
Aalborg Universitet

Widening the Schedulability Hierarchical Scheduling Systems

Boudjadar, Jalil; David, Alexandre; Kim, Jin Hyun; Larsen, Kim Guldstrand; Mikučionis,
Marius; Nyman, Ulrik; Skou, Arne
Published in:
Formal Aspects of Component Software

DOI (link to publication from Publisher):
10.1007/978-3-319-15317-9_14

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Boudjadar, J., David, A., Kim, J. H., Larsen, K. G., Mikučionis, M., Nyman, U., & Skou, A. (2015). Widening the
Schedulability Hierarchical Scheduling Systems. In I. Lanese, & E. Madelaine (Eds.), Formal Aspects of
Component Software: 11th International Symposium, FACS 2014, Bertinoro, Italy, September 10-12, 2014,
Revised Selected Papers (pp. 209-227). Springer. https://doi.org/10.1007/978-3-319-15317-9_14

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1007/978-3-319-15317-9_14
https://vbn.aau.dk/en/publications/5f60f5e4-e095-4474-aa53-2c5fd0e3c3a2
https://doi.org/10.1007/978-3-319-15317-9_14

Widening the Schedulability of Hierarchical
Scheduling Systems?

Abdeldjalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim. G. Larsen,
Marius Mikučionis, Ulrik Nyman, Arne Skou

Computer Science, Aalborg University, Denmark

Abstract. This paper presents a compositional approach for schedula-
bility analysis of hierarchical systems, which enables to prove more sys-
tems schedulable by having richer and more detailed scheduling models.
We use a lightweight method (statistical model checking) for design ex-
ploration, easily assuring high confidence in the correctness of the model.
A satisfactory design can be proved schedulable using the computation
costly method (symbolic model checking). In order to analyze a hierar-
chical scheduling system compositionally, we introduce the notion of a
stochastic supplier modeling the supply of resources in each component.
We specifically investigate two different techniques to widen the set of
provably schedulable systems: 1) a new supplier model; 2) restricting the
potential task offsets. We also provide a way to estimate the minimum
resource supply (budget) that a component is required to provide.

1 Introduction

The use of hierarchical scheduling systems is a new trend in software archi-
tecture that integrates a number of individual components into a single system
running on one execution platform. Hierarchical scheduling systems have reached
a maturity where they are used in real automotive and space systems [14,9]. A
class of analytical methods has been developed for hierarchical scheduling sys-
tems [19,18]. Due to their rigorous nature, analytical methods are easy to apply
once proven correct, but very hard to prove correct. They also suffer from the
abstractness of the models; they do not deal with any detail of the system behav-
ior and thus grossly overestimate the amount of needed resources. Model-based
methodologies for schedulability analysis [7,5,9] allow modeling more detailed
and complicated behavior of individual tasks, relative to analytical methods
while powerful analysis tools can be applied. Profiting from the technological
advances in model checking, we provide a model based methodology for the
schedulability analysis of hierarchical scheduling systems. We model tasks, re-
sources, schedulers and suppliers as Parameterized Stopwatch Automata (PSA)
[8]. The models can be quickly analyzed using statistical methods (Uppaal

? The research presented in this paper has been partially supported by EU Artemis
Projects CRAFTERS and MBAT.

SMC), which provide guarantees with a selected statistical margin. Once a sat-
isfying model design has been found, the model can be analyzed using symbolic
model checking (Uppaal). Our approach aims at increasing resource utilization
by 1) adjusting task offsets relative to the component period; 2) providing a
new supplier model where the supply of resources is delayed as much as possible
according to task requests. Our methodology also has the advantage that it is
possible for system engineers to update the models in order to have a more re-
alistic analysis of the system. In this way, they can utilize detailed knowledge of
the system that they are working with; something that cannot be achieved with
a classical analytical approach.

An example of a hierarchical scheduling system is depicted in Fig. 1. It
includes two top level components Controls and Display and Nav. Ctrl scheduled
according to the Earliest Deadline First (EDF) policy. Each component is char-
acterized by timing requirements consisting of period and execution time (e.g.
(10, 6) for Nav. Ctrl). The attributes of tasks are similar to the ones of compo-
nents. Task deadlines are the same as the task periods.

Fig. 1. A hierarchical scheduling systems.

According to the CARTS
tool [18], the hierarchical
scheduling system of Fig. 1
is not schedulable. However
using the specific approach
shown in this paper, this sys-
tem can be shown to be
schedulable using different off-
set parameters and/or a new
supplier model.

Symbolic model checking
offers absolute certainty that
the verified properties are cor-
rect. However, it suffers from
state space explosion and un-
decidability, thus some models might not be feasible to check and others will
take a long time to verify. Statistical model checking provides high confidence in
the results that one obtains in contrast to symbolic model checking.

This paper presents a methodology for performing compositional schedulabil-
ity analysis of hierarchical scheduling systems. The general methodology consists
of using a light weight statistical method and a costly but absolute certain sym-
bolic method that operates on identical models. Design space exploration can
be carried out at low cost using the statistical model checking in order to deter-
mine optimal system parameters that could be impossible to find using classical
analytical methods. The use of automata and statistical model checking enables
a larger class of tasks and resource supply models to be analyzed compared to
the conventional real-time analytical method while still being efficient. Allowing
designing systems based on a confidence level can be highly beneficial for soft
real-time systems. In order to verify the schedulability of the system found us-

2

ing statistical methods we use the symbolic method on the final system design.
The end goal of the methodology is to widen the set of concrete systems that
can be proved schedulable. We instantiate our methodology using PSA models,
Uppaal SMC and Uppaal. Using the general methodology and our specific
tools, we investigate two concrete techniques that affect the resource utilization.
The first technique decreasing the needed resources relies on an update of the
stochastic supplier model, such that it defers resource consumption until a task
is ready. Secondly, we describe a way of giving a potential decrease in the needed
resources of a component by ensuring more synchronicity between the initial off-
set of tasks and the starting point of the parent component’s period. In order
to enable compositional verification, we introduce the concept of a stochastic
supplier model. We evaluate our methodology by comparing our results to the
ones obtained using the state of the art tool CARTS [18]. Our verification results
are consistent with the results obtained from CARTS. In one particular case, we
have uncovered a significant difference between CARTS and our methodology.
After further investigation, this turned out to be an error in the implementation
of CARTS and not the underlying theory. This has been confirmed by the de-
velopers of CARTS. When checking the schedulability of a system, our tools can
prove the non-schedulability by means of a counterexample. Our methodology,
which builds on previous work in [5], is very scalable because both design and
analysis are compositional.

