\
\Gamma &= \rho \Lambda^{\text{DFT}} HA^{\text{DFT}}.
\end{align*}
\]

C. DFT-SM-MRT

The expressions of \(P \), \(Q \) and \(\Gamma \) are therefore given by:
\[
\begin{align*}
P &= H(\Omega)^H; \\
Q &= \Lambda^{\text{DFT}}; \\
\Gamma &= \rho \Lambda^{\text{DFT}} MA^{\text{DFT}}.
\end{align*}
\]

D. DFT-SM-MRT filtered

In the “DFT-SM-MRT filtered” scheme, the system computes the expected spectral efficiency for the DFT-SM-MRT in a first step. Then, it determines which streams a re not onto the square MIMO matrices. We define the complexity ratio \(\Lambda(N) \) between the SVD and the DFT-SM-MRT schemes as:
\[
\Lambda(N) = \frac{\Lambda_2(N)}{\Lambda_1(N)} = \frac{N^2}{\log_2(N)}.
\]
Fig. 5 plots \(\Lambda(N) \) as a function of the number of antennas \(N \), and shows that \(\Lambda(N) \) becomes tremendous for large MIMO systems (\(N > 100 \)).

Now, on the receiver side, MRT needs no particular operation. DFT-SM-MRT and SVD schemes need the same operations as for the transmitter side, and therefore have the same complexity ratio.

IV. PERFORMANCE EVALUATION METHODOLOGY

A. Main assumptions

The number of antennas \(N \) is fixed to 512.

The system carrier frequency \(f \) is varied. The wavelength \(\lambda \) is given by: \(\lambda = c/\nu \), where \(c \) is the speed of light.

Regarding the MCS, quadrature phase shift keying (QPSK) with coding rate \(1/2 \) is chosen as the lowest MCS, corresponding to \(\varphi_{\text{min}} = 1 \text{ bits/s/Hz} \), and 64 Quadrature Amplitude Modulation (QAM) with coding rate 1 is chosen as the maximum MCS, corresponding to \(\varphi_{\text{max}} = 6 \text{ bits/s/Hz} \).
As we are considering a single carrier transmission, the value of the power spectral density (in watts per Hz, or watts×seconds) is used instead of the power (in watts) for P_{data} and P_{noise}. P_{data} is chosen equal to $20\text{dBm} \times T_{\text{symbol}}$, with $T_{\text{symbol}} = 800$ ns, which corresponds to a typical value for 60GHz standards [1-3] and $P_{\text{noise}} = F_t N_0$, where N_0 is the thermal noise power spectral density and F_t is the noise figure. $N_0 = -174\text{dBm}/\text{Hz}$ and $F_t=5\text{dB}$.

B. Misaligned arrays

As already stated in II, the transmit antenna array and the receive antenna array are identical, and have N elements. Linear arrays of lengths $2R$ and circular arrays of radius R are tested, to ensure they have the same aperture: $A = 2R$. The positions of the transmitter and the receiver arrays are determined using a two step approach. In a first step, they are “aligned”: i.e. they are set perpendicular to the y-axis, centered over the y-axis and separated by the distance D. In the linear case, the arrays are set parallel to the z-axis. In a second step, a translation by

$$D = \frac{\text{distance between the virtual source corresponding to the transmit antenna}}{\text{distance between the virtual source corresponding to the receive antenna}}$$

and the receive antenna array are identical, and have N elements. Linear arrays of lengths $2R$ and circular arrays of radius R are tested, to ensure they have the same aperture: $A = 2R$. The positions of the transmitter and the receiver arrays are determined using a two step approach. In a first step, they are aligned: i.e. they are set perpendicular to the y-axis, centered over the y-axis and separated by the distance D. In the linear case, the arrays are set parallel to the z-axis. In a second step, a translation by δ_x along the z-axis is applied to the receive array, and rotations by the angles θ_x, θ_y and θ_z around the x-axis, y-axis and z-axis, respectively, are applied to the transmit array. Circular and linear arrays are illustrated in Fig. 6 and Fig. 7 respectively.

C. Channel Model

The MIMO channel H is generated using a ray tracing propagation model. One infinite and perfectly flat reflector (illustrated by Fig. 6 and Fig. 7) is considered. It is orthogonal to the z-axis and its coordinate is: $z = -R$. A virtual source, defined as the symmetrical image of the array through the surface, is used to model the perfect reflection. This could be, for instance, a basic model for a roof top. A reflection coefficient r is applied. The path loss between the transmit antenna n and the receive antenna q is given by [4-6]:

$$g(\delta_{nq}) = \left(\frac{\lambda}{4\pi\delta_{nq}}\right)^2 10^{-\frac{\alpha}{10} x \frac{\delta_{nq}}{1000}};$$

