Different Sub-Tg Relaxation Patterns in Metallic Glasses far from Equilibrium

Hu, L.N.; Zhou, Chao; Wang, C.W.; Sun, Q.J.; Hui, X.D.; Yue, Yuanzheng

Published in:
The 24th International Congress on Glass - Abstracts

Creative Commons License
Unspecified

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Different Sub-T_g Relaxation Patterns in Metallic Glasses far from Equilibrium

L. N. Hu1, C. Zhou1, C. W. Wang1, Q. J. Sun1, X. D. Hui2, Y. Z. Yue3
1Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark

We investigate the sub-T_g relaxation patterns (RPs) in CuZrAl and LaAlNi glass ribbons (GRs) by using the hyperquenching-sub-T_g annealing calorimetric approach.1-3) Different from the monotonic relaxation pattern observed in rare-earth based metallic GRs, the abnormal three-steplike sub-T_g relaxation pattern has been observed in CuZrAl ternary glasses. It has been found that the presence of this three-steplike sub-T_g RPs of CuZrAl closely relates to the fictive temperature T_f where the supercooled liquids are frozen in during cooling. Only in a certain range of T_f (or cooling rate for fabrication), this thermodynamic anomaly can be observed. Accompanied with this thermodynamic anomaly, we have observed a three-stage evolution of structures with the increase of annealing degree on CuZrAl GRs. It indicates a dramatic change of the MRO clusters around 1.3 T_g upon cooling in supercooled liquids, which is due to the competitions among the MRO clusters composed of different locally ordering configuration.3-4) This accords well with the models based on the competitions between the low-temperature and high-temperature clusters used in the terms of the fragile-to-strong (F-S) transition. In order to further clarify the generality and the origin of this remarkable abnormal thermodynamic phenomenon, the sub-T_g relaxation patterns (RPs) was also detected in other Cu-based metallic GRs. It has been found that this abnormal RPs can be observed in binary CuZr and ternary CuZrAl glasses, rather in quaternary CuZrAlNi. It shows that the anomaly of sub-T_g relaxation pattern could not be simply attributed to the large difference in the enthalpy of mixing between different elements in alloys. By using a high-temperature torsional oscillating viscometer, the existence of the liquid-liquid phase transition (LLPT) depicted by anomalous viscosity drop during cooling in superheated liquids is also been observed in CuZr and CuZrAl melts. In accordance with this dynamic anomaly well above the liquidus temperature, the thermodynamic evidence in these alloys has also been detected above T_1. A close link between the abnormal three-steplike sub-T_g relaxation pattern in GRs and the LLPT in their corresponding melts has been discovered. This work helps to better understand the complex structural evolution from superheated to glassy solids approaching T_g.

Fig. 1 Sub-T_g relaxation pattern of the hyperquenched GRs (a) La$_{0.3}$Al$_{0.7}$Ni$_{0.2}$; (b) Cu$_{0.7}$Zr$_{0.2}$Al$_{0.1}$. All the C_α curves were obtained at a heating rate of 20 K/min. T_g points to the annealing temperature and t points to the annealing time. The curves G and H in (b) reflect the non-monotonic relaxation pattern of CuZrAl glass ribbons.