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Computer Science, Aalborg University, Denmark

Ulrik Nyman

Computer Science, Aalborg University, Denmark

Arne Skou

Computer Science, Aalborg University, Denmark

Abstract

This paper presents a compositional framework for the modeling and analysis
of hierarchical scheduling systems. We consider both schedulability and energy
consumption of individual components, while analyzing a single core setting
with a voltage frequency scaling CPU. According to the CPU frequency scaling,
each task has a set of different execution times. Thus, the energy consumption
of the whole system varies from an execution to another.
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We analyze each component individually by checking the feasibility of its
workload against both the CPU availability and energy consumption constraints
of such a component. Our periodic task model considers both static and dynamic
priorities together with preemptive and non preemptive behaviors. The models
are realized using different forms of Hybrid Automata, all of which are analyzed
using variants of Uppaal. The CPU frequencies, task behavior and scheduling
policies used in each component are some of the reconfigurable parameters of
the system. Finally, we demonstrate the applicability and scalability of our
framework by analyzing the schedulability and power consumption of an avionics
system.

Keywords: Hierarchical Scheduling Systems, Schedulability Analysis, Power
Consumption, Voltage/Frequency Scaling, Uppaal.

1. Introduction

In the design of modern automotive systems, in order to reduce the system
cost a manufacturer devotes strong efforts in minimizing the resource require-
ments of individual components, provided by different suppliers, in order to
maximize the number of components to be integrated on a given platform while
ensuring the whole system to be continually feasible. Such concurrent compo-
nents might share platform resources (e.g. processors, battery).

Resource utilization represents a common challenge in embedded systems,
and thus it is important to have both an efficient and reliable scheduling policy
for the individual parts of the system. Scheduling is a widely used mechanism
for guaranteeing that the different components of a system will be provided with
the correct amount of resources. Many classical approaches have been devel-
oped to analyze different types of scheduling systems. The working hypothesis
behind the research presented in this paper is that a model-based approach to
schedulability and power analysis has advantages of being more flexible than
the classical analytical approaches in terms of expressiveness and precision.

In this paper, we propose a compositional model-based framework for ana-
lyzing the schedulability and power consumption of hierarchical scheduling sys-
tems. Our framework is implemented using different forms of stopwatch timed
automata which are analyzed using variants of Uppaal. In order to capture
the effect of preemption in hierarchical scheduling systems, we are using the
concept of stopwatches. Stopwatches generally present a problem for the exact
system analysis as they belong to the undecidable fragment of hybrid automata.
However, since only expressions depending on the discrete part of the state can
be assigned to a clock or stopwatch in Uppaal, this ensures the decidability of
the system (for further details see Section 3.5).

We have not found any alternative way to model preemptive hierarchical
scheduling systems, with a dense time semantics, using standard timed au-
tomata. We believe that it is indeed impossible, but have not tried to prove this
fact. According to [31], the schedulability checking problem for non-preemptive
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scheduling policies is decidable because the schedulability question can be trans-
lated to a reachability question. Moreover, such a problem is also decidable in
case of preemptive algorithms if the computation times are constant single val-
ues. Otherwise, the schedulability checking is undecidable if the following holds:

• the execution times of tasks are intervals given in terms of best and worst
cases.

• the finishing time of a task execution (instance) influences the release of
new instances.

• a ready task is allowed to preempt a running task.

A proof of the decidability of FPS (Fixed Priority Scheduling) and EDF (Earliest
Deadline First) is presented in [31].

Model checking in general suffers from state space explosion, where the state
space that needs to be explored grows exponentially in the size of the parallel
composition. In order to combat the state space explosion and be able to use
model checking on larger problems, we have chosen to decompose the models.
This has, in many other settings, proven to be fruitful way of applying model
checking to real problems. The size of the final system is unimportant, but
rather the maximum number of tasks that needs to be analyzed together. Thus
our framework can be scaled to larger systems if the system tasks are grouped
into components in a hierarchy.

A hierarchical scheduling system consists of a finite set of components, a
scheduling policy and resources (energy and processor time). Each component,
in turn, is the parallel composition of a finite set of entities which are either
tasks or other components together with a scheduling policy to manage the
component workload. Tasks are instances of the same timed automaton tem-
plate with different (input) parameters. Thanks to the parameterization, the
framework can easily be instantiated for a specific hierarchical scheduling ap-
plication. Similarly, each scheduling policy (e.g. EDF: Earliest Deadline First,
FP: Fixed Priority, RM: Rate Monotonic) is modeled separately and can be
instantiated for any component. We extend our framework with power con-
sumption by adding a new constraint attribute to the component interface. For
energy awareness, we analyze the energy consumed by a component workload
against the power consumption constraint of that component. In this way a
fixed frequency for each task is found on a voltage/frequency scaling platform,
for which the component is both schedulable and satisfies the maximum power
constraint. For the sake of simplicity, we focus on single core systems but the
framework is also applicable for the case of multi-core systems.

Compositional analysis was first introduced [18, 34] as a key model-checking
technology, to deal with state space explosion caused by the parallel composition
of components. We are applying compositional verification to the domain of
schedulability analysis. By schedulability analysis, we mean checking whether
a set of real-time tasks can be scheduled without missing any deadline.

We analyze the model in a compositional manner by layers/levels; the schedu-
lability of each level is analyzed together with the interface specifications of the
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level directly below it. In this analysis, we non deterministically supply the
required resources of each component. This fact is viewed by the component
entities as a contract by which the component must supply the required re-
sources, provided by the parent level component, to its sub-entities for each
period. The main contribution of the paper is combining:

• a compositional analysis approach where the schedulability of a system
relies on the recursive schedulability analysis of its individual subsystems.

• energy consumption analysis of components on a voltage/frequency scaling
platform where the energy consumed by the workload is analyzed against
the component energy constraint.

• an adaptable schedulability framework where a system structure can be
instantiated in different configurations to fit different applications.

• error traces: we demonstrate the usefulness of model-based approaches
by showing that error traces can be used to diagnose why a system is non
schedulable.

• formal basis: we describe the specification and semantics of our framework
in terms of transition systems.

This paper is an extended version of [12] containing detailed background and
extended related work. We also give a thorough introduction and overview of
the formal basis of the modeling formalisms we use.

The main new scientific contribution of this paper lies in the extension of the
framework to include modeling and analysis of power consumption on a volt-
age/frequency scaling platform, while providing the specification and semantics
of our framework in terms of transition systems.

The rest of the paper is structured as follows: Section 2 introduces related
work. Section 3 provides preliminaries on hierarchical scheduling system and
the model types used to represent the scheduling systems. Section 4 is an
informal description of the main contribution using a running example. Sec-
tion 5 describes our formal specification, semantics and analysis of hierarchical
scheduling systems. In section 6, we give the Uppaal model of our framework.
Moreover, we show how the compositional analysis can be applied on the model
using the Uppaal and Uppaal SMC verification engines. Section 7 presents
the energy-aware modeling and analysis of components. Section 8 shows the ap-
plicability of our framework, where we analyze the schedulability of an avionics
system. Finally, Section 9 concludes our paper and outlines future work.

2. Related Work

Hierarchical scheduling systems were first introduced in [30, 26]. They allow
temporal partitioning and separation of concerns. A major motivation of the
separation of concerns is that it allows more easily modular design, thus up-
dating a component does not require changing the other components. We also
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use the temporal partitioning [37] of components to reduce complexity, confine
failure modes and temporal isolate among system applications.

An example of the increasing use of hierarchical scheduling systems is the
standard ARINC-653 [5] for avionics real-time operating systems. In [6], Åsberg
et al show that hierarchical scheduling is also relevant for soft real-time multi-
core systems by implementing and evaluating a partitioned hierarchical schedul-
ing framework as an extension of the ExSched framework for the Linux kernel.
The following sections overview the ideas that our approach relies on.

2.1. Analytical Approaches to Schedulability Analysis

An analytical compositional framework for hierarchical scheduling systems
was presented in [39] as a formal way to elaborate a compositional approach
for schedulability analysis of hierarchical scheduling systems [40]. In the same
way, Shin et al [38] dealt with a hierarchical scheduling framework for multipro-
cessors with cluster-based scheduling approach. They used analytical methods
to perform analysis, however both approaches [39, 38] have difficulty in dealing
with complicated behavior. Compared to that, our task model is more expres-
sive and enables one to describe more concrete behaviors and (user-defined)
data types, for example preemption thanks to stopwatches. Moreover, any type
of scheduling systems that can be expressed using the UPPAAL language can
be analyzed in our framework as long as the framework the model is designed
according to the framework definition.

In [35], Lipari et al provide an analytical framework for the formal spec-
ification and schedulability analysis of hierarchical scheduling systems. They
also present a methodology for how to compute the timing requirements of the
intermediate levels (servers) making a set of tasks feasible. The framework only
considers static priority scheduling (Fixed Priority Scheduling). We generalize
the analysis and such an estimation of the timing requirements to any scheduling
mechanism.

In [25], Davis et al analyze the schedulability of hierarchical scheduling sys-
tems where fixed priority scheduling is both at the global and local levels. They
improve the analysis provided by previous work and also find that harmonic
tasks linked to the release of their server improve schedulability. We generalize
this work by considering any combination of scheduling policies.

In [28], Easwaran et al introduce an analytical framework for the schedula-
bility analysis of components in a hierarchical setting. The analysis is composi-
tional so that it enables the abstraction of resource requirements of components
using periodic resource models. In order to support the incremental analysis,
they also provide an extension of the classical component interface to multi-
ple periodic resource models for different periods. Compared to that, for each
component we provide a unique constant period and calculate the minimum
budget making such a component schedulable rather than providing different
periods/budgets for each component.

