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 

Abstract—Due to the increasing penetration level of microgrids 

(MGs), it becomes a critical issue for MGs to help sustaining 

power system stability. Therefore, ancillary services, such as the 

low-voltage ride-through (LVRT) capability should be 

incorporated in MGs in order to guarantee stable operation of the 

utility grid during grid faults. In this paper, a LVRT control 

strategy based on positive/negative sequence droop control is 

proposed for grid-interactive MGs to ride-through voltage sags 

with not only inductive/resistive, but also complex line impedance. 

By using the proposed control strategy, MGs can support the grid 

voltage, make profits, and also ride-through the voltage dip 

during the whole fault period. A two layer hierarchical control 

strategy is proposed in this paper. The primary controller consists 

of voltage and current inner loops, a conventional droop control 

and a virtual impedance loop, while the secondary controller is 

based on a positive/negative sequence droop scheme which is able 

to coordinate the power injection during voltage sags. 

Experimental results are obtained to verify the effectiveness of the 

proposed control strategy. 

Index Terms—Grid-interactive microgrid, hierarchical control, 

low-voltage ride-through, negative sequence droop control. 

I. INTRODUCTION 

RIVEN by the economic, political, and environmental

issues, renewable energy sources (RESs), such as wind 

turbines (WT) and photovoltaic (PV) arrays, combined with 

energy storage systems (ESSs), such as batteries, 

super-capacitors and flywheels, are integrated into the future 

distribution networks such as microgrids (MGs) [1], as shown 

in Fig. 1. 
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Fig. 1. General structure of a grid-interactive microgrid. 

Thanks to advanced power electronic systems, MGs can not 

only energize the local loads, but also deliver electricity with 

high reliability and quality to the grid. However, due to the 

continuously increasing capacity of grid-interactive MGs, these 

small scale power systems now play a more crucial role than 

ever before concerning low-voltage ride-through (LVRT) 

capability. Unfortunately, most of the existing LVRT control 

strategies [2]−[6] mainly focused on wind farms or large PV 

plants, meanwhile the current LVRT practice of MGs is simply 

disconnect them from the grid once faults are detected [7], [8]. 

This practice suffers from several drawbacks. The first is that 

this passive strategy will not be an economical option, since the 

MGs operate in islanded mode during the faults. As a 

consequence, power generated in the MGs may be wasted, if, 

for instance, ESSs are fully charged. The second is that the 

abnormal voltage caused by disconnecting MG with the grid [9] 

may lead to potential damage to the electrical equipment which 

is not desired in both safety and power quality point of view. 

The third drawback of isolating the MGs is that a reconnection 

process, which may lead to excessive inrush current [10], is 

required after the fault is cleared. Thus, to help MGs smoothly 
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over the faults without losing profits and to enhance power 

system reliability, a LVRT control strategy is proposed in this 

paper to aid the MGs not only ride-through the grid faults, but 

also support the grid voltage, generate profits, and eliminate the 

voltage abnormality during the whole fault period. 

Conventionally, LVRT in PV plants is achieved by means of 

controlling output current of the grid-interactive converter 

which phase is synchronized with the grid by using 

phase-locked-loop (PLL), meanwhile a current loop ensures 

power injection accuracy and current quality issues [11], [12]. 

In [11], a reactive current injection (RCI) strategy is proposed 

for single-phase grid-connected PV inverter. In this case, the 

reactive current reference is set according to the grid code while 

the active current is limited by considering the converter 

capacity. LVRT of a three-phase PV converter has been 

discussed in [13], due to the presence of asymmetrical grid 

faults, negative sequence current is also injected to suppress the 

negative sequence voltage. Besides, LVRT in wind farms 

usually has the objective of injecting balanced three-phase 

currents or nullifying the 100Hz power oscillations by 

controlling the grid side converter (GSC) [13]−[15]. In [14], a 

LVRT control strategy, which is the synthesis of 

demagnetization and virtual resistance control, is proposed to 

eliminate the disturbance of stator flux and limit the stator side 

current. A flexible voltage support strategy is proposed in [6], 

which can equip the converters with the capability of positive 

sequence voltage recovery and negative sequence voltage 

suppression. Later, a LVRT strategy, which has a similar 

objective as that in [6], is illustrated in [16] by taking the 

network impedance impact into account. However, all the 

aforementioned control strategies are proposed for converters 

operating in current-controlled mode, while the LVRT 

capability for the widely used droop-controlled converters [11], 

[17]−[18] in MGs is barely studied. 

