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Abstract  

Frequent discussions of double skin façade energy performance have started a dialogue about the methods, models and 

tools for simulation of double façade systems and reliability of their results. Their reliability will increase with 

empirical validation of the software. Detailed experimental work was carried out in a full scale test facility „The Cube‟, 

in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for 

preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide 

the reader with all information about the experimental data and measurements, necessary to complete an independent 

empirical validation of any simulation tool. The article includes detailed information about the experimental apparatus, 

experimental principles and experimental full-scale test facility „The Cube‟. This covers such problem areas as 

measurements of naturally induced air flow, measurements of air temperature under direct solar radiation exposure, etc. 

Finally, in order to create a solid foundation for software validation, the uncertainty and limitations in the experimental 

results are discussed. In part II of this paper the reader will be introduced to the experimental results, and their analysis. 

Keywords: Test facility, air flow, tracer gas, velocity profile, air temperature, full-scale measurements 

 

1. Introduction  

The Double Skin Facade (DSF) is often being discussed in various scientific publications. This is mainly due to 

growing interest of the DSF concept among architects because of DSF aesthetical features, sound insulation functions 

etc.; but there is also an interest among the engineers due to their increasing awareness of the complexity in the design 

and dimensioning of DSF systems.  

Various commercial and free-source building energy simulation programs are used as a powerful tool for the design and 

evaluation of energy efficiency of buildings and building systems. Results from these building simulations play a 

significant role when performance of building with or without DSF component is evaluated in terms of energy 

efficiency and indoor environment. Although, there have been many validation studies that have helped to increase 

confidence in the use of existing design tools for the performance assessment of conventional buildings, their accuracy 

for prediction of double façade performance has not been tested to the same extent [1]. 

Until now, the attempts to validate building simulation tools for DSF modelling purposes have been limited, most of 

them are known as attempts to validate different models using case studies [2-4]. In the literature, these are explained by 

the absence of experimental data, inconsistent measurements and by poorly described experimental conditions, which 

do not allow performing accurate validation [5]. Besides that the multifunctionality of DSF systems in the simulation 

tool, should, preferably, be validated using experimental data from the same origin.  

To address the problem of lacking experimental data a wide range of measurements has been carried out in an outdoor, 

double-skin façade full-scale test facility „The Cube‟.  

The experimental test facility and the experimental set-up described in this paper and, finally, the experimental results 

obtained within the test facility provide a good foundation for empirical validation of thermal building simulation tools 

for modelling double skin façade buildings. In this work, the measurements of the mass flow rate and air temperatures 

in the cavity and adjacent zone are supported with detailed information on the input parameters for a building thermal 

simulation tool. The generally rare experimental data for the DSF-buildings, containing unique results of the mass flow 

rate measured in a naturally ventilated cavity.  

 

2. Experimental modes 

According to the literature, there are many classification schemas exist for describing the DSF performance [6] and [7]. 

However, focusing on the energy performance and flow path in the double skin façade, following definition of DSF 

operational modes is used in this article, as illustrated in Figure 1. 



 

Figure 1. Classification of DSF according to ventilation principle. A- transparent insulation, B-external air curtain, C- 

preheating mode, D- exhaust mode, E-internal air curtain [7]. 

Until now, only three ventilation modes were tested, due to time consuming and complex procedure involved with data 

processing and preparation of experimental set-up. The tested operational modes are present in Table 1.  

Operational mode Experiment duration 

External air curtain mode 01.10.2006 – 15.10.2006 
Transparent insulation mode 19.10.2006 - 06.11.2006 
Preheating mode 09.11.2006 – 30.11.2006 

Table 1.Tested operational modes of DSF.  

External air curtain mode. The operable windows at the top and bottom of the cavity are open to outside. As a rule, the 

air enters the DSF at the bottom of the cavity, then it is getting heated while passing through the DSF cavity and 

released to the external environment, carrying away some amount of the solar heat gains. The flow motion in the cavity 

is naturally driven and it varies in time. 

Transparent insulation mode. All the openings are closed. The principle of this mode is the same as of the conventional 

window. Air in the DSF cavity is heated to a temperature higher than the outside temperature, this decreases the radiant 

heat exchange between the internal window surface and the adjacent room.  

Preheating mode. In this mode facade openings at the bottom of the cavity are open to the outside and the top openings 

are open to the interior. The air is preheated in the DSF cavity before entering the room. The air flow is constant and it 

is driven by the mechanical system in the building.  

3. Full-scale test facility  

„The Cube‟ is an outdoor full-scale test facility located near to the main campus of Aalborg University, Denmark. „The 

Cube‟ was built in the fall of 2005, in the frame of IEA ECBCS ANNEX 43/SHC Task 34. 