In [7], Åsberg et al presents a compositional framework of hierarchcial schedul-
ing systems that exploits information of two-level components to compute a
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compact resource requirement of component interfaces and analyzes the schedu-
lability using TIMES tool. Compared to [7], we exploit information of a compo-
nent adopting the original compositional framework of hierarchical scheduling
systems.

2.2. Model-based Approaches to Schedulability Analysis

Recent research within schedulability analysis increasingly uses model-based
approaches, because this allows for modeling more complicated behavior of sys-
tems. While schedulability is a liveness property, it can be reduced to checking
a reachability property. This can be done by adding an Error state which is
immediately reachable from any other state of the given task once the deadline
is missed.

In [8], Behnam et al analyzed the schedulability of hierarchical scheduling
systems, using a model-based approach with the TIMES tool [4], and imple-
mented their model in VxWorks [8]. Compared to our approach, the schedula-
bility analysis in [8] is not compositional in a way that the analysis of a com-
ponent does not only consider the timing attributes of that component but also
the timing attributes of the other components that can preempt the execution
of the component under analysis. Moreover, we are considering more refined
and detailed task behaviors than that of the abstract task model in [8].

In [21], David et al introduce a model-based framework using Uppaal for
the schedulability analysis of flat systems. The authors model the concrete task
behavior as a sequence of timed actions, each one represents a command that
uses processing and system resources and consumes time. However, as stated
earlier, analyzing the whole system at once might be a scalability challenge due
to the state space explosion.

Carnevali et al [14] provide a compositional framework for the verification of
hierarchical scheduling systems using preemptive time Petri nets. The authors
restrict their work in a way that only Time Division Multiplexing (TDM) can
be global schedulers while the local schedulers must be Fixed Priority (FP).
Compared to our work, we give more flexibility by allowing to combine different
scheduling policies (FP, EDF, RM) at any level of the hierarchy. Moreover, we
consider both static and dynamic priorities.

Most recently, Sun et al in [41] presents a model of hierarchical scheduling
systems in linear hybrid automata in the most similar way with this work.
They introduce a component-based analysis for hierarchical scheduling systems
encoded using hybrid automata. The authors prove the correctness of their
models and study the decidability of the reachability (schedulability) analysis
for the case of periodic tasks. However, similarly to [14], the authors of [41]
restrict their framework to be applicable only for system configurations adopting
EDF as global scheduler and FPS as local schedulers.

In [11], Bøgholm et al introduce a model-based approach for the verification
of safety-critical hard real-time systems, implemented in safety-critical Java, is
presented. This work focuses on modeling the actual behavior of the execution
platform, but does not use the concept of a hierarchical scheduling system. The
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concepts from this work could be combined with the current paper as the lowest
level in a compositional process, where the task model is synthesized from code
by abstraction.

Basically, our model of hierarchical scheduling systems is extended from [21]
that presents a basic model of scheduling systems, in which the preemption of a
running task is captured by the stopwatch clock of the priced timed automata.
Compared to [8], our framework needs information of just one component of hier-
archical scheduling systems to make it possible to analyze hierarchical scheduling
system in a fully compositional way. [14] restricted scheduling policy of com-
ponents of hierarchical scheduling systems to Fixed Priority. In contrast, we
allows any scheduling policies that can be formulated as a behavior model of
timed automata and its extensions.

2.3. Energy-aware Schedulability Analysis

Since embedded systems are usually running on limited resources, energy
efficiency represents a strong factor in the setting of such systems.

In [1], Abdeddäım et al study the schedulability of real-time embedded sys-
tems under energy constraints, such as using solar panels. We extend their
approach by considering hierarchy while analyzing the schedulability in a com-
positional way.

In [36], Niu et al consider the schedulability and energy efficiency of weakly
hard scheduling systems on frequency/voltage scaling platforms. A weakly hard
scheduling system requires that at least k out of m consecutive executions do
not miss their deadline. The framework of [36] is restricted to EDF scheduling
and does not consider hierarchy.

In [43], Zhou et al examine energy-efficient scheduling for the Integrated
Modular Avionics (IMA) platform. The framework is restricted to a two level
hierarchy with Weighted Round-robin (WRR) at the top level and Fixed Priority
(FP) at the low level. They use a classical analytical approach to tackle this
setting.

We combine and extend the approaches from Carnevali et al [14, 21] by
considering hierarchy, power consumption from Nui et al [36], and resource
sharing while analyzing hierarchical scheduling systems in a compositional way.
Moreover, our models can easily be reconfigured to fit any specific application.
Comparing our model-based approach to analytical ones, our framework enables
to describe more expressive and precisely detailed and refined systems.

3. Preliminaries

In this section, we first present the background of hierarchical scheduling
systems and then give the theory behind our modeling framework.

3.1. Hierarchical Scheduling Systems

A hierarchical scheduling system consists of multiple scheduling systems in
a hierarchical structure. It can be represented as a tree of nodes, where each
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node in the system is equipped with a scheduler for scheduling its child com-
ponents. In this paper, we structure our system model as a set of hierarchical
components. Each component, in turn, is the parallel composition of a set of
entities (components or tasks) together with a local scheduler and possible local
resources.

Formally, a hierarchical scheduling system System = (C,R, s) is given by a
set of hierarchical components C, a set of typed resources R and a scheduling
algorithm s. A component C ∈ C, in turn, can be either a hierarchical unit
({C1, .., Cn}, s) of other components Ci, or a basic composition (W, sc) of a
workload W , together with a scheduling policy sc. A component can also declare
a set of typed resources which serve as local resources. The workload W =
〈T1, .., Tn〉 is a set of real-time tasks having time constraints. Each task T =
〈prd, e, d, prio, p〉 is given with a period (prd), an execution time (e), a deadline
(d), a priority (prio) and a preemption (p). The execution time (e) specifies the
CPU usage time required by the task execution for each period (prd). Deadline
parameter (d) represents the latest point in time that the task execution must
be done before. The parameter prio specifies the user priority associated to the
task. Finally, p is a Boolean flag stating whether or not the task is preemptive.
Task and component parameters prd, budget and e can be single values or time
intervals. Moreover, prio and p can be omitted when they are not important.

The real-time interface I [40] of a system or component specifies the collec-
tive resource requirements under a given scheduling policy s. The component
can be a hierarchical component (C, s), with sub-components or a regular com-
ponent (W, s), with a given workload W . The interface I is simply given by a
period prd, a budget budget and a scheduling policy s in our framework. The bud-
get (budget) specifies the execution time that the component should be provided
by its parent level, and the scheduling policy (s) specifies how the resources are
allocated by the component to its child entities. A parent component treats
the real-time interface of each one of its child components as a single task with
the given real-time interface. The component supplies its child entities with
resource according to their real-time interfaces. The analysis of a component
(scheduling unit) consists of checking that its child entities can be scheduled
within the component budget according to the component scheduling policy.
An example of a hierarchical scheduling system is depicted in Fig. 1.

3.2. Running Example

In this section and throughout the paper, we present the running example
shown in Fig. 1 to illustrate our system model of hierarchical scheduling sys-
tems, and show the compositional analysis we claim. For the sake of simplicity,
we omit some parameters like priorities and resources and only consider single
parameter values instead of time intervals.

In this example, the top level System schedules Component1, Component2 with
the EDF scheduling algorithm. The components are viewed by the top level
System as tasks having timing requirements. Component1 has the interface (100,
33) as period and execution time and Component2 has (70, 20) as period and
execution time. The system shown through this example is schedulable if each
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System 
(50, 35) 

 

Component1 
(100, 33) 

 

Component2 
(70, 20) 

 

task1 
(250, 40) 

task2 
(400, 50) 

task3 
(250, 40) 

task4 
(400, 50) 

task5 
(400, 50) 

Figure 1: Example of hierarchical scheduling system.

component, including the top level, is schedulable. Thus, for the given timing
requirements Component1 and Component2 should be schedulable by the top level
System according to the EDF scheduling policy. The tasks task1 and task2 should
be schedulable, with respect to the timing requirement of Component1 (100, 33),
also under the EDF scheduling policy. Similarly, task3, task4 and task5 should
be schedulable, with respect to the timing requirements of Component2, under
the RM scheduling policy. The next section presents the compositional analysis
of the schedulability of our example.

For a given system structure, we can have many different system configura-
tions. A system configuration consists of an instantiation of the model where
each parameter has a specific value. Fig. 1 shows one such instantiation.

3.3. From Timed Automata to Hybrid Automata

The modeling formalisms used in this paper range from classical timed au-
tomata to hybrid automata with algorithmic support from the various branches
of the tool Uppaal. The classical version of Uppaal offers support for efficient
symbolic verification of timed automata [2] and over-approximate verification
of stopwatch automata [16]. The branch Uppaal CORA extends the symbolic
verification engine of Uppaal to support cost-optimal reachability for priced
timed automata [9, 3, 33].

Most recently the branch Uppaal SMC [22, 24] provides highly scalable
verification engine for statistical model checking (SMC) for not only the three
formalisms above but stochastic hybrid automata in general. In essence, statisti-
cal model checking is based on stochastic semantics allowing for the probability
of linear time properties to be estimated (or tested) with arbitrary precision and
confidence through simulations.

Uppaal SMC thus supports the analysis of stochastic hybrid automata
(SHA) [19] that are timed automata whose clock rates can be changed to be con-
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stants or expressions depending on other clocks, effectively defining Ordinary
Differential Equations (ODEs). This generalizes the model used in previous
work [22, 24] where only linear priced automata were handled. The release
Uppaal SMC 4.1.181 supports fully hybrid automata with ODEs and a few
built-in functions (such as sin, cos, log, exp and sqrt).