Moreover, the aim of this paper is to provide a LVRT 

strategy for MGs which has different objectives with the LVRT 

method utilized in the conventional PV/WT power plant. In 

MGs, high power quality is usually required at the AC bus to 

ensure the normal operation of the local electrical loads. This 

means that it is critical to maintain both voltage and frequency 

at the AC bus constant. However, in most of the publications 

[2], [11]−[15], the line impedance, which has a great influence 

on the amplitude and phase angle of the compensation voltage, 

is simply deemed as pure inductive (medium/high-voltage grid) 

or pure resistive (low-voltage grid). Therefore, the AC bus 

voltage cannot be compensated accurately, and the AC bus 

power quality cannot be maintained at a satisfied level during 

voltage sags. In order to address this problem, complex line 

impedance is considered to control the amplitude and phase 

angle of the current injected by the converters. 

Thus, to embed the voltage-controlled converters with 

LVRT capability, negative sequence droop control is proposed 

in this paper to make the MGs not only maintain connected with 

the utility grid under voltage sags, but also support the grid 

voltage by injecting positive and negative sequence power with 

a satisfied power sharing accuracy among the distributed 

converters. 

 
Fig. 2. German grid code requirements. (a) LVRT capability and (b) reactive 

power support capability. 

The rest of the paper is organized as follows. In Section II, a 

brief introduction to the existing grid code is presented to assist 

designing of the proposed controller. Section III analyses the 

voltage and current phasors by using symmetrical component 

theory. Section IV shows the overall hierarchical control 

scheme while the proposed LVRT controller is illustrated in 

Section V. Section VI studies the small signal stability of the 

proposed negative sequence control system. Section VII 

provides the simulation and experimental results of a lab-scale 

MG that consists of two parallel converters connected to the 

grid. Finally, the conclusions are presented in Section VIII. 

II. GRID CODE REQUIREMENTS 

Conventionally, the distributed generators (DGs) are 

required to disconnect from the grid when voltage sags occur 

and to reconnect to the grid when faults are cleared [7], [8], 

[19]. However, with the increasing penetration level of the 

grid-interactive MGs, it is preferred that MG could also 

maintain active power delivery and provide reactive power 

support during the period of voltage sag, since it may alleviate 

the potential instability problems. Thus, many countries have 

revised their grid codes to accommodate with the increasing 

capacity of RES. Spain, German and Denmark have already 

published the LVRT and reactive current injection 

requirements for grid-connected RESs in 2005, 2007 and 2010, 

respectively [20]−[22]. As an example, the German E.ON NetZ 

code is shown in Fig. 2 [21]. Although this requirement is 

designed for high voltage grid, it is applicable to low-voltage 

grid since they have similar concepts. 

It can be seen in Fig. 2(a) that only when the grid voltage 

falls below the red curve, DGs are allowed to disconnect with 

the grid. Otherwise, DGs should inject a certain amount of 

reactive power which is defined in Fig. 2(b). As shown in Fig. 

2(b), when the grid voltage is lower than 0.9VN, 1% drop of the 
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grid voltage requires at least k% increase of the injected current. 

If needed, it should be capable of supplying 1 p.u. of reactive 

current. The corresponding equations are given as follows. 
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(1) 

where VN is the nominal grid voltage, IN is the converter rated 

current, ΔV is the depth of voltage sag, and ΔIB is the increment 

of reactive current after fault occurs. Note that the constant k 

should be no less than 2 p.u. according to the German grid code 

[21]. 

III. VOLTAGE AND CURRENT PHASOR ANALYSIS BASED ON 

SYMMETRICAL COMPONENTS DECOMPOSITION 

According to the symmetrical sequence theory [23], the 

instantaneous voltage/current can be represented by positive 

sequence, negative sequence and zero sequence components. 
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 (2) 

where xa, xb, and xc represent the abc component of voltage or 

current phasors, and superscript “+”, “−” and “0” denote the 

positive, negative and zero sequence, respectively. Zero 

sequence components are neglected, since the MG is 

considered three-phase three-wire in this paper. 