The test facility is designed to be flexible for a choice of the DSF operational modes, natural or mechanical flow 

conditions, different types of shading devices etc. Moreover, an efficient control of the thermal conditions in the room 

adjacent to the DSF and the opening control allow to investigate the DSF both as a part of a complete ventilation system 

and as a separate element of building construction.  

„The Cube‟(Figure 2) consists of four domains, which are named as: double skin facade, experiment room, instrument 

room and plant room (Figure 3). The experiment room together with the DSF represents the main building of the test 

facility, which has external dimensions of 6x6x6 metres. External dimensions of the plant and instrument room together 

is 6(w)x3x3 metres, which are attached to the northern wall of the experiment room.  

 

Figure 2.‘The  Cube’. Photo of Southern facade (left) and photo of Northern facade (right). 

The key measurements were carried out in the DSF and in the experiment room; meanwhile the instrument room and 

the plant room were used as a support zone. The instrument room was equipped with dataloggers and computers and the 



cooling system was installed in the plant room. In the experiment room, a ventilation system was set up for maintaining 

uniform conditions in the room.  

The temperature in the experiment room was kept constant at approximately 22
o
C, using a ventilation system with a 

heating and cooling unit. In order to avoid temperature gradients in the experiment room, a recirculating piston flow 

with an air speed of approximately 0.2 m/s was used. This resulted in typical temperature gradient of approximately 

0.02°C/m and maximum of 0.1°C/m. The air intake for recirculation was at the top of the room. After the intake the air 

passes through the preconditioning units of the ventilation system and then it was supplied at the bottom of the room 

through fabric KE-low impulse ducts (Figure 4). Maximum power on cooling and heating units is 10 kW and 2 kW 

respectively. The weight of ventilation system in the experiment room is approximately 750 kg. 

  

Figure 3. Plan of ‘The Cube’. 

 

Figure 4. KE-low impulse fabric ducts in experiment room (left, centre). Ventilation system in experiment room (right). 

„The Cube‟ is very well insulated and airtight. The transmission losses of „The Cube‟ were determined experimentally. 

Transmission heat losses were estimated for two set points, when the difference between the air temperature in the 

experiment room and outdoors was 16 
o
C and 21 

o
C.  

The measurement of overall heat transmission was conducted during a few days with very stable weather conditions, 

high cloudiness, negligible wind speed and no precipitation. These measurement results (Figure 5) can then be used to 

adjust the U-values of the constructions to take into account minor thermal bridges in the test facility and any other 

discrepancies between designed and assembled wall elements.  

  

Figure 5. Heat transmission losses of the experiment room. 

 



The air tightness of „The Cube‟ was measured during construction, insulation and air tightening of the test facility, 

before and after installation of experimental set-up to ensure the tightness. The final infiltration rate was 0.2 h
-1

 at 50 Pa 

of under pressure and 0.35 h
-1

 at 50Pa of overpressure in the experiment room. For that measurement the door to 

instrument room and plant room were kept wide open, as well as all windows of DSF were fully open.  

3.1 Geometry 

The exact internal dimensions of the experiment room and double skin façade are summarized in Table 2 and Figure 6.  

a
The volume is calculated to the glass surfaces of the windows and NOT to the window frame 

Table 2. Internal dimensions of DSF and experiment room. 

 

Figure 6. Plan of the experiment room and DSF (left). Section 1-1 of experiment room and DSF (right). 

In the Southern façade of „The Cube‟ it can be recognized six windows (Figure 2 left). The upper windows have the top 

operable section and the lower windows have bottom operable section. The dimensions of windows with the top and 

bottom operable section are identical. Window dimensions are given in Figure 7,  

Figure 8 and Table 3. 

 
Figure 7. Window dimensions.  

Zone  Width, mm Depth, mm Height, mm Volumea,  m3 

DSF 3555 580 5450 11.24a 

Experiment room 5168 4959 5584 143.11a 



 

Figure 8.Distances between the glass panes in DSF (distances in mm).  

 

Total area of visible glazing of window, 
m2 

Total frame area of window, m2 Total area of window, m2 

2.693 0.536 3.229 
Table 3. Glazing and frame areas for the window sections. 

3.2 Thermophysical properties of the constructions 

Constructions are subdivided into groups, which are:  

 

 Wall 1- the South façade wall, comprise of external and internal windows  

 Wall 2- the East and West façade walls 

 Wall 3- facing North. A part of this wall is facing the instrument room, another part is facing the plant room, 

and finally a part of the wall is facing outdoor.  

 Roof 

 Floor 

 

Thermophysical properties of these constructions are summarised in Table 4. In the table, the first layer always denotes 

the layer facing the internal environment of the experiment room. 