The rest of this paper is organized as follows: Section 2 describes our method-
ology. Section 3 presents our compositional modeling and analysis of hierarchical
scheduling systems using Uppaal and Uppaal SMC. Section 4 describes two
techniques to improve resource utilization. Section 5 compares our results with a
state of the art tool. Section 6 describes related work. Section 7 is a conclusion.

2 Methodology and Preliminaries

This paper presents a general methodology, a specific approach and investi-
gates two concrete techniques. The methodology could be instantiated using
any modeling formalism supporting both a lightweight statistical analysis and a
more costly formal verification. In this paper the methodology is instantiated as
a specific approach using Parameterized Stopwatch Automata (PSA) together
with the verification suite Uppaal SMC and Uppaal.

The two concrete techniques for enhancing the resource utilization are de-
scribed in Section 4. Fig. 2 shows a graphical conceptual representation of differ-
ent sets of systems that different methods can show to be schedulable. Systems
that are easily proven schedulable using classical analytical approaches can also
be proven correct using symbolic model checking. Systems that can be shown,
with a high degree of certainty, to be correct using statistical model checking
(SMC) cannot always be proven to be correct using symbolic model checking due
to state space explosion. In the same way some complex systems that are analyz-
able using model checking cannot be proved correct using analytical approaches

3

[7]. Our methodology consists of exploring system models with different sets of
parameters (S(Pi)) searching for a realistic configuration that optimally satisfies

Statistical Model Checking (stochasticity)

S(P1) S(P2) . . . S(Pn)

Symbolic Model Checking

Classical analysis
methods

? ? ?

Y/N

- Statistical M.C: Light weight and very expressive.
- Symbolic M.C: Very expressive and costly.
- Classical analysis: Light weight and weak expressive.

Fig. 2. Classes of systems that different
methods can prove schedulable.

the requirements. These experi-
ments are performed using SMC
with a high confidence level. Us-
ing SMC one can easily and inter-
actively obtain either a high degree
of confidence that the model is cor-
rect or a counterexample showing
an error trace. When a satisfying fi-
nal configuration has been found the
system can be proven to be schedu-
lable using symbolic model check-
ing. In very rare cases an error could
be found at this stage, but this is
highly unlikely due to the confidence
levels obtained using SMC.

2.1 Statistical Model Checking

We use both SMC and classical symbolic model checking techniques to analyze
the schedulability of hierarchical scheduling systems. The Uppaal verification
suite provides both symbolic and SMC. The models which in practice can be
analyzed statistically, using the Uppaal SMC verification engine, are larger
and can contain more features.

Meanwhile, SMC provides much faster responses. The speed of such responses
depends entirely on the degree of certainty that one wants to obtain. The reason
is that SMC consists in running a sufficiently high number of simulations of the
system under analysis. The advantage of SMC resides in: 1) SMC provides a
quick response in terms of less than a minute. This is also true in the case of
non-schedulability were SMC produces counter-example witnesses; 2) SMC en-
ables quantitative performance measurements instead of the Boolean (true, false)
evaluation that symbolic model checking techniques provide. We can summarize
the features of Uppaal SMC that we use in the following:

– Stopwatches [8] are clocks that can be stopped and resumed without a reset.
They are very practical to measure the execution time of preemptable tasks.

– Simulation and estimation of the value of expressions, E[bound](min:expr)
and E[bound](max:expr), for a given simulation time and/or number of
runs specified by bound.

– Probability evaluation (Pr[bound] P) for a property P to be satisfied for a
given simulation time and/or number of runs specified by bound.

The disadvantage of using SMC is that it will not provide complete certainty
that a property is satisfied, but only verify it up to a specific confidence level,
given as an analysis parameter [6].

4

2.2 Classical compositional framework

In this section, we provide the formal basis of our model-based compositional
analysis approach. In fact, our theory conforms with the formal basis given in
the compositional framework [20] for hierarchical scheduling systems.

Fig. 3. Component and sub-tasks in a
compositional framework

A scheduling unit C is defined as a tuple
(W,A) where W is a workload, consisting
of a set of tasks Ti = (pi, ei), and a schedul-
ing policy A. Each task Ti = (pi, ei) has
timing attributes in the form of a period pi
and an execution time ei. Task deadlines
are the same as periods. The scheduling
unit C (Fig. 3) is given a collective timing
requirement Γ = (Π,Θ) called interface,
where Π is a period and Θ is a budget for the component. The collective timing
requirement Γ is a representative of all timing requirements of tasks constituting
the workload W . In the compositional framework [20], the schedulability of the
system is checked by the following relation: dbf(W,A, t) ≤ sbfΓ (R, t) (1)
where t is a time interval. In this relation, the demand bound function
dbf(W,A, t) computes the maximum amount of resource required by W un-
der scheduling algorithm A during t time units. The supply bound function
sbfΓ (R, t) returns the minimum amount of resource that the resource model R
allocates during a time interval t according to the resource requirement Γ . The
system is said to be schedulable under the EDF policy if and only if it satisfies
relation (1) for any value t.