3.4. The Uppaal Tool Family

In the previous section several Uppaal variants were mentioned. This sec-
tion aims to give an overview of both the different forms of analysis that the
tools in the Uppaal family can provide and the types of models that they can
handle.

Tool Models Methods
Uppaal Timed Automata Model Checking

Stopwatch Automata
Uppaal CORA Priced Timed Automata Model Checking,

Cost-optimal reachability
Uppaal SMC Stochastic Hybrid Automata Statistical Model Checking
Uppaal TRON [32] Network of Timed Automata Real-time Online Testing
Uppaal TIGA [15] Timed Game Automata Controller Synthesis

Model Checking
Uppaal Stratego [20] Stochastic Priced Timed Automata Model Checking,

Statistical Model Checking,
Controller Synthesis,
Statistical Learning

Table 1: An overview of the different tools, models and methods in the Uppaal tool family.

Table 1 gives an overview of the tools and the types of models that they
can operate on. The tools Uppaal and Uppaal SMC are listed here as two
different tools, but Uppaal SMC has been integrated into Uppaal such that
they are one tool. If certain features are used in the models, then only statistical
analysis can be performed on the models. In the analysis sections of this paper
both Uppaal and Uppaal SMC are used.

3.5. Hybrid Automata

Intuitively, a hybrid automaton H is a finite-state automaton extended with
continuous variables that evolve according to dynamics characterizing each dis-
crete state (called a location). Let X be a finite set of continuous variables. A
variable valuation over X is a mapping ν : X → R, where R is the set of reals.
We write RX for the set of valuations over X. Valuations over X evolve over
time according to delay functions F : R≥0 × RX → RX , where for a delay d
and valuation ν, F (d, ν) provides the new valuation after a delay of d. As is
the case for delays in timed automata, delay functions are assumed to be time

1www.uppaal.org.
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additive in the sense that F (d1, F (d2, ν)) = F (d1 + d2, ν). To allow for commu-
nication between different hybrid automata, we assume a set of actions Σ, which
is partitioned into disjoint sets of input and output actions, i.e., Σ = Σi ] Σo.

Definition 3.1. A hybrid automaton (HA) H is a tuple H = (L, `0, X,Σ, E, F,
I), where: (i) L is a finite set of locations, (ii) `0 ∈ L is an initial location,
(iii) X is a finite set of continuous variables, (iv) Σ = Σi ] Σo is a finite set
of actions partitioned into inputs (Σi) and outputs (Σo), (v) E is a finite set of
edges of the form (`, g, a, φ, `′), where ` and `′ are locations, g is a predicate on
RX , action label a ∈ Σ and φ is a binary relation on RX , (vi) for each location
` ∈ L F (`) is a delay function, and (vii) I assigns an invariant predicate I(`)
to any location `.

The semantics of a HA H is a timed labeled transition system, whose states
are pairs (`, ν) ∈ L × RX with ν |= I(`), and whose transitions are either

delay transitions (`, ν)
d−→ (`, ν′) with d ∈ R≥0 and ν′ = F (d, ν), or discrete

transitions (`, ν)
a−→ (`′, ν′) if there is an edge (`, g, a, φ, `′) such that ν |= g

and φ(ν, ν′). We write (`, ν) (`′, ν′) if there is a finite sequence of delay and
discrete transitions from (`, ν) to (`′, ν′).

In the above definition, we have deliberately left open the concrete syntax for
the delay function F as well as guards g, update predicate φ and invariant I. For
timed automata (TA) [2], the continuous variables are simple clocks x where the
delay update F (`) is given by an implicit rate x′ = 1. For stopwatch automata
(SWA), the rate in a location ` may be either x′ = 1 or x′ = 0 (the latter
to be annotated explicitly). For both TA and SWA, guards g and invariants
I are restricted to conjunctions of simple integer bounds on individual clocks,
and the update predicate are simple assignments of the form x = e, where e
is an expression only depending on the discrete part of the current state. This
restriction ensures decidability and efficiency of model checking in the case of
TA and permits efficient over-approximate analysis of SWA.

For priced timed automata (PTA) [9, 3, 33], the continuous variables are
either simple clocks as in TA or cost-variables for which the delay update is
given by an explicit rate x′ = e appearing in the invariant of `, where e again
is an expression only depending on the discrete part of the current state. PTA
guards, updates and invariants may only refer to discrete part or simple clocks
– thus the cost-variables cannot affect the behavior of the models but are simple
observers. Under these restrictions, cost-optimal (minimal or maximal) reacha-
bility is decidable and may be computed exactly and efficiently using symbolic
techniques [33].

In the most general case of a hybrid automaton (HA), the delay function
F may need to solve a set of ODEs. It is important to note that in specifying
the delay function F and the invariant I, the full syntax of Uppaal expressions
– including user-defined functions – is at the disposal. For this class of model
only simulation-based techniques are supported.

Example 3.1. The various extended automata in Fig.2 model various quan-
titative aspect of a simple Switch with two modes On and Off. Fig. 2(a) is a

11



(a) Timed Automata (b) Simulation

(c) Stopwatch Automata (d) Simulation

(e) Priced Timed Automata (f) Simulation

(g) Hybrid Automata (h) Simulation

Figure 2: Timed, Stopwatch, Priced and Hybrid Automata for Switch

timed automaton model of the Switch using a clock x to enforce that the time-
separation between mode-switches is between 2 and 4 time-units. In addition an
integer variable c counts the number of times the Switch has been in location On.
Using the model checker of Uppaal it can be verified that the total time until
c becomes 3 is between 10 and 20 time-units as confirmed by the simulation in
Fig. 2(b).

Fig. 2(c) introduces a stopwatch y which is running only in location On, thus
effectively measuring the accumulated residence-time in On. Using the over-
approximate verification offered by Uppaal for stopwatch automata, it can be
concluded that within 11 time-units the Switch cannot have been in On for more
than an accumulated time of 10 time-units. This is confirmed by the simulation
in Fig. 2(d).

Fig. 2(e) is a priced timed automaton model of the Switch with a (single)
cost-variable E measuring the total accumulated energy consumption during the
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behavior. Here the rate of E is 0.5 in the Off location and 1.1 in the On location.
Using the cost-optimal scheduling algorithm of Uppaal CORA, it may be com-
puted that most energy-efficient way of having the counter variable c reaching 3
is 7.4. Again this finding is confirmed by the random simulation of Fig. 2(f).

Finally, Fig. 2(g) is a hybrid automaton model of the Switch with the contin-
uous variable T modeling the temperature. Here the invariants in the locations
On and Off are simple linear differential equations describing the evolution of T.
Fig. 2(h) provides a random simulation of the model. For this type of model no
exact model checking is offered.

3.6. Stochastic Hybrid Automata

The stochastic semantics of HA refines the non deterministic choices that
may exist with respect to delay, output and next state. For each state s = (`, ν)
of a HA A, we shall assume that there exist probability distributions for delays,
output as well as next-state:

• the delay density function, µs over delays in R≥0, provides stochastic infor-
mation for when the component will perform an output, thus

∫
µs(t)dt =

1;

• the output probability function γs assigns probabilities for resolving what
output o ∈ Σo to generate, i.e.,

∑
o γs(o) = 1;

• the next-state density function ηas provides stochastic information on the
next state s′ = (`′, ν′) ∈ RX given an action a, i.e.,

∫
s′
ηas (s′) = 1.

For outputs happening deterministically at an exact time point d (or determin-
istic next states s′), µs (ηas ) becomes a Dirac delta function δd (δs′)

2.
In Uppaal SMC, uniform distributions are applied for states where delay is

bounded, and exponential distributions (with location-specified rates) are ap-
plied for the cases, where a component can remain indefinitely in a location.
Also, Uppaal SMC provides syntax for assigning discrete probabilities to dif-
ferent outputs as well as specifying stochastic distributions on next-states (using
the function random(b) denoting a uniform distribution on [0, b]).

Example 3.2. Under the above stochastic interpretation of timed automata, all
of the extended timed automata models of the Switch will have the delays in Off

and On being determined by a uniform distribution on the interval [2, 4]. The
various simulations illustrated are obtained using this stochastic semantics. Now
using the statistical model checking engine of Uppaal SMC, we may establish a
number of interesting performance properties. Using the timed automata model
Fig. 2(a) we find that the probability that c becomes 3 before 15 time units
is estimated to be in the confidence interval [0.419126, 0.518993] with confidence
0.95 in Fig. 2 after some 402 simulation runs. Using the priced timed automaton

2which should formally be treated as the limit of a sequence of delay density functions with
decreasing, non-zero support around d.
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model of the Switch, we may estimate the expected energy consumption before
c becomes 3 to be in the interval [11.0389 − 0.34824, 11.0389 + 0.34824] with
confidence 0.95 within 36 runs. Finally, using the hybrid automaton model, it
may be established that the probability that the temperature drops below 5 degrees
after 10 time-units is in the interval [0.104583, 0.204489].

In general a model comes as a network of HAs. For networks, the stochastic
semantics is based on the principle of independence between components under
the assumption of input-enabledness. Repeatedly, each component decides on its
own, based on a given delay density function and output probability function,
how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be
determined by the component that has chosen to output after the shortest delay:
the output is broadcast and all other components may consequently change
state.

For more in-depth description of the semantic foundation of Uppaal SMC
we refer the reader to [19]. For concrete syntax of models and queries we refer
to the home-page of Uppaal.