Based on (2), the instantaneous active and reactive power 

can be expressed as 

 2 ( )p P P p v i v i v i v i

                 (3) 

 2 ( )q Q Q q v i v i v i v i

         

           (4) 

 / / /v v v 

          (5) 

 / / /v v v 

     


     (6) 

 
/ / /

T

i i i 

          (7) 

where P+/−  and Q+/−  are positive and negative sequence 

active and reactive power, p2ω and q2ω are oscillation terms of 

active and reactive power, v+/−  and i+/−  represent for the 

positive and negative sequence components of voltage and 

current, respectively, and ⊥ denotes the corresponding 

orthogonal vector. 

From (3) to (7), it can be seen that the active and reactive 

power in positive and negative sequence are independent from 

each other. Consequently, different control strategies can be 

designed to separately control the positive and negative 

sequence power regarding different applications, e.g., 

maximum positive sequence voltage restoration, maximum 

voltage unbalance mitigation, and so forth. Note that the 

presence of oscillating power (p2ω and q2ω) is due to the 

interaction between voltage and current in different sequences. 

The power flow between the converter and the grid is shown 

in Fig. 3. In the figure, vg and vc are the grid voltage and 

 
Fig. 3. Power flow diagram between the converter and the grid. 

 
Fig. 4. Steady-state phasor diagram with only reactive current injection under 

complex line impedance condition. 

 
Fig. 5. Steady-state phasor diagram with both active and reactive current 
injection under complex line impedance condition. (a) positive sequence 

diagram and (b) negative sequence diagram. 

converter voltage, respectively. Zg and Zo are the grid 

impedance and the converter closed-loop output impedance, 

respectively. 

Generally, Zg and Zo are considered mainly inductive due to 

the large output inductor [24]. However, this is not always true, 

since Zo also depends on the adopted control strategy [25], 

while Zg can be mainly resistive in low-voltage grids [18]. In 

fact, MGs may locate far from the grid, where non-negligible 

inductive and resistive line impedance may also present [26]. 

Due to the aforementioned facts, line impedance is considered 

complex in this paper. In this case, if only reactive current is 

injected during the voltage sag, the compensated voltage will 

not be in phase with vg, as shown in Fig. 4. In this figure, vsag is 

the depth of the voltage sag, vLg is the voltage drop on grid 

impedance, Iinjected and vcom are the compensation current and 
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Fig. 6. Hierarchical control scheme. 

voltage, respectively, while Io1 and Io2 are the converter output 

current before and after the sag, respectively. 

Positive and negative sequence phasor diagrams with both 

active and reactive current injection are illustrated in Fig. 5. 

Note that θ is the angle of line impedance. In Fig. 5(a), phase 

angle of the injected current is θ rather than 90°, i.e. the 

converter should inject not only reactive power, but also active 

power to support the positive sequence voltage. Meanwhile, 

Fig. 5(b) shows that the angle between negative sequence 

voltage and injected current is 180°−θ, i.e., the converter should 

inject negative sequence reactive power and absorb negative 

sequence active power simultaneously. 

Thus, not only positive sequence active/reactive power, but 

also negative sequence active/reactive power is needed to 

recover and balance the load side voltage under asymmetrical 

voltage sags. Therefore, by using the negative/positive 

sequence droop control, which is proposed in Section V, the 

converter voltage reference can be modified to control the 

power injected by the converter. 

Based on the abovementioned analysis, the injected current 

during the voltage sag can be written as 

 2o L gI I I   (8) 

 
sag sag

g g g

g g

v v
I I I

Z Z

 

      (9) 

where Ig
 + and Ig

 − are the injected positive and negative sequence 

current, respectively, vsag
 +  and vsag

 −  are the positive and negative 

sequence sag voltage, respectively. 

From (8) and (9), it can be seen that during the voltage sag, 

the amount of positive and negative sequence current needed to 

restore the positive sequence voltage or eliminate the negative 

sequence voltage is inversely proportional to the grid 

impedance Zg. Thus, an extra inductor is implemented between 

the MG and the grid to limit the grid current and also to emulate 

the leakage inductor of the isolation transformer. However, this 

inductor will also induce extra voltage drop across it which is 

not preferred in normal conditions. Consequently, its value 

should be chosen carefully based on voltage and current ratings 

of the system. 

IV. HIERARCHICAL CONTROL SCHEME 

In this paper, the grid-interactive MG includes several 

voltage-controlled converters connected to the grid through LC 

filters, as shown in Fig. 6. A hierarchical control algorithm 

[27], [28] which consists of primary and secondary control is 

proposed in this paper. 

