Dynamic behavior of the 3CaO-1Al2O3 liquid

Pan, R.K.; Qiao, A.; Tao, H.Z.; Ruan, J.; Zhao, X.J.; Greaves, G.N.; Yue, Yuanzheng

Published in:
The 24th International Congress on Glass - Abstracts

Creative Commons License
Unspecified

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Dynamic behavior of the 3CaO-1Al₂O₃ liquid

R.K. Pan¹,², A. Qiao¹, H.Z. Tao¹, J. Ruan¹, X.J. Zhao¹, G.N. Greaves¹,², Y.Z. Yue¹,⁴

¹State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
²School of Materials Science and Engineering, HuBei University, Wuhan 430062, China
³Centre for Advanced Functional Materials and Devices, Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
⁴Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark

Calcium aluminates (CaO)x(Al₂O₃)1-x are main components in the Earth’s mantle and also in the aluminate cement, which have been studied by many researchers.¹,² Calcium aluminates are very fragile glass formers and do not contain typical network-forming cations. The structure of (CaO)x(Al₂O₃)1-x with x=0.33, 0.5 and 0.75 was investigated in a laser heated aerodynamic levitation (ADL) furnace.³,⁴ The ADL technique enables vitrifying calcium aluminates in the composition range of 0.37 < x < 0.75, whereas the conventional melt-quenching method can vitrify only those in a much narrower x range (0.6 < x < 0.7).³ Kargl et al studied the viscous behavior of the CaAl2O₄ liquid in the temperature range of 2000 to 2800 K by using ADL.⁵ Hennet et al studied the structural evolution of the fragile glass-forming liquid-CaAl2O₄.⁶

The 3CaO-1Al₂O₃ (C3A) bulk glass was prepared using the ADL technique. The viscosities at high temperatures (1773~2923 K) of the C3A liquid were measured using the ADL technique as shown in Figure 1. By conducting differential scanning calorimetric (DSC) measurements, we determined the glass transition temperature (Tg=1092 K) and the dependence of fictive temperature (Tf) on cooling rate (q). The temperature dependence of viscosity was fitted to the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) equation.⁸ The fragility parameter m’ of the C3A liquid was determined to be about 74 by extrapolating the MYEGA fitting curve to the Tg, while m was determined using DSC to be about 33. This implies that the fragile-to-strong liquid transition occurs in the C3A liquid upon cooling.⁹

---