2.3 Conceptual Models of our Approach

In our model-based approach, we realize the compositional framework in the
form of PSA models. We implemented the dbf as a set of tasks together with a
scheduling algorithm, while the sbf is implemented by the supplier model. Such
a supplier model (RPSA) represents the classical resource model R in accordance
with the contract Γ . The time when the workload can use resources follows from
the scheduling algorithm, and is also constrained by the resource model RPSA.

PSA supports stopwatches, which are clocks that can be stopped and resumed
without a reset. The modeling formalism allows for having different rates of
progression for stopwatches, but we only utilize the values 1 (running) and 0

Fig. 4. Task model in PSA

(stopped). In our PSA models, the
stopwatch is used to express the pre-
emption of a task’s execution. The ex-
ecution of a task is preempted, i.e. the
associated clock stops, in two cases:
when it is preempted by a higher pri-
ority task or when any of the needed
resources is not provided by the sup-
plier.

5

Fig. 4 is a conceptual model of a task, which we will realize using PSA in
Section 3. The clock x stops progressing in the locations where its derivative x′ is
set to 0. The clock x keeps progressing at other locations. The task starts at the
initial location Rdy and moves to Run when the two following conditions hold:
the task is scheduled to use a resource pid, (isSched(pid)) and there is a supply
of necessary resources (supply = true). The clock x measures the execution time
of the task while it is in the location Run. If either of the two conditions is false
at the location Run, the task moves back to the location Rdy. The task stays
at location Run until the stopwatch x reaches the execution time e, and then
jumps to location Done delaying until the next period. A task joins the error
location Err when its deadline d is missed (y > d). Throughout this paper we
keep the assumption that e ≤ d ≤ p.

In the following, we relate the analytical view of the supply bound function
and the resource model with the way they are implemented as a supplier model
in our approach. We use the Periodic Resource Model (PRM) [20] as an example.

Fig. 5. Resource allocations of Periodic Resource Model

Fig. 5 shows an ex-
ample of the resource al-
locations of the PRM
which guarantees the re-
source requirement Γ =
(Π,Θ) where Π is 5 and
Θ is 2. Σ represents a delay until the next period and Λ is the delay located
between the beginning of a period and the start of supply (slack time). The
resource allocation in PRM does not need to be synchronized with the execution
of tasks, thus Λ is deviated between 0 and Π − Θ. The consecutive delay of Σ
and Λ is denoted by Ψ , where no resource is allocated at all.

Property 1. The interval Ψ varies between 0 and the maximum consecutive de-
lays of Σ and Λ, i.e. 0 ≤ Ψ ≤ 2(Π −Θ).

The delay Λ varies between 0 and Π − Θ by the definition of the PRM. Af-
ter a supply of Θ time units, the delay Σ is deviated between 0 and Π − Θ.
Consequently, 0 ≤ Λ+Σ ≤ 2(Π −Θ).

The supply bound function sbfΓ (R, t) based on the PRM is formulated as:

sbfΓ (PRM, t) =

⌊
t− (Π −Θ)

Π

⌋
·Θ + εs (2)

εs = max

(
t− 2(Π −Θ)−Π

⌊
t− (Π −Θ)

Π

⌋
, 0

)
(3)

Our PSA model for the PRM (RPSA) is designed to generate all possible
allocations of resources in compliance with Γ = (Π,Θ).

One can remark that our resource model supplies the whole budget non-
preemptively in one chunk, however according to [20] if one considers only worst
cases, both preemptive and non-preemptive resource models provide the same
analysis results. Thus we will use a non-preemptive supplier model (Fig. 6) both
in this conceptual description as well in the computation models. Fig. 6 shows

6

the conceptual model of PSA resource model. In this model, the variable supply
represents the resource allocation, which is a shared variable with the task model.
Thus the supply is only enabled for Θ time units within the period Π. The loca-
tion Rdy of RPSA corresponds to the delay Λ in PRM of Fig. 5. This represents
a situation where a new period started but the resource allocation has not been
started. The location Sup corresponds to Θ where the resource is allocated, and
Done corresponds to Σ where the resource model waits for the next period.

Fig. 6. Conceptual PRM model in PSA notation

In order to realize a compo-
sitional approach, our resource
model RPSA does not synchro-
nize with the execution of tasks
similarly to the resource alloca-
tion of PRM. Thus the resource
model can stay at the location
Rdy up to Π−Θ or immediately move to the location Sup. This resource model
is designed to generate all possible resource allocations including the maximum
duration of no resource allocation Ψ .

3 Compositional Analysis Approach

In this section we present concrete PSA models based on the conceptual models
presented in the previous section. The implementation contains a resource model
(supplier template) and a task template. The scheduling policy is modeled as a
separate PSA template, which is represented as a parameter when instantiating
the concrete system. This increases the reconfigurability of our approach. We
have modeled three different scheduling policies EDF, RM and FIFO but we
only use EDF and RM in the experiments. Moreover, all tasks in the system are
instances of the same Task template but with different parameters.

3.1 Stochastic Periodic Resource Model

Fig. 7. Stochastic periodic resource model

In [21] the resource allocation by
the supplier does not necessar-
ily synchronize with tasks peri-
ods. That is, if the workloads of
tasks start at time tw and the re-
source allocation begins at time
tr then [21] assumes that tw is
not necessarily equal to tr. This
assumption leads to a stochastic
periodic supplier model, where
the supply of resources follows a
uniform probability distribution
within the supplier period. Thus, we impose no obligation on the scheduler at
the parent level of providing resources at a certain point in time. We only consider

7

that the whole budget should be provided before the end of the supplier period.
Fig. 7 shows the supplier template, which communicates with the other tem-
plates through two output broadcast channels (start supplying and stop supplying)
and a shared variable (supplying). These channels are used in the template Task

to keep track of the resource supply. The initial location of the Supplier tem-
plate is marked with double circles. Such a location is also marked with a “c”
which indicates that it is a committed location, this leads the supplier to move
instantaneously to the next location Rdy. Slack time is the maximum amount
of time that can elapse before the supplier starts to supply resources. It is used
in several places of Supplier and written as sup[supid].prd − sup[supid].budget.
The location Rdy has an invariant consisting of a conjunction of two parts. The
first part supplying time[supid]′ == 0 means that the clock representing the
supplied amount of resources does not progress while the template resides in the
location Rdy. The second part curT ime <= sup[supid].prd− sup[supid].budget
ensures that once curT ime has reached the end of the slack time the template
leaves the location Rdy.