 

 Layer Material Layer 
thickness, 
mm 

Material 
density, kg/m3 

Thermal 
conductivity, 
W/mK 

Specific heat 
capacity, 
J/kgK 

Thermal 
resistance, 
m2K/W 

W
al

l 1
 

1 Plywood  16 544 0.115 1213 0.139 

2 Rockwool M39 620 32 0.039 711 15.897 

3 Isowand Vario 100 142 0.025 500 4 

W
al

l 2
 

1 Plywood  16 544 0.115 1213 0.139 

2 Rockwool M39 300 32 0.039 711 7.692 

3 Isowand Vario 100 142 0.025 500 4 

W
al

l 3
 

1 Plywood  16 544 0.115 1213 0.139 

2 Rockwool M39 300 32 0.039 711 7.692 

3 Isowand Vario 100 142 0.025 500 4 

R
o

o
f 

1 Plywood  16 544 0.115 1213 0.139 

2 Rockwool M39 300 32 0.039 711 7.692 

3 Isowand Vario 100 142 0.025 500 4 

Fl
o

o
r 

1 Reinforced 
concrete 

150 2400 1.800 1000 0.639 

2 Expanded 
Polystyrene 

220 17 0.045 750 4.889 

Table 4. Material properties. 
 
 
 
 
 
 
 



 
3.3 Window properties 

External windows of the DSF have one layer of clear glass and the internal windows are low emissivity 4-Ar16-4. Their 

properties are given in Table 5. 

 

Window U-value of glazing, W/m
2
K U-value of frame, W/m

2
K 

External window  5.67 3.63 

Internal window partition* 1.12 3.63 

* 
U-values are given for standard conditions, using external-internal surface film coefficients and NOT internal-internal 

surface film coefficients.
 

Table 5. Windows. U-value. 

Absorption, reflection and transmission properties of all surfaces in the DSF, experiment room and windows were 

tested at EMPA Swiss Federal Laboratories for Materials Science and Technology. These are available as a function of 

the wavelength, in the interval of 250-2500nm. Corresponding properties of window panes are given in Table 6. The 

emissivity of the glass surfaces is summarized in Table 7. 

Incident 

angle 

External window  Internal window  

Transmission of 

solar radiation 

Reflection of 

solar radiation 

g-

value  

Transmission of 

solar radiation 

Reflection of 

solar radiation 

FRONT 

Reflection of 

solar radiation 

BACK 

g-

value  

0 0.763 0.076 0.8 0.532 0.252 0.237 0.632 

10 0.763 0.076  0.531 0.252 0.237 0.632 

20 0.76 0.076  0.529 0.251 0.237 0.631 

30 0.753 0.078  0.524 0.252 0.239 0.627 

40 0.741 0.084  0.513 0.258 0.245 0.618 

50 0.716 0.103  0.488 0.277 0.264 0.595 

60 0.663 0.149  0.435 0.326 0.309 0.542 

70 0.55 0.259  0.331 0.436 0.405 0.433 

80 0.323 0.497  0.163 0.638 0.579 0.244 

90 0 1  0 1 1 0 

Table 6. Glazing properties.  

 

*
Front side is always turned towards the exterior, while back is turned towards the interior

 

Table 7. Emissivity of glazing. 

3.4 Openings 

 

The discharge coefficient describes a correlation between the actual and ideal discharge of fluid through an opening and 

thus it is highly related to the flow rate. The difference between the actual and ideal discharge is caused by the friction 

forces at the edges of an opening and the jet contraction. In general, the airflow across an opening can be described as in 

equation (1), meanwhile the discharge coefficient can be calculated as in equation (2). 

Window Front* Back 

External window  0.84 

Internal window, filled with Argon, 90 % 0.84 

0.037 0.84 



 

 

  (1) 

 

   (2) 

 

Qv – is volume flow, [m
3
/s] 

CD – is discharge coefficient, [-] 

A – is opening area, [m
2
] 

ρ – is air density, [kg/m
3
] 

ΔP – is pressure difference across the opening, [Pa] 

 

The discharge coefficients for different opening degrees in the experimental set-up were estimated experimentally by 

measurement of pressure difference across the opening and by computations as in equation (2). These measurements 

were performed in a laboratory, maintaining constant flow across the opening in isothermal conditions.   

 

The opening degree of the windows, and corresponding discharge coefficients are given in Table 8. Meanwhile, the 

definition of the opening angle and dimensions provided in Table 8 are illustrated in Figure 9. 

 

                                                

Figure 9. Definition of opening degree for a window.   