4. Compositional Schedulability Analysis

In this section, we describe our compositional analysis technique using the
running example of Fig. 1. In order to design a framework that scales well for
the analysis of larger hierarchical scheduling systems, we have decided to use a
compositional approach. Fig. 3 shows how the scheduling system, depicted in
Fig. 1, is analyzed using three independent analysis processes. These processes
can be performed in any order, or better yet in parallel.

The schedulability of each component, including the top level, is analyzed
together with the interface specifications of the level directly below it. Accord-
ingly, the system is too complex to be analyzed at once. In Fig. 3, the analysis
process A consists of checking whether the two components Component1 and
Component2 are schedulable under the scheduling policy EDF. In this analysis
process, we only consider the interfaces of components in the form of their ex-
ecution time (budget) and period, so that we consider the component as an
abstract task when performing the schedulability analysis of the level above it.
In this way, we consider the component-composition problem similarly to [40]
but using a non deterministic supplier model for the interfaces. When perform-
ing an analysis process like A1, the resource supplier is not part of the analysis.
In order to handle this, we add a non deterministic supplier to the model. The
supplier will guarantee to provide the amount of execution time, specified in the
interface of Component1, before the end of the component period. We check all
possible ways in which the resources can be supplied to the subsystem in A1.
The supplier of each component provides resources to the child entities of that
component in a non deterministic way. During the analysis of A1, the supplier
non deterministically decides to start or stop supplying, while still guaranteeing
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Figure 3: Compositional analysis

to provide the required amount to its sub-entities before the end of the period.
The analysis A2 is performed in the same way as A1.

Our compositional analysis approach results in an over-approximation i.e.,
when performing the analysis of a subsystem, we over-approximate the behavior
of the rest of the system by considering all potential executions and more as
some of these executions may be unrealizable if the system components run to-
gether. This can result in specific hierarchical scheduling systems that could be
schedulable if one considers the entire system at once, but that is not schedulable
using our compositional approach. We consider this fact as a design choice which
ensures separation of concerns, meaning that small changes to one part of the
system do not effect the behavior of other components. In this way, the design
of the system is more stable which in turn leads to predictable system behavior.
This over-approximation should not be confused with the over-approximation
used in the verification algorithm inside the Uppaal verification engine (Sec-
tion 6.4). The result can either be true (false) or maybe-not (maybe), and in
the case of true (false) the result of the analysis is conclusive and exact.

Thanks to the parameterization of system entities; scheduling policies, pre-
emptiveness, execution times, periods and budgets can all easily be changed.
In order to estimate the performance and schedulability of our running exam-
ple, we have evaluated a number of different configurations of the system. This
allows us to choose the best of the evaluated configurations of the system.

5. Formal Specification and Analysis

This section introduces the specification of our system units: tasks, resource
model, scheduling algorithm and components as well as the semantics defined
at the component level. First of all, we use the following notation:
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• T is the set of all tasks,

• C is the set of all components.

5.1. Syntax Representation

In this section, we define the syntax we use to formally describe the com-
ponents of a scheduling system. A task is defined by three timing properties;
period, execution time and deadline, as well as its current status. The behavior
of all tasks, based on their parameters, is given by the semantic rules defined in
Section 5.2.

Definition 5.1 (Task). A task Ti ∈ T is a tuple (prd, e, d, status) where:

• prd is the task period.

• e is the execution time.

• d is the task deadline relative to the start of period, with e ≤ d ≤ prd.

• status is one of the following properties {Ready,Running,Done}.

The status Ready means that the task is ready and waiting to be scheduled,
whereas the status Running indicates that the task is using the resource. Once
the execution of a task is over, i.e., the execution time constraint is successfully
satisfied, the task status is updated to Done waiting for the next period. As
we do not consider offsets in the specification of tasks, all the tasks are initially
Ready.

In any hierarchical scheduling context, the behavior of the resource supply
model does not depend at all on the resource demanding components. Any
resource model behaves in the way that it supplies resource for an amount of
time then stops supplying for a given time interval. We are giving the abstract
behavior of the resource models without detailing the specific characteristics
like preemptiveness and single-/multi-core. Accordingly, we define the abstract
behavior of any periodic resource model by a transition system consisting of two
states: Supply and NonSupply . For compositionality purposes, the triggering of
transitions between those states is non deterministic, i.e., the resource supply
is non deterministic because we do not know when a parent level component
supplies the resource to its child components. We assume that the resource
model is initially at NonSupply .

Definition 5.2 (Resource model). A resource model R is a timed automaton
〈{Supply ,NonSupply},NonSupply , X, I,→〉 where {Supply ,NonSupply} is the
set of locations, NonSupply is the initial location, X and I are the same as for
hybrid automata, and →⊆ {Supply ,NonSupply} × {Supply ,NonSupply} is the
transition relation.
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Such a resource model can be viewed as an implementation of the component
interface I, by which an amount of resource is guaranteed to be supplied but
we do not know when the resource will be supplied.

To arbitrate the use of a resource between the competing tasks, we use a
scheduling function. Basically, the scheduling function determines which task
among the ready tasks queue has priority over the others at any point in time.
The function is described so abstractly in order to be able to model any real
scheduling algorithm.

Definition 5.3 (Scheduling function). A scheduling function establishes a
order on tasks: Sched : T × T × R≥0 → T , where R≥0 is the time domain.

Our abstract scheduling function Sched compares two tasks and determines
the one with highest priority at any given point in time. Sched computes the
release time of a task execution for the current period (instance) of such a task,
based on the task period and the current system configuration (queue), but it
cannot predict the release time of a future execution until the period of such
an instance is reached. We achieve the comparison of a set of tasks through
pairwise comparisons. Sched can be instantiated to fit both static and dynamic
priority scheduling algorithms. In case of static priorities, such as FPS (Fixed
Priority Scheduling), each task has always the same priority (and thus the same
order) regardless of the time instant when the comparison is made. For example,
given two tasks T1 and T2 having priorities 2 and 3 respectively (higher number
means higher priority). Thus, whatever the instant x if both tasks are ready
then Sched(T1, T2, x) = T2.

However, in case of dynamic priority scheduling, such as EDF (Earliest Dead-
line First), two tasks may have different orders at different time instants. For
example, initially task T1 has a shorter time to deadline than T1 but it is not
ready. Thus, Sched(T1, T2, 0) = T2 so that task T2 is scheduled first. Once task
T1 becomes ready, let’s say at time instant 4, and since it has shorter deadline
it will have priority over T2, i.e., Sched(T1, T2, 4) = T1, thus T1 preempts T2 at
time 4. Sched can be instantiated for EDF in the following:

Sched(Ti, Tj , t) = Ti if

 statusi 6= done and statusj = done
or
((t/prdi) ∗ prdi + di) ≤ ((t/prdj) ∗ prdj + dj)

In Section. 5.2, function Sched will be used with quantifiers such that the
task with highest priority will be found. In a practical implementation, the
scheduling function operates on the whole queue of ready tasks using its partic-
ular scheduling principle.

We define components as scheduling units which can be any level in the
hierarchy. Since each component has its own timing requirements, we dedicate
to each component a resource model stating how the current component is served
by its parent component. Therefore, we extend the component definition given
in Section 3.1 by the resource model implementing the component interface.

Definition 5.4 (Component). A component is a tuple (W,R, Sched) where:
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• W ⊆ T is the workload defined as a set of tasks.

• R is the resource model supplying the component tasks.

• Sched is the scheduling function, which behaves according to a scheduling
policy (s of the component description given in Section. 3.1).

For hierarchical components, each task in the workload W represents the inter-
face of one of the child components. Of course, the deadline in this case will be
the same as period and both deadline and status attributes will be omitted in
the interface as they are not necessary when analyzing the corresponding child
component.

5.2. Semantics of Components

In this section, we define the semantics of individual components according
to the non deterministic behavior of the resource model. In order to capture the
state of component configuration during execution, we introduce the following:

• Variable called locR to store the current location of the resource model of
the component in question.

• For each task Ti ∈W , we introduce three variables xi, x
e
i and xri .

– Variable xi will store the point in time where the current period has
started in order to compute the time left to deadline.

– Variable xei will be used to store the remaining execution time for
the current period.

– Variable xri will be used to keep track of the starting time of the
current supply for task Ti.

• Besides, we dedicate a particular variable clk to keep track of the global
time of the component.

The semantics of individual components will be given in terms of timed
transition systems (TTS). Basically, a timed transition system 〈S, s0,→〉 is given
by a set of states S, the initial state s0 ∈ S and a transition relation →⊆
S × S. Each transition of the TTS can be discrete or continuous according to
its label. However, since we are mainly focusing on the resource utilization and
reachability of deadlock states we do not consider transition labels.

Since the resource model is intentionally made to be non deterministic for
compositionality purposes, we do not know how long the resource is available
for each supply, i.e., once the resource model moves to state Supply the delay at
that state (supply time) is unknown as the transitions between states Supply and
NonSupply are non deterministic. Thus, we describe the continuous transitions
(delays) of the semantics with the assumption that the resource is continuously
available during each delay transition.
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Definition 5.5 (Component Semantics). Given a component C = (W,R,
Sched), the semantics of C is given by a timed transition system (TTS) 〈S, s0,→
〉 where:

• S ⊆ R≥0 × 2P (W ) × V × Ve × Vr × {locR} is a state space,

– V = {v | ∀Ti ∈W v : xi 7→ R≥0} is the set of valuations of variables
xi corresponding to the tasks of W .

– Ve = {v | ∀Ti ∈W v : xei 7→ R≥0} is the set of valuations of variables
xei corresponding to the tasks of W .

– Vr = {v | ∀Ti ∈W v : xri 7→ R≥0} is the set of valuations of variables
xri of the component tasks.

