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2Introduction

Objectives
Introduction of different methodologies to observe and predict the
wave excitation force.

Why there is a need to obser and predict the wave
excitation force?
If we want to obtain the "best performance" 1 out of our system we
need to know both the system and the system input.
Two examples are given below

1What does "best performance" mean?
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3Introduction

RECAP
For a single dof, wave activated body WEC, i.e. heav-
ing buoy or Wavestar WEC, the equation of motion can
be expressed in frequency domain as: (WARNING: sign
convention)[
iω(M + CM(ω)) + CA(ω) +

Khst

iω

]
V (ω) = Fex (ω)+Fu(ω)

(1)

Introducing the intrinsic mechanical impededance and
substituting into the equation of motion, we obtain:

Zi (ω) = iω(M + CM(ω)) + CA(ω) +
Khst

iω
(2)

Zi (ω)V (ω) = Fex (ω) + Fu(ω) (3)
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4Introduction
Optimal control

Optimal control law2

For a single dof wave activate body WEC, the optimal control law can
be expressed in frequency domain as:

I 1 - optimal load (reactive or complex-conjugate control)

Fu(ω) = −Z ∗
i (ω)V (ω) (4)

I 2 - optimal velocity (phase or amplitude control)

Vopt (ω) =
Fex (ω)

2CA(ω)
(5)

2Falnes, J. (2002). Ocean waves and oscillating systems: linear interactions
including wave-energy extraction. Cambridge university press. Chapter 6.
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5Introduction
Optimal control: Requirements

I In order to control the system we need to know the excitation
force.

I The non-causality of the excitation force requires prediction of
the incoming wave.
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6Introduction
Optimal control: Issues

I Both the optimal velocity and the optimal load defined by the
optimal control theories are often unfeasible due to the system
linearity. don’t try it in the lab unless the wave amplitude is very
small!

I In the complex-conjugate control the prediction of the system
velocity is required becasue the irf is anticausal 3. The prediction
of a highly damped system is often unrealiable (broad-banded
response), therefore the phase control is a more roboust choice.
But in this case we need to include a velocity tracking control
loop.

I The constraints are not easly implemented into the controller.
I Can we still optimise the system taking care of the above issues?

3Korde, U. (2000). Control system applications in wave energy conversion. In
OCEANS 2000 MTS/IEEE Conference and Exhibition (Vol. 3, pp. 1817-1824). IEEE.
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7Introduction
MPC

Model Model predictive control optimises the control trajectory,
Predictive given a dynamic model of the system and its constraint(s)
Control

MPC working principle

optimal control load trajectory at k

optimal control load trajectory at k+1

past control load up to k

past control load up to k+1

state forecast

state measured

k k+1 k+Np

state set-point

prediction horizonapplied control load

moving frame
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8Introduction
MPC: Reference list

We will not go through the formulation details; anybody is welcome to
ask question though.

I Gieske, P. (2007). Model predictive control of a wave energy
converter: Archimedes wave swing. Delft University of
Technology, Delft, The Netherlands.

I Cretel, J. A., Lightbody, G., Thomas, G. P., and Lewis, A. W.
(2011, September). Maximisation of energy capture by a
wave-energy point absorber using model predictive control. In
Proceedings of the 18th IFAC World Congress, Milano, Italy, Aug
(pp. 3714-3721).

I Brekken, T. K. (2011, June). On model predictive control for a
point absorber wave energy converter. In PowerTech, 2011 IEEE
Trondheim (pp. 1-8). IEEE.

I Hals, J., Falnes, J., and Moan, T. (2011). Constrained optimal
control of a heaving buoy wave-energy converter. Journal of
Offshore Mechanics and Arctic Engineering, 133(1), 011401.
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9Introduction
MPC: Pros and Cons

Cons (starting from the darkside):
The following points are given in comparison with a simpler PI
controller

I High formulation complexity

I Relative high computational cost: this can be a serius issue for
non-linear MPC

I Requires to forecast the system state and the system inputs
(disturbances)
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10Introduction
MPC: Pros and Cons

Pros:
I The constraints are embedded in the formulation of the

minimisation problem.