 Top opening Bottom opening 

External air curtain mode 

Discharge coefficient 0.72 0.65 

Distance „ab‟, m 0.09 0.110 

Angle α, deg 11.5  14 

Preheating mode 

Discharge coefficient 0.35 0.65 

Distance „ab‟, m 0.068 0.068 

Angle α, deg 8.5 8.5 

Table 8. Opening degree.  

Discharge coefficients for the openings are defined assuming that the air enters the cavity at the bottom and leaves at 

the top (Figure 10). In case of reversed flow, given value of discharge coefficient is not valid, as the friction forces and 

the jet contraction at the opening will differ from a given scenario.  



 

 

Figure 10. Illustration of openings with corresponding discharge coefficients. External air curtain mode (left), 

preheating mode (right). 

3.5 Surface properties and ground properties 

For reliable estimation of ground-reflected solar radiation, a large carpet was placed on the ground in front of the 

southern façade of „The Cube‟ to achieve uniform reflection from the ground. The fabric of the carpet was chosen so 

that it does not change its reflectance property when it is wet due to its permeability. Reflectance is approximately 0.1, 

close to the generally assumed ground reflectance. The size of the carpet corresponded to a view factor of 0.5 between 

the DSF and the ground.   

The reflectance property of wall finish in DSF corresponds to 65% and in experiment room it corresponds to 67%, 

because of different type of painting used.The reflectance property of the floor surface in both of the zones and of the 

external surfaces is 65%.  

 

3.6 Wind pressure coefficients 

The wind pressure coefficients are found from the literature [8], where pressure coefficients were measured for a 

building of the same dimensions as „The Cube‟, see Table 9. 

Location Wind angle to Southern facade 

0  45  90  135  180  225  270  315  

Top openings 0.58 0.22 -0.71 -0.5 -0.36 -0.5 -0.71 0.22 

Bottom openings 0.61 0.33 -0.55 -0.5 -0.35 -0.5 -0.55 0.33 

Table 9. Wind pressure coefficients. 

3.7 Building site 

The following coordinates define the geographical location of the building (Table 10):  

Time zone +1 hr MGT 
Degrees of longitude 9°59'44.44"E 
Degrees of latitude 57° 0'41.30"N 
Altitude 19 m 

Table 10. Geographical and site parameters for the model. 

 

The wind profile for the local terrain is established from 6 month measurement of wind speed and direction at six 

different heights above ground. The mathematical model describing the wind profile is obtained on the basis of 

logarithmical wind profile using the least square method. It is given by equation (3), where V(h) is the wind speed at 

height h, h is the height above ground and V10 is the wind speed at height 10 metres above the ground. 

 

   (3) 



 

 

3.8 Weather data 

Assembled weather data includes wind speed, wind direction, outdoor air temperature, relative humidity, global and 

diffuse solar radiation, and atmospheric pressure. 

The experimental data is available for the test cases in the period from October to December 2006. In Denmark, this 

period of a year is characterized by a contrast in the day-time and night-time air temperature. Besides, in autumn the 

day-time outdoor air temperature is relatively low while the solar irradiation stays relatively strong. And finally, the 

weather conditions and the length of a day in October and December differ a lot. The periods with lack of climate data 

were replaced by data purchased from Danish Meteorological Institute, measured at Aalborg airport, which is located 

12km away from the Cube. 

In Table 11 the climatic boundary conditions are divided into three groups, corresponding to each test mode. The table 

does not include total solar irradiation measured on a vertical surface of DSF, relative humidity and atmospheric 

pressure, but this data is also available.  

a 
Mean and standard deviation for solar irradiation is given only for the periods with sun. 

Table 11. Statistical analysis of climate data for three operational modes. 

3.9 Non-climatic boundary conditions 

Thermal conditions in the plant room and the instrument room define the boundary conditions in the experiment room. 

Therefore, the temperature variation in these rooms has to be considered for validation. In Table 12 the average room 

temperatures for the period of measurements are summarised. The distribution of these room temperatures over the 

measurement period is also available. 

Mode Instrument room Plant room 

Transparent insulation 18.3 12.3 
External air curtain 18.5 14.7 
Preheating 18.7 12.1 
Table 12. Average air temperature in the rooms. 