• s0 = (0, {T1, .., T|W |}, {∀i v(xi) = 0}, {∀i v(xei ) = ei}, {∀i v(xri ) = 0}, Non−
Supply) where 0 is the initial global time; {T1, .., T|W |} is the identifiers
of component tasks such that ∀i Ti.status := Ready as we do not consider
the offset attribute; NonSupply is the initial state of the resource model R.

Since each of the tasks does not initially start running yet, the amount of
execution time elapsed is set to zero (xri := 0) and the remaining execution
time is the whole requirement ei (xei := ei). Moreover, we store the current
time (0) in each variable xi as the release time of the current period that
will be used to compute the relative deadline.

• the transition relation →⊆ S × S is given by the following 7 rules:

Done :

s(Ti.status) 6= Done, s(clk)− s(xi) ≤ s(Ti.d)
s(xei )− (s(clk)− s(xri )) = 0

s→ s[Ti.status 7→ Done]

The rule Done describes the successful termination of a task execution with-
out missing the deadline. s(xri ) is the time instant when the task Ti starts
running for the current supply, s(xei ) is the remaining execution time of Ti
at time s(xri ), s(clk) is the current time and s(xi) is the time point when we
started counting for the relative deadline. For any existing task Ti in the cur-
rent component state (queue), once the execution time constraint is satisfied
s(xei )−s(clk)−s(xri ) = 0 and the deadline is not missed (s(clk)−s(xi) ≤ s(Ti.d))
the task will be declared as successfully done for its current period.

In order to avoid updating the status of a task which is already done, we
check first whether the task status is not updated yet (s(Ti.status) 6= Done).

New Period :
s(Ti.status) = Done, s(clk)− s(xi) = s(Ti.prd)

s→ s[Ti.status 7→ Ready, xi := clk, xei := Ti.e]
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The rule New Period describes the release of a new period for any task once
1) it has successfully achieved the execution of its current period, i.e., without
missing the deadline, and 2) the current task period is expiring (s(clk)−s(xi) =
s(Ti.prd)). When a task Ti starts a new period, its status is updated to Ready,
the corresponding variable xi is reinitialized to the current global time (xi :=
clk) and the remaining execution time (xei ) is also reset to the original execution
time requirement e of task Ti.

Missed :

∃Ti | s(clk)− s(xi) > s(Ti.d)

∧

 s(xei ) > 0 ∧ s(Ti.status) = Ready
∨
(s(clk)− s(xri ) < s(xei )) ∧ s(Ti.status) = Running

s→ Deadlock

The rule Missed describes the deadline miss of a task which is either running
or waiting to be scheduled. A deadlock occurs when a deadline is reached
(s(clk)−s(xi) > s(Ti.d)) and the remaining execution time is greater than zero.
The rule has two cases for Running and Ready respectively. In the simple case
of Ready, we simply check that the remaining execution time is greater than
zero (s(xei ) > 0). In the case where the task is Running, we check that even
with the current supply that started at time s(xri ) the remaining execution time
s(xei ) has not been fulfilled.

The current interpretation of missing a deadline is modeled as a deadlock to
fit for hard real-time systems. The semantics could be changed such that the
status of the individual task is just updated to Missed in case of soft real-time
systems.

Run :

s(locr) = Supply, ∃Ti | s(Ti.status) = Ready ∧
∀Tj ∈W Sched(Ti, Tj , s(clk)) = Ti

s→ s[Ti.status 7→ Running, xri := clk]

The rule Run describes when a task starts running. In fact, if the resource is
available (s(locr) = Supply), a task is ready and determined to be prioritary at
the current time (s(clk)) by the scheduling function Sched, then such a task Ti
switches its status from Ready to Running and starts its execution immediately.
We store the current time clk in xri in order to be able to determine when the
execution time of task Ti will expire. Namely, the execution time of a task
expires when the global time clk reaches the time instant (xri + xei ) while the
task is continuously running. The scheduled task runs until it is either done,
preempted or misses its deadline. The rule Run will only be applied when no
task is currently running. In all other cases, one of the two preemption rules
will be applied.

20



Delay :

∃Ti | s(Ti.status) = Running ∃δ ≤ s(xei )− (s(clk)− s(xri )) |
∀x ∈ [0, δ] s(locr) = Supply ∧ ∀Tj ∈W Sched(Ti, Tj , x) = Ti

s→ s[clk := clk + δ]

The rule Delay describes a delay δ (continuous transition) of the semantics.
Such a delay occurs when 1) a task Ti is currently running (at time s(clk)), and
2) none of the other tasks can preempt it during a time interval [0, δ] for which 3)
the resource is continuously available. Obviously δ could be any value, bounded
by the actual remaining execution time of Ti, satisfying the aforementioned
conditions.

In fact, this is not the unique case where delays occur. Delays may occur
if all of the tasks are neither Running nor Ready, so that the corresponding
TTS semantics delays until one of the tasks becomes Ready. However, since we
are ultimately focusing on the resource utilization we only presented the case of
delays where the resource is being used.

Preempt1 :

s(locr) = Supply,
∃Ti Tj | s(Ti.status) = Ready ∧ s(Tj .status) = Running ∧

Sched(Ti, Tj , s(clk)) = Ti

s→ s[Ti.status 7→ Running, Tj .status 7→ Ready,
xej := xej − (clk − xrj ), xri := clk]

The rule Preempt1 describes the preemption of a task Tj by another task
Ti having priority at the current time s(clk), i.e., Sched(Ti, Tj , s(clk)) = Ti. Of
course, we keep track about the remaining execution time of the preempted task
Tj and store the current time as a supply release time (xri := clk) of the running
task Ti while updating the status of tasks to Ready and Running respectively.

Preempt2 :
∃Ti | s(Ti.status) = Running ∧ s(locr) = NonSupply

s→ s[Ti.status 7→ Ready, xei := xei − (clk − xri )]

The rule Preempt2 describes the preemption of the execution of a task Ti due
to the non availability of the resource. In fact, once the resource model moves to
state NonSupply while a task is running the former gets preempted. Similar to
rule Preempt1, we store the remaining execution time and update the status
of the preempted task.

Based on the TTS semantics defined above, the schedulability of a compo-
nent can simply be checked as a reachability property using the following CTL
3 query: ∀ [] not Deadlock.

3CTL stands for Computation Tree Logic.
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6. Modeling and Analysis using UPPAAL

In this section we detail the actual Timed Automata models we used for the
schedulability analysis of hierarchical scheduling systems. The use of statistical
model checking (SMC) to disprove the schedulability of systems is presented
together with a statistical method for estimating budgets of the individual com-
ponents. For absolute certainty, symbolic model checking techniques will be
used to make sure that the results obtained using SMC are consistent.

The purpose of modeling and analyzing hierarchical scheduling systems is to
check whether the tasks nested in each component are schedulable, with respect
to resource constraints given by the component. This means that the minimum
budget of a component supplier, for a specific period, should satisfy the timing
requirements of the child tasks. Namely, a scheduling unit [40] consists of a set
of tasks, a supplier and a scheduler, in [40] known respectively by the terms
workloads, resource model and scheduling policy.

We revisit the running example shown in Fig. 1, which is built on the in-
stances of four different Uppaal timed automata templates: 1) non determin-
istic supplier 2) periodic task 3) CPU scheduler (EDF, RM), and 4) resource
manager. Similarly to [21], we also use broadcast channels where no sender can
be blocked when performing a synchronization. We use stopwatches, writing
x′ == e to specify a clock x that can only progress when e evaluates to 1.
Uppaal also allows for clocks to progress with other rates than 1. This will be
used to measure the energy consumption in Fig. 15(a).

6.1. Stochastic Resource Supplier Model

In this section, we argue why we use a stochastic supplier model in our
compositional analysis. The hierarchical scheduling system structure is a set of
scheduling components, each of which includes a single specific scheduling al-
gorithm and a set of entities (either tasks or components). The resource model
we consider to implement the interface of a component is the Periodic Resource
Model (PRM), which provides a specific amount of resource to a workload ev-
ery period [39]. The PRM represents the interface requirement between a set
of tasks and a higher level scheduler. The high level scheduler is referred to
as Supplier, which satisfies the interface requirement given by the periodic re-
source model. To represent the behavior of the supplier, based on the interface
requirement, we use a PRM given in terms of a hybrid automaton.

It is necessary to consider the interrupted behavior of a component by the
other concurrent components within the same system when analyzing this com-
ponent individually (in a compositional manner). However, it is not trivial to
capture the interrupting behavior of the other components that influence the
component under analysis. For this reason, we introduce a stochastic supplier
to model all scenarios that the component under analysis can run. Such a per-
missive model simulates the influence of the other system components on the
execution of the component under analysis, so that all potential preemptions
can be captured.
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As mentioned earlier, the stochastic supplier is a resource model that allo-
cates resources to the component. The scheduling policy within the component
then allocates the resources to tasks within that component. It also abstracts
the possibility that a task from another part of the system (not part of the
current analysis process) could preempt the execution of tasks of the current
component.

Figure 4: Stochastic resource supplier template

Fig. 4 depicts our Uppaal template model of the stochastic supplier. Basi-
cally, the supplier allocates a resource, denoted by rid, to a set of tasks according
to the timing requirements (interface) of the component, given in Listing 1.

Listing 1: Component’s interface requirements�
typedef struct {

time t prd;
time t budget;
} sup t ;�

A resource rid can represent a processing unit (CPU) or any other system
resource, represented in the model by a semaphore. prd is a period and bud-

get is the amount of resource to be provided during each period. The sup-
plier assigns the budget amount of resources to tasks in task[tid t]. In this
model, supplying time[supid] (supid is the supplier identifier) represents the ef-
fective duration when the supplier provides a resource. start supplying[supid] and
stop supplying[supid] are broadcast channels that notify tasks of the beginning and
completion of the supply. curTime denotes the time elapsed since the beginning
of the supplier’s resource supply. supplying[supid] contains the supplier’s status,
0 (not supplying) or 1 (supplying).