I Customisable cost function
I Higher performance (based on numerical simulation)
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11MPC
Summary

The knowledge of the excitation force is still required.
Further, the MPC requires the prediction of the excitation force over
the prediction horizon.
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12Excitation force observers
Introduction

Before being able to predict the excitation force we need to measure
it, but how?

Remember how the excitation force is defined
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13Excitation force observers
Soft sensors

Combining measurable variables it is possible to obtain an estimation
of the excitation force (observe).
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14Excitation force observers
Soft sensors

Which are the (commonly)
measurable variables?
1 - Surface elevation
2 - System state
3 - Loads

Accelerometer

Laser

Wave gauge

Load Cell
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15Excitation force observers
Soft sensors

Sea surface elevation
Short term wave forecasting and excitation force observer using
FIR/IIR filter 4.

I Wave prediction based on masurement up-wave (????) and
wave model. FIR/IIR filters based on analytical or fitted models,
i.e. wave propagation model, Auto Regressive models, Neural
Networks, etc.

I Convolution of the non-causal wave excitation force irf with the
predicted sea surface at the floater location.

I The prediction of the sea surface in short crested sea states can
be cumbersome!

4Ferri, F., Sichani, M. T., and Frigaard, P. (2012, January). A Case Study of
Short-Term Wave Forecasting Based on FIR Filter: Optimization of the Power
Production for the Wavestar Device. In The Twenty-second International Offshore and
Polar Engineering Conference. International Society of Offshore and Polar Engineers.
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16Excitation force observers
Soft sensors

System state and applied load
Using the system state, the applied load and a model of the system is
possible to assess the system input.

Starting from the equation of motion, the excitation force can be
obtained as.

fex [k ] = fu[k ]− fINERTIA(v̇(t))− fRAD(v(t))[k ]− fhst (p(t))[k ] (6)

here [k] represents the actual instant of time.
LIMITATIONS: Any error in the measurement and in the model are
included in the excitation force. We miss a feedback from the system
state.
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17Excitation force observers
Soft sensors

System state and applied load, alternatives
It is possible to use the information of the system state to evaluate the
model error and then correct the excitation force assessed.

1. Luenberger observer
2. Kalman filter

mailto:ff@civil.aau.dk
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18Excitation force observers
Soft sensors

Luenberger observer
Given a dynamic model of a system

x [k + 1] = Ax [k ] + Bu[k ] (7)
y [k ] = Cx [k ] (8)

If the system is observable, then it is possible to identify a matrix L
such that the error between the plant (x) and the observed state (x̂)
tends to zero.

x̂ [k + 1] = Ax̂ [k ] + L(y [k ]− Cx̂ [k ]) + Bu[k ] (9)
e[k + 1] = (A− LC)e[k ] (10)

The error dynamic can be chosen by varying the matrix A− LC
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19Excitation force observers
Soft sensors

Luenberger observer
How does the dynamic model of a WEC look like?

Since we want to extimate the excitation force, we need to expand the
dynamic model of the system and include the excitation force.

A =


0 1 0 0

− k
J − dR

J − cR
J BW · Cex

0 bR aR 0

0 0 0 Aex

,B =


0
1
J

0

0

,C =

[
1 0 0 0

0 1 0 0

]

where the state vector is defined as:

x [k ] =
[

p v xR fex
]T
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20Excitation force observers
Soft sensors

Luenberger observer
The excitation model is a simple integrator therefore

Aex = 1, Bex = 0, Cex = 1

Other models are possible, such as oscillator observer.

The L matrix is defined as

L = PCT R−1
L

where P is obtained by solving the Riccati equation of the system

AP + PAT − PCT R−1
L CP + QL = 0

QL and RL are the covariance matrices of the process and the
measurement (tuning parameters)

mailto:ff@civil.aau.dk
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21Excitation force observers
Soft sensors

Luenberger observer

1
s Cw

Aw

Bw

Dw

L1
sCex

Aex

Bex

1
Fu

1
Fex*

1
Fex

Fy

WEC

WEC model

Excitation force model

y*
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22Excitation force observers
Soft sensors

Kalman filter

Kalman filter provide the
best linear estimation of the
system state.
It uses a statistical repre-
sentation of the system and
combine the system predic-
tion with its measurements.