MODE Outdoor air 
temperature, oC 

Wind speed, 
m/s 

Diffuse solar 
irradiation, W/m2 

Total solar irradiation 
on horizontal, W/m2 

Ext. air curtain  MIN 4.3 0.1 0 0 

 MEAN 12.5 3.6 91a 175a 

 MAX  19.5 14 302 554 

 STD 2.8 2.5 64a 143a 

Transparent insulation   MIN -2.6 0 0 0 

 MEAN 9.6 5.2 58a 89a 

 MAX  17.1 20.8 261 372 

 STD 4 3.7 46a 87a 

Preheating  MIN 0.4 0.55 0 0 

 MEAN 7.5 5.2 36a 51a 

 MAX  14.1 12.3 188 341 

 STD 2.4 2.3 34a 57a 



 

4. Experimental set-up 

All experimental results, including the weather data are available for 1-hour and 10-minutes time interval. The 

following are the parameters available for validation of building simulation programs: 

Primary parameters:  

 Solar radiation striking on the external surface of the DSF 

 Air temperature in the DSF cavity 

 Temperature gradients in the cavity 

 Cooling/heating load to experimental room  

 Mass flow rate in the DSF cavity 

 

Secondary parameters:  

 Surface temperature of the glazing 

 Surface temperature of opaque constructions 

 

4.1 Assembling the weather data 

Wind velocity and wind direction was measured in six points above the ground, in order to build a vertical wind 

velocity profile. Both 2D and 3D ultrasonic anemometers were placed on the mast in the centre line of the building, 

12m away from its Southern facade.  

Outdoor air humidity was measured every 10 minutes, using portable COMARK data logger N2003 from Comark 

Instruments Inc.  

Outdoor air temperature was measured using two thermocouples type K, at the height of 2 m above ground. Both of the 

thermocouples were silver coated and placed shaded from the direct sun. The measurement took place every 60 

seconds. 

BF3 pyranometer measured global and diffuse solar irradiation on the horizontal surface. Another pyranometer, 

Wilhelm Lambrecht, type 1027, measured only Global solar irradiation on the horizontal surface and was placed on the 

roof for control of BF3-readings. Solar radiation received on the vertical surface of DSF was measured with Wilhelm 

Lambrecht-pyranometer, type 1550. Readings from pyranometer devices were taken every 60 seconds. 

 4.2 Temperature measurement 

Depending on location of the sensor, temperature was registered with two frequencies: every 0.2 second and every 60 

seconds. High frequencies were used for the measurement of air temperature in DSF cavity and the temperatures of 

exhaust air from the cavity, only.  

The air temperature was measured in plant room, instrument room, DSF and experiment room. Also, the ground 

temperature, underneath of foundation in experiment room was measured. 

In [9] and [33] it is explained that the presence of direct solar radiation is an essential element for the facade operation, 

but it can heavily affect measurements of air temperature and may lead to errors of high magnitude using bare 

thermocouples and even adopting shielding devices. Taking this into consideration, the thermocouples in DSF cavity 

were protected from an influence of direct solar radiation by silver coated and ventilated tube, air flow through the tube 

was ensured by a minifan. Thermocouples were placed in each DSF section in several heights, enough to build a 

vertical temperature gradient.  

The air temperature in the experiment room was measured with bare silver coated thermocouples and a shielded-

ventilated thermocouple with silver coating, which were placed at different heights in four locations in the room. 

Surface temperature of walls was also measured in experiment room and DSF: thermocouples were glued to surfaces 

with a paste of high heat transmission property.  

Measurement of glazing surface temperature was performed in the centre of glazing pane for each window section. The 

temperature was measured of: 

 internal surface of inner window pane  



 external surface of inner window pane  

 internal surface of outer window pane  

These measurements were conducted with sensors shielded from direct solar access. Continuous shading of the 

thermocouple sensor at the inner pane was provided by a thin aluminium foil fixed around sensor at the external surface 

(Figure 11). As a result, the foil shielded both a sensor at the external and internal surfaces. The thermocouple at the 

internal surface of the outer pane was protected in a similar way by a piece of aluminium sticky tape on the external 

surface of the outer pane.  

 

Figure 11. Measurement of glass surface temperature. Thermocouples are shielded by silver foil.  

4.3 Power supply in the experiment room 

One of the main targets of this experimental work was to accurately estimate solar gains to the experiment room 

adjacent to the double skin facade. Solar gains to the experiment room can be used as a measure of DSF performance 

and they can be estimated from the heat balance in the room if cooling/heating loads are known.  

Cooling load  

Water was used in the cooling unit of the ventilation system. With the purpose to avoid condensation on the surface of 

the cooling unit the minimum water temperature was set to 12 
o
C, this resulted in a large area of cooling surface and the 

size of whole system. The difference between the supply and return water temperature from the cooling unit was 

measured with thermopile and recorded by Helios data logger at a frequency 0.1 Hz.  

In order to avoid measurement errors associated with small mass flow rates of water, a constant water flow rate was 

used; meanwhile the cooling load to the room was achieved due to variation of the water temperature.   