where α is the oxygen loss, δ_{nq} is the distance between the transmit antenna q and the receive antenna n. Let δ'_{nq} be the distance between the virtual source corresponding to the reflection of antenna q and the receive antenna n. The same equation can be used with δ'_{nq} instead of δ_{nq}. The channel coefficient H_{nq} is therefore:

$$H_{nq} = \sqrt{g(\delta_{nq})} e^{j2\pi\delta_{nq}/\lambda} + r \sqrt{g(\delta'_{nq})} e^{j2\pi\delta'_{nq}/\lambda}.$$
performance mainly depends on \(m \). One can observe that DFT-SM fails to deliver active streams due to the slight misalignment induced by either the translation or the rotation, whereas DFT-SM-MRT delivers almost the same number of active streams as SVD. Regarding the spectral efficiency, DFT-SM-MRT reaches around one third of the SVD performance.

Fig. 10 illustrates the impact of the reflector alone, (\(\phi_\theta = \phi_\varphi = \phi_\zeta = 0 \), and \(\gamma = 1 \)). This time, the transmitter and the receiver are perfectly aligned, and one reflector creates an additional path in the propagation channel. DFT-SM alone is already robust to the multi-path, and DFT-SM-MRT does not bring additional gain, because the alignment is already perfect.

Fig. 11 illustrates the combined effect of misalignment and reflection. Again, due to the misalignment, and contrary to DFT-SM-MRT, DFT-SM performance collapses.

Fig. 12 is a zoom of Fig. 11 with “DFT-SM-MRT filtered” scheme added. The filtered scheme slightly improves the performance by muting non-active streams, and by reducing the level of interference over active streams. We recall that filtering is not proposed for SVD which is already orthogonal. It is not implemented for DFT-SM either, due to the very low number of active data streams.

The same analysis as was shown from Fig. 8 to Fig. 12, can be made for the linear case, with Fig. 13 to Fig. 17. However, the linear array is much more sensitive to rotation than to translation. Also, when comparing Fig. 12 and Fig. 17, one can observe that the circular array outperforms the linear array for the same value of the physical parameter. Hence, even though DFT-SM-MRT adapts to \(m \) as SVD does, without requiring an optimised antenna spacing with respect to \(m \), it still clearly needs some particular antenna array “shapes”.

Fig. 13. Linear array, translation effect only

Fig. 14. Linear array, rotation effect only

Fig. 15. Linear array, reflection effect only

Fig. 16. Linear array, translation, rotation and reflection effects

Fig. 17. Linear array, translation, rotation and reflection effects (Zoom)
Table I. summarizes the spectral efficiencies achieved by DFT-SM-MRT at $m=40$. Depending on the scenario, DFT-SM-MRT achieves hundreds of bits/s/Hz. In comparison with SVD, DFT-SM-MRT achieves 1/3 to 1/14 of SVD performance, with a complexity which is around $\mathcal{O}(N)^{-1}=3.10^{-7}$ times lower, for the considered number of antennas ($N=512$).

<table>
<thead>
<tr>
<th>Effects</th>
<th>DFT-SM-MRT Spectral Efficiency (bits/s/Hz)</th>
<th>Ratio Between DFT-SM-MRT and SVD Spectral Efficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular Array</td>
<td>Linear Array</td>
<td>Circular Array</td>
</tr>
<tr>
<td>Translation</td>
<td>770</td>
<td>224</td>
</tr>
<tr>
<td>Rotation</td>
<td>1000</td>
<td>215</td>
</tr>
<tr>
<td>Reflection</td>
<td>440</td>
<td>135</td>
</tr>
<tr>
<td>All</td>
<td>215</td>
<td>189</td>
</tr>
</tbody>
</table>

To conclude this section, DFT-SM-MRT provides high spectral efficiency without inter-antenna spacing optimization with respect to the distance, and is robust to misalignment plus one reflector.

VI. CONCLUSION

This paper introduces a new low complexity scheme for large MIMO millimeter-wave communications where the MIMO matrix is likely to be ill conditioned if the antenna separation is not optimized as a function of the transmitter-receiver distance. The proposed scheme, called DFT based spatial multiplexing with maximum ratio transmission, combines IDFT and maximum ratio transmission precoders at the transmitted and DFT decoder at the receiver. At first sight, the system has a much lower complexity than singular value decomposition, which is the chosen reference solution for ill conditioned MIMO. Simulations with a simple ray tracing model and one perfectly flat reflector show that the proposed scheme achieves a very high spectral efficiency and is robust to slight misalignment. Also it has been shown that the circular array outperforms the linear array. Future work will therefore focus on performance assessment with more realistic propagation channel models, on the design of new arrays shapes, and on some more precise complexity analysis.

AKNOWLEDGEMENTS

This work has been performed in the framework of the FP7 project ICT-317669 METIS, which is partly funded by the EU.

REFERENCES