Pitch Estimation and Tracking with Harmonic Emphasis On The Acoustic Spectrum

Karimian-Azari, Sam; Mohammadiha, Nasser; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

Published in:
I E E E International Conference on Acoustics, Speech and Signal Processing. Proceedings

DOI (link to publication from Publisher):
10.1109/ICASSP.2015.7178788

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Pitch Estimation and Tracking with Harmonic Emphasis on the Acoustic Spectrum

April 23, 2015

Sam Karimian-Azari1, Nasser Mohammadiha2, Jesper R. Jensen1, and Mads G. Christensen1

sk@create.aau.dk

1Audio Analysis Lab, AD:MT, Aalborg University
2University of Oldenburg
Pitch Estimation and Tracking
Sam Karimian-Azari et al.

Introduction
Harmonic Signal Model
Noisy Signal Approx.
ML Pitch Estimation

Proposed Method
Motivation-Hypothesis
1- Discrete state-space: HMM
2- Continuous state-space: Kalman Filter

Numerical Results
Conclusion

Agenda

- Introduction
 - Noisy Harmonic Signal Approximation
 - ML Pitch Estimate from UFE
- Bayesian Methods
 - Motivation
 - HMM
 - Kalman Filter
- Numerical Results
- Conclusion
Introduction
Harmonic Signal Model

Pitch Estimation and Tracking
Sam Karimian-Azari et al.

Introduction
Harmonic Signal Model
Noisy Signal Approx.
ML Pitch Estimation

Proposed Method
Motivation-Hypothesis
1- Discrete state-space: HMM
2- Continuous state-space: Kalman Filter

Numerical Results
Conclusion
Introduction
Harmonic Signal Model

Pitch Estimation and Tracking
Sam Karimian-Azari et al.

Introduction
Harmonic Signal Model
Noisy Signal Approx.
ML Pitch Estimation

Proposed Method
Motivation-Hypothesis
1- Discrete state-space: HMM
2- Continuous state-space: Kalman Filter

Numerical Results

Conclusion

Audio Analysis Lab, AD:MT,
Aalborg University, Denmark
Introduction

Harmonic Signal Model
Harmonic Signal Model:

$$s(n) = \sum_{l=1}^{L(n)} \alpha_l e^{j(\omega_l(n)n + \varphi_l)}, \quad (1)$$

where $$\omega_l(n) = l\omega_0(n)$$ for $$l = 1, \ldots, L(n),$$

- $$L(n)$$: number of sinusoids
- $$\alpha_l$$: real magnitudes
- $$\omega_0$$: fundamental frequency
- $$\varphi_l$$: phases of harmonics
The observed signal can be written as a sum of a desired signal $s(n)$ and a noise signal $v(n)$, i.e.,

$$x(n) = s(n) + v(n)$$

$$= \sum_{l=1}^{L} \alpha_l e^{j(\omega_l n + \varphi_l)} + v(n).$$
At a high narrowband SNR, the harmonic frequency ω_I is perturbed with a real-valued phase-noise [S.Tretter 1985], which has a normal distribution with zero mean and the variance

$$E\{\Delta \omega_I^2(n)\} = \frac{\sigma^2}{2\alpha_I^2}$$

(3)

We can approximate $x(n) = \sum_{l=1}^{L} \alpha_I e^{j(\omega_I n + \varphi_I)} + v(n)$ like

$$x(n) \approx \sum_{l=1}^{L} \alpha_I e^{j(\omega_I n + \Delta \omega_I(n) + \varphi_I)}$$

(4)
Signal Model
Unconstrained frequency estimates (UFE)

Unconstrained frequency estimates (UFE) of the constrained frequencies:

\[
\hat{\Omega}(n) = \left[\hat{\omega}_1(n), \hat{\omega}_2(n), \ldots, \hat{\omega}_L(n)\right]^T
\]

\[= d_L(n)\omega_0(n) + \Delta\Omega(n),\]

(5, 6)

where

\[
d_L(n) = \left[1, 2, \ldots, L(n)\right]^T
\]

\[
\Delta\Omega(n) = \left[\Delta\omega_1(n), \Delta\omega_2(n), \ldots, \Delta\omega_L(n)\right]^T,
\]

(7, 8)

and

\[
R_{\Delta\Omega}(n) = E\{\Delta\Omega(n)\Delta\Omega^T(n)\}
\]

\[
= \frac{\sigma^2}{2} \text{diag}\left\{\frac{1}{\alpha_1^2}, \frac{1}{\alpha_2^2}, \ldots, \frac{1}{\alpha_L^2}\right\}.
\]

(9)
Max. Likelihood (ML) Pitch Estimator

For the time-frame \(x(n) = [x(n), x(n-1), \ldots, x(n-M-1)]^T \), the PDF of the UFE is

\[
P(\hat{\Omega}(n)|\omega_0(n)) \sim \mathcal{N}(d_L(n)\omega_0(n), R_{\Delta\Omega}(n)). \tag{10}
\]

The ML pitch estimator:

\[
\hat{\omega}_0(n) = \arg \max_{\omega_0(n)} \log P(\hat{\Omega}(n)|\omega_0(n)) \tag{11}
\]

\[
= \left[d_L^T(n)R_{\Delta\Omega}^{-1}(n)d_L(n) \right]^{-1}d_L^T(n)R_{\Delta\Omega}^{-1}(n)\hat{\Omega}(n) \tag{12}
\]
The ML Estimators are statistically efficient, e.g., the non-linear least-squares (NLS), and the weighted least squares (WLS) [H.Li, et al. 2000], but the minimum variance is limited by the number of samples.