At some point in time between time zero and the slack time, the supplier
moves to the location Sup. In this location, the progress rate of the clock supply-

ing time[supid] is set to 1, signifying that the supplier keeps supplying resources.
While the likelihood of delays happening at location Rdy would be the same,
we treat such a non-deterministic wait via a uniform probability distribution
when performing statistical analysis. One can notice that non-determinism mo-
tivates the use of statistical model checking. The supplier can not provide more
resources than budgeted and will move to the location Done when it has provided
the needed resources. At the start of the next period, the supplier moves to the
location Rdy.

3.2 Task Model

The task model in this paper has various execution attributes, such as the worst
case execution time, deadline, initial offset and regular offset. Thus, our frame-
work can easily be used to describe complicated hierarchical scheduling systems.
Formally, a task within the workload W = {T1, T2, ..., Tn} is defined by

– pri: Task priority.
– initial offset: The offset of the initial period of the task.
– offset: The offset from the beginning of each period until task release.
– bcet: Best-case execution time.
– wcet: Worst-case execution time.
– preemptable: Whether a task is preemptable.
– tid: Task identifier.

Fig 8 shows the PSA task template. It begins its execution by waiting, non-
deterministically, for an amount of time up to the initial offset (initial offset).
Using this parameter, we can adjust the synchronicity of the task execution
with the supplier. This will be further explained in section 4. The stopwatch

8

Fig. 8. Task model

twcrt is used to measure the worst-case response time of the task. The behavior
of the task model consists mainly in checking whether a resource is available
or not, by checking the supplier status supplying[tstat[tid].pid], which is done
inside the function isTaskSched().

The execution of a task can always be suspended whenever the supplier
stops providing the task’s requested resource. A task may travel several times
between location Ready and location Run due to preemption by other tasks
in the same component. This preemption is implemented at the level of the
scheduling policy. Once the execution of a task is achieved within its dead-
line, the task moves to the location PDone, before starting the next period. If
a task misses its deadline it moves to the location Err where it assigns 1 to the
global variable error. This variable is used when analyzing the schedulability. The
models used are available at http://people.cs.aau.dk/~ulrik/submissions/
721641/models.zip. The top level system is formed by a parallel composition
of component suppliers together with a scheduling policy. The schedulability of
the top level system is performed according to [5]. The PSA models of scheduling
algorithms are not included in the paper because their behavior is trivial, but
they are provided in the above link.

3.3 Automated computation of the supplier budget

Fig. 9. Modified resource model

We have automated a technique for
directly estimating the supplier bud-
get. Such an automation is realized by
adding a helper template to the sys-
tem and exploiting the expressiveness
of the Uppaal SMC query language.
Fig. 9 shows the modified initial states

9

http://people.cs.aau.dk/~ulrik/submissions/721641/models.zip
http://people.cs.aau.dk/~ulrik/submissions/721641/models.zip

of the Supplier template. We do not show the helper because of its simple be-
havior consisting of one transition, storing a value at the end of the simulation
time. Between the initial location and the Rdy location of the modified supplier
template, the budget is assigned a uniformly distributed random value between
0 and the period of the supplier, given in the template as the two constants
LowerBound and UpperBound. The minimal budget can be found by searching for
every budget value which makes the system non schedulable. To this end, we
use the following query:

Pr[cbudget[1] <= rbudget] (<> globalTime >= simTime and error) (4)

Fig. 10. Probability distribution of supplier’s
budgets that make component S2 of Table 2
non schedulable under EDF

where cbudget[1] is the budget
candidate for the supplier in a given
run, rbudget is a constant value that
is larger than any of the poten-
tial budgets, and globalTime is the
current simulation time (clock). In
the helper template, cbudget[1] is as-
signed a value larger than rbudget

when the simulation has executed
for simTime time units. Thus, this
query finds every number between 0
and the supplier’s budget for which
Uppaal SMC finds a run where a task misses its deadline before the expiry of
simTime, i.e. globalTime>=simTime.

Fig. 10 and 11 show the probability distributions of budgets that Uppaal
SMC produces after checking the system using query (4). Fig. 10 shows that
for every potential budget between 0 and 45 a run where a deadline has been
missed was found. In other words, a budget greater than 45 can make the system
schedulable.

Fig. 11. Probability distribution of supplier’s
budgets that make component S2 of Table 2
non schedulable under RM

Given a budget, the schedulabil-
ity of a component and its workload
can be checked using the following
query:

Pr[<= simTime](<> error) (5)

Such a query computes the probabil-
ity of a component to finally (<>)
reach an error, where simTime is a
simulation time and error is a global
variable indicating whether a task
has missed its deadline or not.

By using the budget found via query (4) as a parameter value for compo-
nent S2 of Table 2 when checking query (5), we can see that this indeed makes
component S2 schedulable under EDF. Fig. 11 is the estimation results of the

10

same component under RM, showing that a supplier budget greater than 47 can
make component S2 schedulable. By using query (4), we can obtain a very good
estimate for the minimal budget. In practice one might still need to check two
or three values using query (5) after having applied query (4). Once a candi-
date budget is strongly determined, we apply symbolic model checking to be
absolutely certain.