The transitions between NotSupplying and Supplying in Fig. 4 are non
deterministically taken until the budget is fulfilled (supplying time[supid] >=
sup[supid].budget). The supplier stays at location Supplying to fully provide
the remaining amount of resource when the slack time (sup.prd− sup.budget+
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Figure 5: Simulation of the resource supply

supplying time[supid]) is over. Then, it moves to location Done and waits for
the expiry of the current period before starting a new period.

Fig. 5 shows one particular resource supply pattern for Component1 of Fig. 1.
supplying[0] in red denotes whether the supplier allocates resources or not, thus
it maintains 1 when the supplier is providing resources. In this example, the
supply of resources is maintained for 33 time units. One can notice that Fig. 5
shows a non deterministic supply, in which the values of supplying[0] are irregular
in behavior within the supplier’s period (blue sparked line).

6.2. Task model

We consider a finite set of tasks and refer to them as T1, T2, . . . , Tn. Each
task is defined by the timing attributes given in Listing 2.

Listing 2: Task’s execution attributes�
typedef struct {

rid t cpuid; // Dedicated CPU Id
pri t pri ; // Priority
time t initial offset ; // Initial offset
time t offset ; // Period offset
time t min period; // Minimum period
time t max period; // Maximum period
time t deadline ; // Deadline
time t bcet[ freqmode arr]; // Best−case execution time
time t wcet[freqmode arr]; // Worst−case execution time
bool preemptive; // Preemptability
} task t ;�

cpuid is a CPU identity that is assigned to the execution of a task (prepares
the framework to be applied in a multi-core setting). pri is a task priority.
initial offset is an offset for the initial release of the task, and offset represents
the offset time of each period. A task has also best-case execution time (bcet)
and worst-case execution time (wcet). It is periodically instantiated between
minimum (min period) and maximum (max period) period lengths, and the period
is regular if the minimum and maximum values are the same. Moreover, a
task can be characterized individually by a preemptability (preemptive) stating
whether task execution can be preempted or not. Following the same principle,
a resource can be set to be non preemptive so that any task using the resource
can never be preempted while it is using the resource set to be non preemptive.
The timing attributes above are given as a structure associated to a timed
automaton template.
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Figure 6: Task template

A periodic task model is given by the template shown in Fig. 6. The follow-
ings are clocks and variables used for the task template:

• curTIme[tid] (clock): it stores time elapsed since the execution of the task
started. It keeps on running until the task starts a new period.

• exeTime[tid] (clock): it stores the execution time during which the task has
already acquired the resource.

• twcrt[tid] (double): this variable stores the worst-case response time of the
task for each period.

• tPrdIndc[tid] (bool): this is an indicator used to produce the trace informa-
tion by stating when a task is released and when it finishes its execution.

• tRunIndc[tid] (bool): this indicator is used to produce the trace information
about when a task is running.
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From location Init, the task sets its default execution attributes to task’s exe-
cution context variable structure tstat [ tid ] using the function set default mode ().
The locations DlyOffset and DlyPOffset delays the execution of the tasks in-
dividually for an initial offset ( tstat [ tid ]. initial offset ) and a period offset
( tstat [ tid ]. offset ) respectively. On the transition to Execution, the task requests
the CPU resource from the scheduler of the CPU cpuid through the function
enque() by feeding its id. If there is a need to change the CPU speed (frequency),
one can update the variable tfm[ tid ], then the function change FreqMode() up-
dates the corresponding execution attributes according to the updated CPU
speed. At location Execution, the task executes its job for a specified execution
time which is between bcet and wcet. The execution time is measured by the
stopwatch exeTime[tid], of which the progress depends on the following condition:

Listing 3: isTaskSched() function�
bool isTaskSched() {
return (rq[ tstat [ tid ]. cpuid]. element[1] == tid && supplying[tstat[tid ]. cpuid]) ;
}�
cpuid is a CPU id, and tid contains the task id which is scheduled to use the
CPU. The Uppaal user-defined function isTaskSched() returns 1 or 0 accord-
ing to whether 1) the corresponding task is scheduled or not and 2) the re-
source is available to use for the task’s parent component. Thus, exeTime[tid]

increases only when isTaskSched() returns 1. When the current time denoted by
curTime[tid ] is over the deadline, the task joins location MissedDL. If the execu-
tion time of a task is fulfilled, the task finalizes its job by retrieving its id from
the CPU queue via delete tid () and joining the location PDone .

Figure 7: Simulation of the task behavior

The task is scheduled, according to its priority, by a scheduling algorithm
implemented as a Uppaal template 4. Again, a task can execute only when
it is scheduled to use CPU and the supplier of its parent component is cur-
rently providing the resource. Fig. 7 shows the timed behavior of task1 and
task2; tRunIndc[1] and tRunIndc[2] which toggles according to the resource supply
(supplying [0] ) from the supplier. The graphs are at the bottom when the supplier

4We consider Fixed Priority Scheduling (FPS), First In First Out (FIFO) and Earliest
Deadline First (EDF) scheduling policies. Our Uppaal implementation of these algorithms is
available on http://people.cs.aau.dk/~ulrik/submissions/771691/models.zip
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stops supplying the resource, their corresponding tasks are not scheduled to use
CPU, or complete executing within their periods. tPrdIndc [1] and tPrdIndc [2]

denote the tasks’ periods, and sPrdIndc [0] denotes the supplier’s period.

6.3. CPU Resource Model and Scheduling

Fig 8 and Fig 9 show respectively the CPU resource manager template and
EDF scheduling algorithm template. These two templates behave like a func-
tion. They process and return data instantaneously after they receive a CPU
scheduling request. Listing 4 shows the structure of the CPU queue used by the
resource manager.

Figure 8: CPU manager template

Figure 9: EDF scheduler
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Listing 4: CPU queue structure�
typedef struct {

int [0, tid n +1] length ;
tid t element[tid arr ];
} queue t;�

In fact, the CPU resource manager shown in Fig. 8 receives a scheduling
request ( r req [ rid ]) from a task, and requires a scheduling algorithm to select
the highest priority task via channel run sched[ policy ][ rid ]. The scheduling al-
gorithm model of Fig. 9 selects the highest priority task and places it as the
first element of the CPU queue. The scheduling algorithm model acknowledges
the CPU scheduling request via channel ack sched[ policy ][ rid ] after the selec-
tion of the highest priority task. Then, the CPU resource manager notifies
the tasks in the CPU queue of the end of the CPU scheduling via channel
r sup [ rid ][ selected taskid ].

Thanks to the Uppaal instantiation mechanism, our system structure can
easily be reconfigured. As mentioned earlier, we have modeled each system
entity (task, resource, supplier, scheduling policy) by a template so that if, for
example, we need to use a scheduling policy instead of another one, we just
replace the scheduling policy name in the system instantiation.

6.4. Symbolic Model Checking

In this section, we explain how to check the schedulability using the symbolic
reachability engine of Uppaal. We consider the system with various configura-
tions in terms of preemption, scheduling policy, etc.

Let us start with an illustration of the schedulability analysis of Component1,
depicted in Fig. 1. The schedulability of a component is verified with respect
to the following safety property:

A[] error !=true

Here, the global variable error is a Boolean variable that will be updated to true

whenever a task misses its deadline. Thus, this property expresses the absence
of deadline violation (i.e., all tasks are schedulable). To check the schedulability
of individual tasks, the following query can be used:

A[] terror[tid] !=true

For a given supplier with a timing requirement and preemptiveness of the
CPU, the verification results of Component1 consisting in task1 (250, 40) and
task2 (400, 50) are stated in Table 2.

For the same task set under the EDF scheduling policy, the minimal budget
in our verification framework can be greater than the optimal budget of the
supplier given in [40]. One of the reasons is that the supplier behaves non
deterministically. The fact that Uppaal uses an over-approximation technique
to analyze models containing stop-watches leads to our framework also being
an over-approximation. This results in the answer maybe-not to some of our
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Table 2: Budget evaluation based on scheduling policy and preemptiveness.

Component1 (100, 32) (100, 33) (100, 44) (100, 45) (100, 46)
P. P. P. NP. NP.

EDF maybe not Safe Safe maybe not Safe
RM maybe not maybe not Safe maybe not Safe

P. : Preemptive; NP.: Non preemptive

verification attempts. In the result shown in Table 2, we use the same task
set as in [40] where the authors report that the optimal budget is 33 for the
EDF scheduling policy, and the minimal budget we have computed to satisfy
the same task set by symbolic model checking is also 33. The minimal budgets
we have computed, for RM scheduling and the same task set, are also the same
as the budgets presented in [40].

In order to obtain the upper bound on the worst-case response time (WCRT)
of tasks, with respect to the EDF policy and a preemptive resource model, we
check the following property:

sup: twrts[1], twrts[2]

where the twrts[1] and twrts[2] are stopwatches that are increasing while the
corresponding tasks are running. sup is a Uppaal keyword that refers to a
function returning the supremum of the expressions (maximal values in case
of integers; upper bounds, strict or not, for clocks). The verification results
in twrts[1] ≤ 239 and twrts[2] ≤ 391, signifying that the WCRTs of each task is
less than or equal to 250 and 450, respectively. So none of the tasks miss their
deadline.