Position

Prediction

Position

Prediction

Measurement

Position

Prediction

Measurement

Estimate
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23Excitation force observers
Soft sensors

Kalman filter
Kalman filter breakout:

I Prediction - a priori esimate
I x̂k|k−1 = Ax̂k−1|k−1 + Buk
I Pk|k−1 = APk−1|k−1AT + Qk

I Update - a posteriori estimate
I ỹk = yk − Cx̂k|k−1
I Sk = CPk|k−1CT + Rk

I Kk = Pk|k−1CT S−1
k

I x̂k|k = x̂k|k−1 + Kk ỹk
I Pk|k = (I − Kk C)Pk|k−1
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24Excitation force observers
Soft sensors

Kalman filter

1
state
vector

2
control
load

1
Excitation

force

Matrix
Multiply

Add

K

covariance error

Kalman Gain

control  load 

state estimation  error

State estimate update 

Excitation force 

Plant

Terminator

y-Hx*
K

Hx*

K*[y-Hx*]

[x,v]
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25Excitation force observers
Soft sensors

Kalman filter

z
1 K*u

Output
matrix

K*u

Input
matrix

K*u

State 
Marix

K*u

Feedforward
matrix

1
control 

load

1
State estimate

update 

2
Excitation

force

2
state estimation 

error
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Soft sensors

Kalman filter
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27Excitation force prediction
Introduction

Once the excitation force is known it is possible to predict its evolution
in time. Excitation force models:

I Autoregressive Model
I Cyclical Model
I Cyclical Model with variable frequency

Alternatives
Nerural network and Fuzzy Logic are also viable solutions

mailto:ff@civil.aau.dk


Francesco Ferri ff@civil.aau.dk | Wave excitation force

28Excitation force prediction
Autoregressive Model

Autoregressive (AR) model assumptions:
the variable can be predicted using a linear combination of the past
value of the variable

f̂ex [k + 1|k ] =
N−1∑
i=0

ai · fex [k − i]
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29Excitation force prediction
Cyclical Model

Cyclical model assumptions:
the excitation force is expressed as a superposition of a number m of
linear harmonic components. The choice of m and the distribution of
the harmonics within the wave spectrum is a key point.

Assuming the index i ranging from 1 to m the model can be
expressed as:[

ψi [k + 1]
ψ∗

i [k + 1]

]
=

[
cos(wi ∆T ) sin(wi ∆T )
−sin(wi ∆T ) cos(wi ∆T )

] [
ψi [k ]
ψ∗

i [k ]

]
+

[
ξi [k ]
ξ∗i [k ]

]
(11)

fex [k ] =
m∑

i=1

ψi [k ] + ζ[k ] (12)

The best estimation of f̂ex [k |k ] is obtained usign a Kalman filter, while
the N-step ahead prediction is achieved from the free-evolution of the
dynamical model (f̂ex [k + N|k ] = CAN x̂ [k |k ]).
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30Excitation force prediction
Cyclical Model with variable frequency

Cyclical model with variable frequency assumptions:
the excitation force is expressed as a superposition an harmonic
components, which frequency is a function of time. This eliminate the
error in the placement of the harmonic components but generate a
non-linear system.

The excitation force is now defined by a single cyclical model as:ψi [k + 1]
ψ∗

i [k + 1]
ω[k + 1]

 =

 cos(ω[k ]∆T ) sin(ω[k ]∆T ) 0
−sin(ω[k ]∆T ) cos(ω[k ]∆T ) 0

0 0 1

ψi [k ]
ψ∗

i [k ]
ω[k ]

+

ξi [k ]
ξ∗i [k ]
κ[k ]

 (13)

fex [k ] = ψi [k ] + ζ[k ] (14)

Since the model is non-linear an Extended-Kalman filter can be used
to obtain the excitation force estimation.
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31Excitation force prediction
Side notes

Search for Fusco F, for a number of publications over this matter.
TIP: The prediction methods proposed have a GOF below 50%. In
order to increase the number it is possible to low pass filter the signal.
Indeed we are interested mostly in the prediction of the low frequency
component of the spectrum.
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