4 Enhancement of Resource Utilization

This section presents two techniques for enhancing the utilization of a resource:
1) introducing a new supplier model; 2) making tasks more synchronous with
their suppliers by adjusting tasks initial offset.

4.1 Synchronous Periodic Resource Model

In order to increase the resource utilization by trying to avoid supplying re-
source when it is not needed, i.e. no waiting task, we introduce a new supplier
model. The new supplier relies on delaying the resource supply, while no task is
requesting resource, until a task request is received. Such a delay is up to the
component slack time (period-budget).

Fig 12 depicts the PSA template that implements our new supplier model.
Once started, the supplier joins location Rdy and keeps waiting while the slack
time is not expired. Such a constraint is implemented by the location invariant
curTime ≤ sup[supid].prd-sup[supid].budget, where prd and budget are respectively the
period and budget of the supplier. One can remark that, at location Rdy, the stop-
watch measuring the resource supply is not progressing (supplying time[supid]’==0).
Non deterministically, the supplier moves from location Rdy to the location Sup

by either receiving a task request (guard isReq() over the crooked edge), or once
the slack time is expired (guard curTime≥sup[supid].prd-sup[supid].budget over the
vertical edge).

Fig. 12. Synchronous Periodic Resource
Model in PSA

At location Sup, the supplier
keeps supplying resource before
moving to the location Done. Such
a location can be reached once the
whole budget is supplied. From lo-
cation Done and once the period is
expired, the supplier joins location
Rdy to start new period and resets
its clocks.

Table 1 shows the gain in re-
source utilization obtained when ap-
plying the new supplier model. At
the first stage, using the periodic re-
source model PRM, we compute the
component budgets of the avionics

11

system we mentioned earlier. The component budgets obtained via CARTS
(2nd column) and Uppaal SMC (3rd column) are identical; (10,6) (20,6) (20,2)
(20,10). By replacing PRM with our new supplier model, we recompute the min-
imum budgets making the avionics components schedulable using Uppaal SMC
(4th column). For components Nav.Radar Ctrl and Navigation, the budgets are de-
creased to 5 in each case, with a gain of 17% thanks to our new supplier model.
We have checked and confirmed such new budgets using the Uppaal symbolic
model checking (MC).

PRM

SPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(a) Flight data

PRMSPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(b) Steering

Fig. 13. Probability distributions of WCRT of flight data and steering tasks. The
queries E[<= 100000; 1000](max : wcrt[1]) and E[<= 100000; 1000](max : wcrt[2])
are used to generate the probability distributions using Uppaal SMC.

Table 1. Resource utilization comparison
Analysis Tool CARTS SMC SMC & MC

Resource Model PRM PRM Synchronous PRM

Nav. Radar Ctrl (10, 6) (10, 6) (10, 5)
Navigation (20, 6) (20, 6) (20, 5)
Radar Ctrl (20, 2) (20, 2) (20, 2)

Control & Display (20, 10) (20, 10) (20, 10)

In order to evaluate the
effects of introducing a new
supplier model, we have made
a statistical experiment using
the two tasks in the compo-
nent Navigation. Fig. 13 shows
the probability distributions of
WCRT using two different resource models. This shows that the average WCRT
is enhanced using the new supplier model SPRM. There is no significant dif-
ference in the actual WCRT. By using these plots we can see how much a hi-
erarchical system can be improved by using different system settings. The fact
that we can easily generate such plots also shows the versatility of a model and
simulation based approach.

4.2 Offset Manipulation

Our second technique consists in limiting the initial offset for the arrival of all
tasks. Explicitly including offsets in the schedulability analysis was initiated in
[22]. By limiting this initial offset to a certain percentage of the supplier period,
the given component can be schedulable with a lower budget. This is an assump-
tion that we are making about the system. It is the responsibility of the sys-
tem engineers to confirm that the offset that they chose actually conforms with
the real system. Thus we are not computing optimal offsets making the system

12

schedulable, but investigating the impact of different offsets on the individual
component resource requirements. As shown in Table 5.1, the smallest supplier
budget can be obtained if all tasks arrive exactly synchronously with the start
of the supplier period. This could be hard to achieve in practice. On the other
hand, we think that it is indeed very possible to make the tasks synchronized
with the supplier period such that all tasks arrive within either the first 20% or
50% of the supplier period. For these realistic values, we still obtain significant
savings in the budget that a given component needs in order to be schedulable
(See column 6 to 9 of Table 5.1). The percentage value is a parameter that can
be easily changed in our setting when checking the schedulability. Similarly to
Table 2, all statistical results in Table 5.1 are found using a confidence level of
0.95.

Another observation that we have made is that, the length of the period of
the supplier can have a great impact on the budget that a component needs in
order to be schedulable. This can be seen in Table 5.1 for component S5. We
have analyzed the same component with two different supplier periods. The first
period is not a common divisor of the task periods (50000), while the second
supplier period (10000) is a common divisor of the task periods. For the first
experiment, the component can be schedulable with 30% of the complete system
resources, while in the second case it can be schedulable using only 18.8% of
the system resources (see column 4). In fact, this observation is an experimental
result that can be found using both our approach and the CARTS tool (see
Table 2 for component S4).

4.3 Confirming Uppaal SMC results with model checking

In order to give absolute responses about the schedulability analysis performed
using Uppaal SMC, we have verified some of the Uppaal SMC results by
means of symbolic model checking. These are marked in Table 5.1 by a gray
background color in the cells. The reason for only verifying some of our results,
but not all, is that for some of the models the verification time is as much as a
couple of days.

According to our experience, statistical model checking is a good way to deal
with the undecidability challenge of symbolic model checking in schedulability
analysis, but does not represent an alternative.