Consecutive pitch values are estimated independently.
Pitch values are usually correlated in a sequence, i.e.,

\[P(\omega_0(n) | \omega_0(n-1), \omega_0(n-2), \ldots), \quad (13) \]

that motivate Bayesian methods to minimize an error incorporating prior distributions.

State-of-the-art methods mostly track pitch estimates in a sequential process without concerning noise statistics.
Bayesian Pitch Estimator

Hypothesis

1- Jointly estimate and track pitch incorporating both the harmonic constraints and noise characteristics.
2- Estimate the state $\omega_0(n)$ through a series of noisy observations:

$$P(\omega_0(n)|\hat{\Omega}(n), \hat{\Omega}(n-1), \cdots)$$ (14)

3- Recursively update the prior distribution of the pitch value.
Bayesian Pitch Estimator
Discrete state-space (HMM)

\[\omega_0(n) : \text{Discrete random variable (Hidden states)} \]
\[P(\omega_0(n)|\omega_0(n-1)) : \text{Transition probability in a 1st-order Markov model, i.e., } \sum_{\omega_0(n)} P(\omega_0(n)|\omega_0(n-1)) = 1 \]

\[\hat{\omega}_0(n) = \arg \max_{\omega_0(n)} \log P(\omega_0(n)|\hat{\Omega}(n), \hat{\Omega}(n-1), \cdots) \]
\[= \arg \max_{\omega_0(n)} \log P(\hat{\Omega}(n)|\omega_0(n)) + \log P(\omega_0(n)|\hat{\Omega}(n-1), \cdots) \]

The priori distribution is defined recursively like
\[P(\omega_0(n)|\hat{\Omega}(n-1), \hat{\Omega}(n-2), \cdots) = \sum_{\omega_0(n-1)} P(\omega_0(n)|\omega_0(n-1)) P(\omega_0(n-1)|\hat{\Omega}(n-1), \cdots), \]
where \(P(\omega_0(n-1)|\hat{\Omega}(n-1), \cdots) \) is the past estimate.
Bayesian Pitch Estimator
state-space representation of the pitch continuity

Continuous state-space:

\[\omega_0(n) = \omega_0(n-1) + \delta(n) \]
\[\hat{\Omega}(n) = d_L(n) \omega_0(n) + \Delta \Omega(n), \]

where \(\delta(n) \sim \mathcal{N}(0, \sigma^2) \) and \(\Delta \Omega(n) \sim \mathcal{N}(0, R_{\Delta \Omega}(n)) \) are the state evolution and observation noise, respectively.
Bayesian Pitch Estimator
Continuous state-space (Kalman filter)

First, a pitch estimate is predicted using the past estimates as
\[
\hat{\omega}_0(n|n-1) = \hat{\omega}_0(n-1|n-1) \tag{17}
\]
with the variance
\[
\sigma^2_K(n|n-1) = \sigma^2_K(n-1|n-1) + \sigma_t^2. \tag{18}
\]
Second, the pitch estimate is updated with the error of
\[
e(n) = \hat{\Omega}(n) - d_L(n)\hat{\omega}_0(n|n-1). \tag{19}
\]
Then, the predicted estimate is updated:
\[
\hat{\omega}_0(n|n) = \hat{\omega}_0(n|n-1) + h_K(n)e(n) \tag{20}
\]
\[
h_K(n) = \sigma^2_K(n|n-1)d_L^T(n)\left[\Pi_L(n)\sigma^2_K(n|n-1) + R_{\Delta\Omega}(n)\right]^{-1}, \tag{21}
\]
where \(\Pi_L(n) = d_L(n)d_L^T(n)\), and update
\[
\sigma^2_K(n|n) = \left[1 - h_K(n)d_L(n)\right]\sigma^2_K(n|n-1). \tag{22}
\]
The ML estimator of the covariance matrix among N estimates:

$$R_{\Delta \Omega}(n) = E\{\Delta \Omega(n)\Delta \Omega^T(n)\}$$

$$= \frac{1}{N} \sum_{i=n-N+1}^{n} \Delta \Omega(i)\Delta \Omega^T(i), \quad (23)$$

where $\Delta \Omega(n) = \hat{\Omega}(n) - \hat{\mu}(n)$, and $\mu(n) = E\{\hat{\Omega}(n)\}$.

Exponential moving average:

$$\hat{\mu}(n) = \lambda \hat{\Omega}(n) + (1 - \lambda) \hat{\mu}(n-1) \quad (24)$$

The forgetting factor $0 < \lambda < 1$ recursively updates the time-varying mean value.
A linear chirp signal \((r = 100 \text{ Hz/s})\) with \(L = 5\) harmonics, random phases, and identical amplitudes during 0.1 s.

\[
M = 80, \quad \omega_0(1) = \frac{400\pi}{f_s}, \quad f_s = 8.0 \text{ kHz}, \quad \sigma_t = \sqrt{2\pi r/f_s^2}, \quad \text{and for the HMM-based pitch estimator, the frequency range} \quad \omega \in [150, 280] \times (2\pi/f_s) \quad \text{was discretized into} \quad N_d = 1000 \text{ samples.}
\]
Speech signal + Car noise at SNR = 5 dB.

The MAP order estimation [Djuric 1998], $M = 240$, $\lambda = 0.9$, and $N = 150$.
Conclusion

- For pitch estimation, we have formulated the ML estimate from the UFE.
- For pitch estimation and tracking, we have proposed HMM- and KF-based methods.
- Experimental results showed that both HMM- and KF-based methods outperform the corresponding ML pitch estimators.
- The KF-based method statistically performs better than the HMM-based method, while it tracks pitch changes more accurately than the KF-based method.
Thank you!