6.5. Statistical Model Checking

As stated in [21], the use of stop-watches in Uppaal leads to an over-
approximation which guarantees that safety properties are valid but reachability
properties could be spurious. Thus, symbolic model checking cannot disprove
whether tasks are schedulable but only prove when they are schedulable. For
that reason, we apply statistical model checking (SMC) to disprove the schedu-
lability and estimate the minimum budget of the supplier with respect to a
specific period.

SMC is a simulation-based approach which estimates the probability for a
system to satisfy a property by simulating and observing some of its executions,
and then applies statistical algorithms to obtain the result [23]. In this section,
we show a way not only of checking schedulability but also to reason about
the execution of tasks. To estimate the probability of a component’s missed
deadline, we use the following Uppaal SMC query:

Pr[<=runTime](<> error)

where runTime is a simulation time for which a simulation is conducted, and the
property <> error implies that a missed deadline of tasks happens during the
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simulation. So that the query states the possibility that any task misses the
deadline during the simulation.

Table 3: Probability of error. Estimated with 95% confidence.

(100, 31) (100,32) (100, 33) (100, 34) (100,35)
[0.9410,0.9610] [0.6911,0.7110] [0,0.019956] [0,0.019956] [0,0.019956]

Table 3 shows the analysis result of Component1 with EDF scheduling policy
with 100,000 time units of simulation time according to different budgets of
the supplier. The SMC computed the mentioned results with a certain level of
confidence and precision, i.e., each result is given as an interval. However, if the
lower bound is strictly positive, it guarantees that the checker found at least
one witness trace where a task missed its deadline [21]. One may remark that
the probability of tasks missing their deadline is much higher when the supplier
budget is too small. Note that the possibility that tasks will miss their deadline
is between 0.9410 and 0.9610 for the supplier timing requirement (100,31) of our
example. This counter-example can be used to estimate the necessary budget
for a component, and that will be explained in the following section.

One distinguished advantage of our model-based approach over classical an-
alytical methods is to provide a counter-example that disproves the schedula-
bility of a component. To visualize a witness of the deadline violation, we can
request the checker to generate random simulation runs and show the value of
a collection of expressions. For example, run the following query on the system:

simulate 100[≤2000]{supplying[0], sPrdIndc[0]*1.5, 2+tPrdIndc[1]*2

, 2+tRunIndc[1], 5+tPrdIndc[2]*2, 5+tRunIndc[2]}:1:error

This query asks the checker to simulate randomly the system execution until
the condition error becomes satisfied, and to generate the task status and the
accumulated amount of the resource used by the two tasks. Such a counter-
example is not easy to obtain by the existing analytical methods because one
needs to consider the task behavior and only only the timing requirements.

Figure 10: Non schedulable tasks: task1 misses its deadline at time 529.409

Fig. 10 shows a counter-example where task1 misses the deadline, visualizing
the running status of tasks (tRunIndc[1] and tRunIndc[2]) within individual periods

30



in a Gantt chart. One can remark that task1 stops at time 529.409 within its
second period. In this way, one can figure out which task misses the deadline
and why by means of Uppaal SMC.

We apply the following queries for different supplier requirements to generate
the probability distribution of the worst-case execution time of tasks:

E[<= runTime;runCnt] (max: twcrt[1])

E[<= runTime;runCnt] (max: twcrt[2])

where runTime denotes the simulation time and runCnt the simulation count.

(a) task1 (b) task2

Figure 11: Probability distribution of the WCRT of tasks for the supplier (100, 33)

The results are shown in Fig. 11 and Fig. 12. In fact, Fig. 11 shows the probabil-
ity distribution of the worst-case execution time of tasks for the supplier timing
requirement (100, 33), where task1 and task2 have 221.005 and 331.662 as worst-
case response times. For the supplier timing requirement (100, 37), as shown in
Fig. 12, task1 and task2 have 206.642 and 307.204 as worst-case response times.
By means of this reasoning, it can be checked that both cases for the supplier
satisfy the task resource requirements and make them schedulable.

6.6. Budget Estimation

Using Uppaal SMC, one can obtain a probability distribution of a case that
satisfies a property. For the estimation of budget for a component, one can look
for a budget that would satisfy the workload of a component by obtaining a
probability distribution of possible budgets that disproves the schedulability.

(a) task1 (b) task2

Figure 12: Probability distribution of the WCET of tasks for the supplier (100, 37)
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Figure 13: The supplier’s template for budget estimation

To estimate the component budget, we present another stochastic supplier as
shown in Fig. 13. It starts supplying by selecting a random amount of budget
using gbudget[supid] and cbudget[supid]. The process of Fig. 13 is checked against
the following property:

Pr[cbudget[0]<=runTime](<> gclock >= runTime and error)

where runTime is the limit of the simulation. This property requires Uppaal SMC
to produce a probability distribution based on the cases where error happens,
i.e., a deadline is missed. In this way, Uppaal SMC checks whether any task
misses a deadline and generates a probability distribution of budgets leading to
a deadline miss of a component.

Figure 14: Probability distribution of estimated budgets leading to the deadline missing

Fig. 14 shows the estimated budget numbers that makes the component of
task1 and task2 non schedulable, and it can be concluded that 33 is the minimum
budget for the component because we get no counter-example beyond 33.

7. Modeling and Analysis with Power Consumption

In the area of real-time embedded systems where energy comes from a lim-
ited source, mastering and minimizing the energy consumed by system software
and hardware devices is a primordial task. In this paper, we consider a single
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core voltage/frequency scaling execution platform where the CPU can operate
with different frequencies (freqd, freq1, .., freqn), and thus consumes a specific
voltage volti for each frequency freq i. The default frequency level freqd is the
lowest frequency and corresponds to the idle state of the CPU, where no task is
requesting the CPU resource. At such a frequency level, the CPU requires the
default (smallest) voltage supply voltd. The use of voltage/frequency scaling
[36] has proven to be an effective way to reduce the energy consumption [42].
Since energy consumption is proportional to the CPU frequency [17], and the
voltage supply is quadratic compared to the CPU clock frequency, relaxing the
execution of software when it is enabled may lead to a longer execution time
but consumes less energy. Thus, playing with the CPU speed and voltage can
be viewed as a schedulability problem where the goal is to reduce as much as
possible the energy consumption but without leading system tasks to miss their
deadlines.

7.1. Energy Model

To reflect the CPU frequency scaling on the task execution, we consider
different execution times for each task. Each execution time corresponds to a
CPU speed (frequency), where the shortest execution time corresponds to the
highest CPU speed. Accordingly, we extend the task description, introduced
earlier in Section. 4, to consider the power aspect. So that a task T is given
by T = (prd, 〈e1, .., en〉, d) where prd is the task period, 〈e1, .., en〉 is a set of n
execution times each (ei) of which corresponds to the frequency scaling freq i,
and d is the task deadline. Voltage levels are assigned statically such that when
a system is deployed, each task is always going to be executed at a certain
voltage level and frequency.

For a given execution time ei, the energy Ei consumed by CPU [36] to
execute one time the task T is given by:

Ei = Cap× volt2i × freq i × ei

where volti and freq i are respectively the CPU clock frequency and voltage
supply corresponding to ei. Cap is the load capacitance which represents the
ability of the CPU to store an electrical charge. The energy consumed during
a specific execution time of the task is given by the accumulation of the energy
consumed by each execution of the task within that duration.

According to the task model depicted in Fig. 6, the energy consumed during
the execution of a task identified by tid is computed at location Executing using
the following expression:

taskenergy’== isTaskSched() * volt[freqmode(tid)] * volt[freqmode(tid)]

* cpufreq[freqmode(tid)] * capacitance

where taskenergy is a stopwatch, isTaskSched() is a function determining whether
the task is running (scheduled) or not, volt[freqmode(tid)] determines the CPU
voltage supply that corresponds to the frequency mode associated to the exe-
cution of task tid , and cpufreq[freqmode(tid)] is the CPU frequency associated to
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the execution of that task. capacitance is the CPU capacitance. So that if the
task is not running (isTaskSched()= 0), the stopwatch derivation taskenergy ’==0
which means that the amount of the energy consumed by the execution of that
task does not progress right now. taskenergy keeps holding the latest value of the
consumed energy. Once the task execution resumes, the stopwatch taskenergy

starts progressing with a rate equal to volt [freqmode(tid)]∗ volt [freqmode(tid) ]

∗ cpufreq[freqmode(tid) ]. One can see that our computation of the consumed
energy is real-time and always depending on the length of system run time.

The power consumption [36] is defined to be the energy consumed per time
unit. It is computed via the following expression:

power =
E

t

where E is the amount of energy consumed during the time interval t. The power
is often computed in Watt. While we consider the analysis of energy consump-
tion as schedulability, we extend the component interface, given earlier as period
and budget (prd, budget), by the power consumption constraint powermax so
that the interface of components has the form (prd, budget, powermax). Simi-
larly to the resource budget budget, the energy constraint powermax states the
maximum power amount that can be consumed by the execution of the compo-
nent workload.

7.2. Computation and Analysis of Energy Consumption

A basic idea to compute the energy consumed by a component workload is
to compute the energy consumed by each task, and in the end to sum all of
the individual consumptions. In our framework, we profit from the advance of
Uppaal and use the real-time computation mechanism stopwatch to estimate
the energy consumed by a component workload. Fig. 15(a) shows our energy-
meter template to calculate the energy consumed by a component. The energy-
meter template consists of one location that has been assigned the following
invariant:

sysenergy’== volt[freqmode sched tid(cpuid)] * volt[freqmode sched tid(cpuid)]

* cpufreq[freqmode sched tid(cpuid)] * capacitance

sysenergy is a stopwatch that can progress with different rates according to
the CPU frequency and voltage supply. freqmode sched tid(cpuid) is a function
determining the current task scheduled on the CPU, and returning the fre-
quency scale assigned to that task. Based on that information, we deduce the
current CPU frequency (cpufreq[ freqmode sched tid(cpuid) ]) and voltage supply
(volt [ freqmode sched tid(cpuid) ]). Using all this data, we continuously compute
the energy consumed by the execution of the component workload. If no task
is scheduled on the CPU, the function freqmode sched tid(cpuid) returns the CPU
default mode where frequency and voltage supply are the lowest ones.