5 Evaluation and Comparison

In order to evaluate the correctness of our model-based approach, we compare the
component budgets from our estimation to the budgets obtained by the CARTS
tool [18] for the same hierarchical system configurations. All the results presented
in Table 2 are obtained with a confidence 0.95. When Uppaal SMC returns a
result where the estimated probability of missing a deadline is an interval from
zero to some low value ε (e.g. [0,0.0973938]), this means that Uppaal SMC did
not find any trace in which a deadline was missed, i.e. with 95% confidence a

13

Table 2. Comparison of the estimated budgets of CARTS and Uppaal SMC

Comp Tasks P, WCET
CARTS SMC

EDF RM EDF RM

S1
T1 500, 30

100, 32.5 100, 32.5 100, 33 100, 33
T2 500, 100

S2
T1 170, 30

100, 46.67 100, 47.5 100, 47 100, 48
T2 500, 100

S3
T1 250, 40

150, 42.5 150, 42.5 150, 45 150, 45
T2 750, 50

S4

T1 80000, 6890
50000, 15082 50000, 15082 50000, 15082 50000, 15082

T2 100000, 8192
T3 200000, 2644

10000, 1880 10000, 2155.6 10000, 1875 10000, 2155
T4 1000000, 5874

deadline will not be missed with the given budget and probability distribution.
If a higher confidence is needed, the confidence value can be increased and the
query can be rerun.

Table 2 shows the comparison we have done with the CARTS tool. Column
1 (Comp) contains 4 different components on which we have performed the
experiment. The workload of each component is stated on the second column
(Tasks). In fact, each of component S1, S2 and S3 is a parallel composition of 2
tasks (T1, T2), while S4 contains 4 tasks (T1,. . . , T4). The third column specifies
the period and the worst case execution time for each task. In order to perform a
more thorough comparison, we have considered two different scheduling policies;
EDF and RM. According to the CARTS tool, the minimum budget that the
resource supplier should provide each 100 time units, for which the component
S1 is schedulable under EDF and RM, is 32.5. For the same parameters, the
minimum budget we have computed in our framework using Uppaal SMC is
33, which is very close to that obtained by CARTS. The two tools produce
almost identical results. CARTS has the advantage of being an extremely fast
method, while our approach is extremely flexible and configurable.

5.1 Uppaal SMC counterexample for one CARTS result

During the schedulability analysis of a specific component configuration, we
obtained a result from CARTS that was in conflict with our own results.

Fig. 14. Counterexample for the deadline
missing of T1 in S3 with the budget 43 un-
der RM in Table 2

This was for the specific case (bold
gray numbers) of component S3 in Ta-
ble 2. According to CARTS’s compu-
tations, the minimal necessary bud-
get for S3 to be schedulable under
EDF and RM is 42.5. With the use
of Uppaal SMC, we first estimated
the minimal budget to be 45, which
has a considerable difference with the
results from CARTS.

Our estimation using Uppaal
SMC immediately produced a coun-
terexample trace which shows that
Task1 (T1) can miss its deadline with

14

S
i
T
i

P
,
W

C
E
T

∆
i
n
i
t
o
f
su

p
p
li
e
r’
s
p
e
ri
o
d

∆
i
n
i
t
=

1
0
0
%

∆
i
n
i
t
=

5
0
%

∆
i
n
i
t
=

2
0
%

∆
i
n
i
t
=

0
%

E
D
F

R
M

E
D
F

R
M

E
D
F

R
M

E
D
F

R
M

1
T
1

5
0
0
,
3
0

1
0
0
,
3
3

1
0
0
,
3
3

1
0
0
,
3
3

1
0
0
,
3
3

1
0
0
,
2
9

1
0
0
,
2
9

1
0
0
,
2
6

1
0
0
,
2
6

T
2

5
0
0
,
1
0
0

(3
3
%
)

(3
3
%
)

(3
3
%
)

(3
3
%
)

(2
9
%

)
(2

9
%

)
(2

6
%

)
(2

6
%

)

2
T
1

1
7
0
,
3
0

1
0
0
,
4
7

1
0
0
,
4
8

1
0
0
,
4
7

1
0
0
,
4
8

1
0
0
,
4
2

1
0
0
,
4
4

1
0
0
,
3
8

1
0
0
,
4
4

T
2

5
0
0
,
1
0
0

(4
6
%
)

(4
8
%
)

(4
6
%
)

(4
7
%
)

(4
2

%
)

(4
4

%
)

(3
8

%
)

(4
4

%
)

3
T
1

2
5
0
,
4
0

1
5
0
,
4
5

1
5
0
,
4
5

1
5
0
,
4
5

1
5
0
,
4
5

1
5
0
,
4
4

1
5
0
,
4
5

1
5
0
,
4
0

1
5
0
,
4
0

T
2

7
5
0
,
5
0

(3
0
%
)

(3
0
%
)

(3
0
%
)

(3
0
%
)

(3
0
%
)

(3
0
%
)

(2
7

%
)

(2
7

%
)

4
T
1

1
0
0
0
0
,
1
4
0
6

5
0
0
0
,
1
4
0
6

5
0
0
0
,
1
4
0
6

5
0
0
0
,
1
4
0
6

5
0
0
0
,
1
4
0
6

5
0
0
0
,
1
3
2
5

5
0
0
0
,
1
4
0
6

5
0
0
0
,
1
0
5
7

5
0
0
0
,
1
0
5
7

T
2

4
0
0
0
0
,
2
8
2
6

(2
8
%
)

(2
8
%
)

(2
8
%
)

(2
8
%
)

(2
6

%
)

(2
8
%
)

(2
1

%
)

(2
1

%
)

5

T
1

8
0
0
0
0
,
6
8
9
0

5
0
0
0
0
,
1
5
0
8
2

5
0
0
0
0
,
1
5
0
8
2

5
0
0
0
0
,
1
5
0
8
2

5
0
0
0
0
,
1
5
0
8
2

5
0
0
0
0
,
1
2
5
3
1

5
0
0
0
0
,
1
4
9
4
8

5
0
0
0
0
,
1
2
4
0
0

5
0
0
0
0
,
1
3
2
6
1

T
2

1
0
0
0
0
0
,
8
1
9
2

(3
0
%
)