Heating load  

The heating unit in the ventilation system was rarely activated, as the running fan of ventilation system in the 

experiment room ensured an additional heat load. Moreover, some equipment had to be installed in experiment room 

and resulted in more additional loads. For keeping a track of all loads to experiment room, including the heating unit, all 

equipment in the room was connected to a wattmeter D5255S from producer Norma. Readings from the wattmeter were 

assembled at a frequency 0.1 Hz by a data logger Helios.  

4.4 Air flow 

Assessment of the air change rate is of key importance for the evaluation of a double skin façade performance, at the 

same time the measurement of naturally induced air flow is known for its complexity. 

In the literature, there are a few methods used for estimation of the air change rate in a naturally ventilated space. The 

most known experimental methods are the tracer gas method, a method of calculating the air flow from the measured 

velocity profiles in an opening and using a scale modelling [10-12].  

Experimental investigation of the air flow rate requires measurement of many highly fluctuating parameters. The 

fluctuation frequency implies the high sampling frequency for the measurements. For example according to Larsen 

(2006), the wind speed has to be measured at least at the frequency of 5 Hz, otherwise peaks in the wind velocity can be 

lost when averaged in time. When measured with the tracer gas method the limitations are extended to the air flow 

rates, as with the high air flow rate the amount of injected tracer gas will be enormous. Because of these reasons, the 

investigation of the natural air flow often is carried out in the controlled environment of the wind tunnel or scale 

models.  

Two methods were used for the air flow measurements in „The Cube‟, these are:  

 Velocity profile method 



 Tracer gas method  

 

 

Velocity profile method 

This method requires a set of anemometers to measure a velocity profile in the opening, as illustrated in Figure 12, 

which gives an example for velocity profile measurement in an opening. Meanwhile, possible flow patterns are 

illustrated in Figure 13, according to [30]. In the method, the shape of the determined velocity profile depends on 

amount of anemometers installed. Therefore the number of anemometers used for the measurement must be sufficient to 

provide the minimum necessary resolution of shape of the velocity profile. At the same time, the equipment located 

directly in the opening can become an obstruction for the flow appearance. Thus, the method becomes a trade off 

between the maximum desired amount of anemometers and the minimum desired flow obstruction. Instead of placing 

equipment directly in the opening in the case of the double skin facade, it can be placed in the DSF cavity, where the 

velocity profile can be measured in a few levels instead of one, for better accuracy. 

 

Figure 12. Measurement of velocity profiles in an opening. View from inside (left), view from outside (right).  

 

Figure 13. Flow patterns through open windows in single-sided ventilation [13].  

For the double skin façade, the negative aspect of this method is explained by air flow variation, as the instantaneous air 

velocity in the cavity may vary from 0 to 5 m/s. This velocity range is challenging, as the equipment must be suitable 

for measurements of both low and higher velocities. Moreover it is necessary to be able to follow the flow fluctuations. 

As explained earlier by Jensen [14] the hot-sphere anemometers have proved to be suitable for the task. These were also 

tested for uncertainties when measure under the direct solar radiation.  

During experiments in „The Cube‟ all of the velocity measurements were conducted in the central section of DSF, the 

velocity profiles were measured in 6 levels, with various number of anemometers at different levels. Levels are 

numbered with the Roman numbers in the Figure 14. All in all 34 hot-sphere anemometers were installed in the 

experimental set-up. 24 hot-sphere anemometers had measurement frequency of was 10 Hz, the other 10 anemometers 

had a measurement frequency of 0.2 Hz and were located in level I and level II (Figure 14). 



 

Figure 14. Positioning of anemometers in the DSF cavity (left). Anemometers in the DSF cavity before they were moved 

up to their respective heights (right).  

Tracer gas method  

The measurements were completed with the constant injection method. In this method, the tracer gas is injected at a 

constant rate and then the concentration response is recorded [12]. According to McWilliams [15] the constant injection 

method is more appropriate for leaky spaces where the gas would be quickly ventilated from the space, thus it is 

suitable for DSF. However, according to [12] and [15] this method is not appropriate for highly unsteady ventilation 

rates i.e. in a naturally ventilated DSF cavity. Thus the measurement accuracy may suffer. 

Carbon dioxide (CO2) is the tracer gas used during the whole period of experiments. Carbon dioxide was released in the 

lower part of the double skin facade cavity, but above the bottom openings. Even distribution of the tracer gas along 

DSF cavity was ensured by its injection through a perforated tube of internal diameter 3.5 mm, perforation distance 4 

mm and 0.5 mm diameter of perforations. Samples of the tracer gas dilution were taken in 12 points (4 samples per 

section) at the top of the DSF cavity, but below the top openings, Figure 15. All samples were blended together in 

collector and then the concentration of the diluted tracer gas was measured by a gas analyzer BINOS.  