Fig. 15(b) depicts our power-meter template. At the initial location WaitEnd-

Simulation, the power-meter keeps waiting until the simulation time is expired
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(a) Energy-meter of a component (b) Power-meter of a component

Figure 15: Energy and power calculators.

(x <= runLimit). Once the simulation is over, the power-meter computes the av-
erage power consumption by retrieving the amount of energy consumed sysenergy

from the energy-meter, dividing it by the simulation time (syspower=sysenergy/x);
and moves to location EndSimulation. x is a global clock measuring the simulation
time.

In order to get more realistic analysis results for the energy consumption,
we perform multiple experiments with different statically assigned voltage lev-
els. Components can be individually analyzed in terms of energy consump-
tion. The analysis of the power/energy consumed by a component workload
is checked against the component interface. So the energy consumed by the
workload should not exceed the maximum amount of energy that is supplied to
the component. In fact, we consider energy as a consumable resource where the
scheduling of tasks has to take into consideration the amount of energy left at
component level.

Our energy consumption analysis can be used by engineers, during the design
exploration, to determine the optimal assignment of voltage level and frequency
scaling to tasks execution in order to decrease the energy consumption while
keeping the system schedulable.

7.3. Power Analysis of the Running Example

In this section, we illustrate a way of computing the consumed energy and
power for Component1 of the running example.

Listing 5: Declaration of energy-related factors in Uppaal model�
const int volt [ freqmode t] = { 0, 3, 4, 5}; // \Supply voltage
const double cpufreq[ freqmode t] = { 0.0, 0.5, 0.75, 1.0}; // Clock frequency
const int capacitance = 7; // Load capacitance�

Listing 5 shows the specification of Uppaal implementation for parameters
used to compute consumed energy and power. In this specification, it is assumed
that a task would run with three different frequency modes. The first elements
of the voltage and the frequency are dedicated to the case where no task is
running, i.e., only idling task is running. One can notice the default voltage
and frequency values are 0 and 0.0 respectively; in the hierarchical scheduling
system, another task in different components might be running even if no task
in the component under consideration is running. Thus, the consumed energy
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of a component in a hierarchical scheduling system only takes into consideration
the situations where a task of the component under consideration is running.

Figure 16: Energy consumption with different frequency modes

The plot in Fig. 16 illustrates the amount of energy (sysenergy) consumed by
the execution of Component1’s workload according to different frequency modes
of the running task (frequency mode). In this example, task1 and task2 are set to
frequency modes 1 (freq1) and 3 (freq3), respectively, that are characterized
by the specification in Listing 5. The frequency mode in Fig. 16 is either of
1,000 or 3,000, which denote freq1 and freq3, respectively. One can remark the
increasing rate of the consumed energy in red line is different with different fre-
quency modes. Uppaal SMC is used to analyze how much energy is consumed
for a specific time (runTime) by a component with the following query:

E[<=runTime;runCnt](max:sysenergy)

where runCnt is a simulation count conducted by Uppaal SMC to compute the
consumed energy of a component.

In order to compute the consumed power of a component, the following
query is fed to Uppaal SMC:

E[<=runTime;runCnt](max:syspower)

Using this query, the power consumed by Component1 of the running example
are computed as shown in Table 4. As shown in Table 4, the tasks have different
worst-case execution times according to the frequency mode. As a result, the
necessary budget required by the component where the tasks belong to are
changed as well as the consumed power.

Based on budgets and power consumption obtained in Table 4, one can select
the preferred system configuration that satisfies resource constraints.

8. Case Study

To show the applicability of our compositional framework, we have mod-
eled the avionics system introduced in [27, 14], and analyzed its schedulability.
Unlike the running example in the previous sections, this case study does not
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Table 4: Budgets and power needed for different tasks’ attributes

Conf Tasks FM * Budgets Power

1
Task1(250, 40) 1

33 8.97575
Task2(400, 50) 1

2
Task1(250, 40) 1

30 13.4385
Task2(400, 40) 2

3
Task1(250, 40) 1

29 18.1662
Task2(400, 30) 3

4
Task1(250, 30) 2

28 14.017
Task2(400, 50) 1

5
Task1(250, 30) 2

26 18.4795
Task2(400, 40) 2

6
Task1(250, 30) 2

26 23.2049
Task2(400, 30) 3

7
Task1(250, 20) 3

24 17.9375
Task2(400, 50) 1

8
Task1(250, 20) 3

20 22.4
Task2(400, 40) 2

9
Task1(250, 20) 3

20 27.125
Task2(400, 30) 3

*FM: CPU Frequency Mode

consider energy, but provides a larger case study of the compositional schedula-
bility analysis. The application is a flat composition of 12 tasks declared with
different priorities and timing requirements. Based on the features of tasks,
we have structured this application in 4 components. Many different grouping
of tasks could have been chosen. We based our division on the functionality
of tasks, as this could be a natural division between development teams. The
structure and timing requirements of the hierarchical system are given in Fig. 17.
Under each component is a black ellipse containing the name of the component
scheduling policy.

The case study is obtained by instantiating our framework with the correct
number of tasks, scheduling policy and supplier model for a given component.
By instantiation we only need to refer to the template name with the correct
number of parameters. Of course a template can be instantiated as many times
as needed, such as for the task template. At a practical level, one needs to save
one copy of the Uppaal model used per component and plug the specific timing
requirements into this model. Thus, once the framework has been established,
the modeling of a specific case study is a trivial task.

The budgets for each component are computed using the budget estimation
technique described in Section 6.6.

Following the analysis method described in Section 4, we associate to each
component a non deterministic supplier. By holding the same timing require-
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Figure 17: Avionics Component Architecture in Hierarchical Structure

ments of tasks as [27], our compositional analysis shows that all components are
schedulable under different scheduling policies with or without preemption. The
top level component is however not schedulable and thus the system as a whole
is not schedulable. Our schedulability result of this avionics system matches
perfectly with the schedulability result obtained, in a non compositional way,
in [27] stating that the flat composition of the system tasks is not schedulable.

One of the strength of using a compositional approach is that as soon as a
component has been found to be non schedulable, the analysis process can be
immediately stopped concluding that the current system configuration is non
schedulable. A remaining challenge for our approach is how to tackle power
consumption compositionally in multi-level hierarchical systems.

Table 5 shows the analysis time that Uppaal spends to check the schedu-
lability of the system components. The analysis was performed on a regular
laptop with an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz and 8GB of main
memory. The analysis time is so short that it can be used by engineers as part
of an interactive design process.

9. Conclusions

This paper introduced a compositional framework for modeling and analyz-
ing the schedulability and energy efficiency of hierarchical real-time systems.
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Table 5: Runtimes for the verification

Component name Verification time (second)
Navigation 2.36
Targeting 0.01
Weapon Ctrl 0.026
Pilot Weapon Ctrl 6.47
Controls and Display 0.03

The component model we considered comes with constraints on both the CPU
resource and the maximum power allowed to be consumed. Components are
concurrently running on a single-core execution platform with voltage/frequency
scaling. We tackle both detailed task behavior and power consumption of the
individual tasks in the same framework. We achieve this in a modular manner,
enabling thus compositional analysis, such that a system engineer can decide the
best system configuration before system deployment. Our task model captures
both preemptive and non preemptive behaviors while both static and dynamic
priority schedulers can be used. To represent the energy awareness, we have
extended the classical component interface with a maximum power constraint
that is provided to the component. This constraint can then be used to find a
frequency configuration for the workload which is both schedulable and satisfies
the power constraint.

The framework has been instantiated as reusable templates given in terms
of extensions of timed automata which we analyzed using Uppaal and Up-
paal SMC. The reusable models ensure that when modeling a hierarchical
scheduling application, only the hierarchical structure and the interface of each
component need to be specified by the system engineer. The framework also
allows for instant changes of the scheduling policy at each given level in the
hierarchy. Comparing our model-based approach to analytical ones, our frame-
work enables the modeling of more complicated and concrete systems. We
have successfully applied our compositional framework to model an avionics
system and analyze its schedulability. The Uppaal models we used in our
framework are available at http://people.cs.aau.dk/~ulrik/submissions/
771691/models.zip.

9.1. Future Work

A very important aspect for the future application of our model-based schedu-
lability analysis is to validate the framework on case studies with industrial im-
plementations. For a modeling framework to be truly useful, it should be able
to predict the behavior of the actual implementation. We want to analyze the
implications of replacing non determinism used in the symbolic analysis with
stochastic probability distributions. The only way to prove the validity of this
method is an in depth case-study where the results are validated against the
actual code running on a target platform. Moreover, it would be natural to con-
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sider a case study that also includes the energy aspect on a voltage/frequency
scaling platform.

Using Stochastic Hybrid Automata (SHA) to characterize a timing attribute
of a task, such as we have suggested for the sporadic task arrival patterns in
[13], it can be problematic to find and validate that the probability distribution
is sufficiently accurate. The approach to validate this would likewise be to
investigate a number of case studies in order to evaluate the frameworks ability
to predict the behavior of a system. The probability functions could be obtained
by sampling the execution of the individual tasks.
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