(3
0
%
)

(3
0
%
)

(3
0
%
)

(2
5

%
)

(3
0
%
)

(2
9

%
)

(2
7

%
)

T
3

2
0
0
0
0
0
,
2
6
4
4

1
0
0
0
0
,
1
8
7
5

1
0
0
0
0
,
2
1
5
5

1
0
0
0
0
,
1
8
7
5

1
0
0
0
0
,
2
1
5
5

1
0
0
0
0
,
1
8
7
5

1
0
0
0
0
,2

0
6
0

1
0
0
0
0
,1

8
7
2

1
0
0
0
0
,1
9
8
5

T
4

1
0
0
0
0
0
0
,
5
8
7
4

(1
8
.8

%
)

(2
1
.6

%
)

(1
8
.8

%
)

(2
1
.6

%
)

(1
8
.8

%
)

(2
0
.6

%
)

(1
8
.7

%
)

(1
9
.9

%
)

F
ig
.
1
5
.

E
n
h
a
n
ce

m
en

t
o
f

re
so

u
rc

e
u
sa

b
il
it

y
u
si

n
g

th
e

m
a
x
im

a
l

o
ff

se
t

o
f

ta
sk

’s
in

it
ia

l
p

er
io

d
.

T
h
e

ca
se

s
m

a
rk

ed
w

it
h

a
g
re

y
b
a
ck

g
ro

u
n
d

a
re

v
er

ifi
ed

u
si

n
g

sy
m

b
o
li
c

m
o
d
el

ch
ec

k
in

g

a supplier budget of 43. The coun-
terexample is depicted in Fig. 14 in terms
of a plot that was also produced by
Uppaal SMC. The bottom of the plot
shows the supplier; the dashed spikes rep-
resent the length of the supplier period
and the solid line illustrates when the
supplier is supplying. Each of the other
two groups illustrates the behavior of a
task. The solid line shows when the task
is executing, and the dashed line goes up
when the task is released and down when
the task has finished its computation. Ap-
proximately at time 880, Task1 is execut-
ing on its third period but fails to com-
plete before its deadline. In order to con-
firm our findings, we also calculated the
minimum supplier budget according to
the theory underlying the CARTS tool.
We calculated this both using the equa-
tions from [21] and equations from [20].
The results of such calculations confirmed
our findings in that we calculated the
minimal budget to be 45. This leads us to
conclude that there must be an error in
the implementation of CARTS while the
underlying theory is correct. We reported
this anomaly and it has been confirmed
by the developers of the CARTS tool that
CARTS has an implementation error.

6 Related Work

In an engineering setting, providing effec-
tive parameters that make a system real-
izable is very practical in terms of time
and cost. In this paper, while we explore
the schedulability analysis of hierarchical
scheduling systems by profiting from the
technological advances made in the area
of model checking, we propose a compo-
sitional analysis approach to determine and increase the potential configurations
making much more hierarchical scheduling systems schedulable.

The concept of hierarchical scheduling systems was first introduced as 2 levels
systems in [10], and then generalized as a real-time multi-level system by [15]. An

15

example of the increasing use of hierarchical scheduling systems is the standard
ARINC 653 [2] for avionics real-time operating systems.

Several compositional analysis techniques [20,12,11,21,1,7] have been pro-
posed. An analytical compositional framework was presented in [21] as a basis
for the schedulability analysis of hierarchical scheduling systems. Such a frame-
work relies on the abstraction and composition of system components, which
are given by periodic interfaces. The interfaces state the components timing
requirement without any specification of the tasks concrete behavior. In [19],
the authors extend their previous work [21] to a hierarchical scheduling frame-
work for multiprocessors based on cluster-based scheduling. They used analytical
methods to perform the analysis. However, in both [21] and [19], the proposed
framework is limited to a set of formulas describing an abstraction of the system
entities, given in terms of periodic interfaces, without any specification of the
tasks behavior and interaction. CARTS (Compositional Analysis of Real-Time
Systems) [18] is tool that implements the theory given in [21,19]. Compared to
our approach CARTS is a mature tool that is easy to use. On the other hand,
we provide a more detailed modeling and analysis.

As common traits, analytical approaches assume computations with deter-
ministic Execution Time usually coincident with the Worst Case Execution Time
(WCET), and they provide pessimistic results [7]. Recent research within schedu-
lability analysis gives tremendous attention to model-based approaches, because
of their expressiveness that allows for modeling more complicated behavior of
systems, and also due to the technological advances made in the area of model-
based simulation and analysis tools. In [4], the authors analyzed the schedula-
bility of hierarchical scheduling systems using the TIMES tool [1,3], and im-
plemented their model-based framework in VxWorks [4]. They constructed an
abstract task model as well as scheduling algorithms focusing on the component
under analysis. However, the authors not only consider the timing attributes of
the component under analysis but also the timing attributes of the other com-
ponents that can preempt the execution of the current component. Thus, the
proposed approach is not fully compositional. The authors of [7] provided a com-
positional framework modeled as preemptive Time Petri Nets for the verification
of hierarchical scheduling systems using the ORIS tool [16]. They only analyze
systems using two specific scheduling algorithms severely restricting the class of
systems they can handle. In [9], the authors introduced a model-based frame-
work using Uppaal for the schedulability analysis of single layered scheduling
systems, modeling the concrete task behavior as a sequence of timed actions.