  

Figure 15.  Experimental set-up for the tracer gas method: positioning of the perforated tube for the release of the 

tracer gas at the bottom of DSF cavity and the air intakes for polluted air, at the top of DSF cavity.  

Concentration of carbon dioxide in the outdoor (incoming) air was measured continuously, by a gas analyzer URAS. 

The Helios data logger collected the measurement data from the gas analyzers with the frequency 0.1 Hz. The constant 

injection method was used during the experiments and quantity of released tracer gas was kept constant (apx. 4 l/min).  



5. Accuracy and uncertainty of experimental data  

Assessment of measurement accuracy is crucial for empirical validation. Here the uncertainties related to the 

experimental methods are discussed and the accuracy of the instruments is reported. Prior to the measurements, the 

accuracy of all measurement equipment was checked. All of the instruments and sensors were calibrated for the suitable 

measurement conditions to reduce measurement uncertainty. The measurement uncertainty is summarised in Table 13. 

Temperature 

HELIOS datalogger 

HBM datalogger 

 

+/- 0.07 
o
C 

+/- 0.14 
o
C 

Solar radiation 

Diffuse on horizontal surface 

Total on horizontal surface 

Total on vertical surface ( DSF) 

 

+/- 10 % 

+/- 2% 

+/- 3% 

Wind speed 

3D ultrasonic anemometers 

2D anemometers 

 

+/- 1% 

+/- 4% 

Wind direction 

3D ultrasonic anemometers 

2D anemometers 

 

+/- 3
o
 

+/- 3
o
 

Cooling/Heating Load 

Supply and return water temperature  

Water mass flow rate 

Wattmeter 

 

+/- 0.07
o
C 

+/- 0.1% 

+/- 0.1 % 

Air velocities 

Hot sphere anemometers 

 

+/- 0.05 m/s 

Concentration of CO2 

In the DSF (BINOS) 

In the outdoor air (URAS) 

 

+/- 10 ppm 

+/- 10 ppm 

Table 13. Measurement uncertainty of equipment used in the experimental set-up. 

In the experimental studies, there are four experimental methods deserving special attention for uncertainty 

considerations. These are:  

 Tracer gas method with constant injection of CO2 for assessment of the air change rate in the DSF cavity  

 Velocity profile method for assessment of the air change rate in the DSF cavity  

 Measurement of air temperature under direct solar radiation 

 Measurement of air velocity with the hot sphere anemometers exposed to direct solar radiation 

 

Tracer gas method with constant injection of CO2. This method requires the minimum amount of measurements and 

equipment, but it is characterized with frequent difficulties to obtain uniform concentration of the tracer gas, 

disturbances from wind and the time delay of the signal caused by the time constant of the gas analyzer.  

According to McWilliams [32], tracer gas theory assumes that tracer gas concentration is constant throughout the 

measured zone. For the tracer gas method an error in determined air flow is expected in the range of 5-10 %, which 

requires full mixing of the tracer gas and air in the DSF cavity.    

In the tracer gas method, the main errors appear when the tracer gas is not well mixed with the entrance air, or when 

there are wind wash-out effects, reversed flow and/or recirculation flow. With wind washout or flow reversal the tracer 

gas is removed from the DSF cavity: in practice this is indicated by very high readings of the air flow rate.  

Both the wind washout effect and the reversed flow appear due to highly fluctuating wind. Yet a particular and 

noteworthy difference between these two phenomena is the fluctuating parameter of wind: the fluctuating wind speed in 

case of reversed flow phenomenon and the fluctuating wind direction in case of wind washout effect.  

The wind washout effect is explained as an additional flow pattern that occurs in the DSF cavity, taking place in the 

horizontal plane. The wind washouts appear due to different wind pressure distribution at the openings in the same 

façade and at the same height. These differences in the pressure distribution appear primarily due to wind direction. In 

Figure 16, two different scenarios for wind pressure distribution on a façade are illustrated. In the figure the illustration 

to the right is visualizing the effect of wind direction, meanwhile the illustration to the left is focused on effect of the 

wind speed for the reversed flow. In case of reversed flow, the buoyancy forces are significantly weaker than the wind 

pressure at the top openings of DSF. Correspondingly the reversed flow phenomenon is characterized by fluctuations in 

the wind speed compared to magnitude of buoyancy.    



 

Figure 16. Illustration of reverse flow (left) and wind washout (right) for DSF. 

From the measurements, it was observed that the appearance of reverse flow is periodical (with weak buoyant forces, 

where the wind pressure at the top of the DSF is greater than that at the bottom). The wind washout effect is a similar 

phenomenon to reverse flow, but its occurrence is more random and originates from the highly fluctuating wind.  