We have been inspired by the work in [9] but generalizing and lifting it to a
compositional approach for hierarchical scheduling systems. Resource efficiency
constitutes one of the most important factors in the performance evaluation of
hierarchical scheduling systems. Such resources are often represented by either
periodic [20] or explicit deadline periodic [11] resource models. The resource
models represent an interface between a component and the rest of the sys-
tem. In [13], the authors introduced the Dual Periodic Resource Model (DPRM)
and presented an algorithm for computing the optimal resource interface, re-

16

ducing the overhead suffered by the classical periodic resource models. In [17],
the authors introduced a technique for improving the schedulability of real-time
scheduling systems by reducing the resource interferences between tasks.

In contrast, we propose a model-based framework for the modeling of hierar-
chical scheduling systems with a generic resource model, while we use Uppaal
and Uppaal SMC to analyze the schedulability of components in a composi-
tional manner. We also introduce two novel techniques for improving resource
efficiency, and computing the minimum resource supply of system components.

7 Conclusion

In this paper we have presented a compositional methodology for schedulability
analysis using a combination of statistical and symbolic model checking. The
methodology could be instantiated with any modeling formalism supporting both
a lightweight statistical analysis and a more costly formal verification.

The methodology we propose is instantiated in a concrete approach using
Parameterized Stopwatch Automata (PSA), Uppaal SMC and Uppaal. Our
approach is model based, compositional and highly configurable. We have com-
pared the results we obtained on different system configurations with results
obtained from the CARTS tool. The results from the two tools are almost iden-
tical. We discovered one case with a large difference, which has been confirmed
as an implementation error by the developers of CARTS. Our configurable ap-
proach can be instantiated and updated for many different applications and
system configurations including scheduling policies. We have investigated two
specific techniques for enhancing the resource utilization: a new resource model
and offset manipulation. Both techniques are investigated using statistical model
checking. We also provided a faster method for estimating the minimal budget of
a supplier, instead of performing a binary search of potential budgets. The main
contribution of the paper is that systems, which cannot be proven schedulable
using classical analytic approaches, can potentially be proven schedulable using
our approach.

************ A perspective of this work could be a study of the impact of
the two techniques, we proposed for the enhancement of resource utilization, on
the systems energy efficiency ***add ref to ERTS 2014****

References

1. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A tool for
schedulability analysis and code generation of real-time systems. In K. G. Larsen
and P. Niebert, editors, FORMATS, volume 2791 of LNCS, pages 60–72. Springer,
2003.

2. ARINC 653. Website. https://www.arinc.com/cf/store/documentlist.cfm.
3. M. Åsberg, T. Nolte, and P. Pettersson. Prototyping and code synthesis of hier-

archically scheduled systems using TIMES. Journal of Convergence (Consumer
Electronics), 1(1):77–86, December 2010.

17

4. M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. Bril. Towards hierarchical
scheduling in VxWorks. In OSPERT 2008, pages 63–72.

5. A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis, U. Nyman, and
A. Skou. Hierarchical scheduling framework based on compositional analysis using
uppaal. In Proceedings of FACS 2013, lncs. Springer, 2013. LNCS Volume 8348.

6. P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen, A. Legay,
and Z. Wang. UPPAAL-SMC: Statistical model checking for priced timed au-
tomata. In H. Wiklicky and M. Massink, editors, QAPL, volume 85 of EPTCS,
pages 1–16, 2012.

7. L. Carnevali, A. Pinzuti, and E. Vicario. Compositional verification for hierarchi-
cal scheduling of real-time systems. IEEE Transactions on Software Engineering,
39(5):638–657, 2013.

8. F. Cassez and K. G. Larsen. The impressive power of stopwatches. In
C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in Computer Sci-
ence, pages 138–152. Springer, 2000.

9. A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Schedulability of herschel-
planck revisited using statistical model checking. In ISoLA (2), volume 7610 of
LNCS, pages 293–307. Springer, 2012.

10. Z. Deng and J. W. s. Liu. Scheduling real-time applications in an open environ-
ment. In in Proceedings of the 18th IEEE Real-Time Systems Symposium, IEEE
Computer, pages 308–319. Society Press, 1997.

11. A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework using edp
resource models. In Proceedings of the 28th IEEE International Real-Time Systems
Symposium, pages 129–138, 2007.

12. A. Easwaran, M. Anand, I. Lee, L. T. X. Phan, and O. Sokolsky. Simulation
relations, interface complexity, and resource optimality for real-time hierachical
systems, 2009.

13. J. Lee, L. T. X. Phan, S. Chen, O. Sokolsky, and I. Lee. Improving resource
utilization for compositional scheduling using dprm interfaces. SIGBED Rev.,
8(1):38–45, Mar. 2011.

14. R. J. B. Mike Holenderski and J. J. Lukkien. An efficient hierarchical schedul-
ing framework for the automotive domain. In S. M. Babamir, editor, Real-Time
Systems, Architecture, Scheduling, and Application, pages 67–94. InTech, 2012.

15. A. K. Mok, X. A. Feng, and D. Chen. Resource partition for real-time systems. In
Proceedings of RTAS ’01, pages 75–84. IEEE Computer Society, 2001.

16. ORIS. Oris tool website. http://www.oris-tool.org/.
17. L. T. X. Phan and I. Lee. Improving schedulability of fixed-priority real-time

systems using shapers. In Proceedings of RTAS ’13, pages 217–226, Washington,
DC, USA, 2013. IEEE Computer Society.

18. L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, I. Lee, and O. Sokol-
sky. CARTS: a tool for compositional analysis of real-time systems. SIGBED Rev.,
8(1):62–63, Mar. 2011.

19. I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for virtual
clustering of multiprocessors. In ECRTS, pages 181–190. IEEE Computer Society,
2008.

20. I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees.
In RTSS, pages 2–13. IEEE Computer Society, 2003.

21. I. Shin and I. Lee. Compositional real-time scheduling framework with periodic
model. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

22. K. Tindell. Adding time-offsets to schedulability analysis. University of York,
Department of Computer Science, 1994.

18