It is not possible to quantify the impact of poor mixing. The flow regime in the DSF cavity is turbulent and highly 

fluctuating; therefore, good mixing of air and tracer gas was expected, except when disturbed by wind washouts or flow 

reversal, causing removal of tracer gas from the cavity. 

Velocity profile method. The velocity profiles are measured only in the central section in the cavity. Accordingly, one of 

the significant limitations in this method is the assumption of equal flow conditions in all three sections of the DSF 

cavity, which is not necessarily true in practice.  

This method is also sensitive to the number of velocity sensors and their location in the plane, as poor approximation of 

the velocity profile will result in inferior accuracy. For better estimation of the velocity profile, knowledge of the flow 

conditions and flow patterns is needed.  

Another limitation related to this method is the boundary layer flow, which can result in overestimation of the air flow 

rate in the cavity, both on days with strong solar radiation or at night. Accordingly, in the periods when the boundary 

flow at the surfaces of the DSF cavity is relatively strong, overestimation of mass flow rate will take place.  

Measurement of air temperature and air velocity under direct solar radiation 

Measurement accuracy can suffer significantly if sensor, measurement device or data acquisition system is exposed to a 

strong direct solar radiation. This is particularly important for the accuracy of temperature measurements or 

measurement principles which involve temperature compensation. For the described experimental set-up in „The Cube‟, 

measurement of air velocity using a hot-sphere anemometers and air temperature measurements are distinguished as the 

most sensitive to solar radiation exposure. 

In [16] different shielding techniques are investigated for protection of temperature sensors for accurate measurement of 

air temperature under the solar radiation exposure. It is concluded that silver coating of the sensor together with silver 

coated ventilated tube is the sufficient way for sensor protection, which minimizes the uncertainty in temperature 

measurement caused by presence of solar radiation.  

On contrary to thermocouples which need protection, the hot sphere anemometer measurements stay unaffected by solar 

radiation as explained in [14]. 

Besides the above mentioned measurement methods, it is also necessary to mention limitations associated with the test 

facility. The most significant limitations were caused by the need to maintain constant air temperature in the experiment 

room. It was achieved by installing ventilation system in the room together with the KE-low impulse fabric ducts. This 

resulted in following limitations:  

 



1. Ventilation system of 750 kg weight placed in the experiment room serves an additional thermal mass in the 

room, and therefore affects the distribution of cooling/heating loads during the period of experiments.  

2. Piston flow in the room can significantly affect convective heat transfer in the room, this limitation, however, 

is disregarded due to rather low air speed (max 0.2 m/s).  

3. Positioning of fabric ducts on the concrete floor of experiment room can cause two problems. The first 

problem is explained by discrepancies in absorbtion of solar radiation by the floor construction with and 

without fabric ducts. Another problem is that the temperature of the air that is supplied through the fabric ducts 

is normally different from the room air temperature (the supply temperature is normally cooler during the peak 

solar loads). As a result, the concrete floor serves as a thermal mass, which is cooled down or heated up, 

depending on the supply air temperature.  

The above mentioned limitations of the experimental set-up have to be taken into consideration when using the 

experimental data for software validation, by adjusting the model to suite the experimental conditions.  

7. Summary 

Good quality data sets were compiled for three operational modes of the double skin façade. These are external air 

curtain mode, transparent insulation mode and preheating mode. Each set of data is complete and can be valuable for 

empirical validation of building simulation software or other research purposes.   

Although, all described measurement methods have sources of error and compared to laboratory conditions have 

relatively large uncertainties, their results has shown reasonable agreement and can be used for experimental validation 

of numerical models for double facade. 

Finally, this experimental data set has several advantages over already existing DSF monitoring results, which include:  

 The data set contains long term measurements of naturally induced air flow in a cavity from non-laboratory 

conditions.  

 The data sets are prepared for a period of approximately two weeks, meanwhile published results are only 

available for significantly shorter periods. Certainly, there are publications with longer measurement 

intervals available, but those are characterized with very limited number of parameters that have been 

measured.  

 Three functioning modes of DSF are tested in the same façade system, using the same measurement 

principles and equipment. Moreover, these were carried out by the same team, which means that if there are 

any personal judgment errors present, than these are consequent for the whole set of experiments.  

 And, finally, the data set is composed from monitoring results in the full-scale test cell, which is on 

contrary to laboratory conditions, does not require duplication of „real climate‟ effects [17]. Also, opposite 

to real building monitoring, full-scale test cell is designed, insulated, air tightened entirely for the 

measurement purposes. As a result, its geometry, thermophysical properties of the constructions and 

boundary conditions are well documented; the measurements are performed in well controlled conditions, 

using calibrated instruments and sophisticated acquisition systems.    
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