A. Primary control loop 

As shown in Fig. 6, the primary controller includes 

voltage/current inner loop, droop control loop and virtual 

impedance loop. These three control loops are implemented in 

two-phase stationary reference frame (αβ) to reduce 

computational burden. 

Both voltage and current controllers are based on 

proportional+resonant (PR) controllers to provide satisfactory 

tracking performance for positive and negative sequence 

sinusoidal signals [29], [30]. 

PI based droop control [30], [31] is implemented during 

normal operation mode, since the whole system operates in 

grid-interactive mode. Note that the active and reactive power 

is calculated in primary loop and is followed by low pass filters 

with 5Hz cut-off frequency which can filter out the power 

ripples. 

A virtual impedance loop [28] is implemented to enhance the 

power sharing accuracy among the distributed converters, and 

also to make the system more damped without sacrificing 

system efficiency. 

B. Secondary control loop 

Secondary control mainly contributes to the positive and 

negative sequence power injection under voltage sags in terms  
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Fig. 7. Power calculation block. 

Fig. 8. Negative sequence power reference generation. 

of sending voltage sag compensation signals to primary control 

loop. In this control loop, another power calculation block is 

used to calculate the positive/negative sequence power by 

measuring the PCC voltage and current. Then, the calculated 

powers are afterwards sending to the proposed 

positive/negative sequence droop controller to generate the 

positive/negative sequence voltage amplitude and phase signal. 

Finally, the generated signals are transformed into αβ 

coordinates and added to the voltage loop controller. Detailed 

design procedure of the proposed controller will be shown in 

the next section. Considering that the duration of grid faults are 

usually very short, high bandwidth communication link is 

needed between primary and secondary controller, and in the 

experiments it is emulated in dSPACE with 10kHz update rate. 

The detailed description of the power calculation block is 

shown in Fig. 7. Two d-q transformation blocks followed by 

notch filters are employed to extract interested sequence 

components. Then, by utilizing the extracted components, 

positive/negative sequence power can be obtained. Note that 

the extracted negative sequence grid voltage also determines 

whether to activate the secondary controller. Detailed design of 

the filter can be found in [32]. It is worth mentioning that the 

negative sequence power reference can be calculated by using 

the strategy shown in Fig. 8. In such a way the voltage 

unbalance can be suppressed to a large extent. 

V. PROPOSED LVRT CONTROLLER 

Once voltage sag occurs, the positive and negative sequence 

voltage can be deduced as 

P SaV mV   (10) 

N SaV nV  (11) 

where V⃗⃗ Sa

+
 represents pre-fault voltage vector of phase A, while 

m and n are constants which are related to the type and depth of 

the voltage sag [33]. 

As illustrated in [33], along with the drop of positive 

sequence voltage, negative sequence voltage will also appear. 

Thus, it is necessary to inject not only positive sequence power, 

Fig. 9. Negative sequence equivalent circuit. 

but also negative sequence power when asymmetrical sag 

occurs. The design of the positive sequence droop control will 

not be discussed here, since it is well-addressed in the previous 

literatures [18], [27]−[29]. 

In order to control the injected negative sequence power and 

eliminate the circulating current among the converters, a 

dedicated negative sequence droop controller is designed in this 

section, and the equivalent circuit of the studied system is 

depicted in Fig. 9. 

From Fig. 9, the output current Ion
 −  injected by the converter 

can be given by 

0cn n g

on

g

v v
I

Z





  


  




(12) 

where vcn
 −  and δn

−
 are the negative sequence amplitude and

phase angle of the n
th

 converter output voltage while vg
 − is the

negative sequence amplitude of the grid voltage, θ is the phase 

angle of the grid impedance. Note that phase angle of common 

AC bus voltage is taken as the phase reference. 

Then, the complex power Sn
−  injected by the converter is

calculated as 

( )n cn on n nS v i P jQ         (13) 

Finally, the negative sequence active power Pn
− and reactive

power Q
n

− injected by the n
th

 DG converter can be obtained as

(14) and (15), respectively. 
2( )

cos cos sin sin
cn g g cn g

n n n

g g g

V V V V V
P

Z Z Z
   

    
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 

   
 
 

 (14) 

2( )
cos sin sin cos

cn g g cn g

n n n

g g g

V V V V V
Q

Z Z Z
   

    

  
 

   
 
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 (15) 

It is clear from (14) and (15) that Pn
−  and Q

n

−  depend

simultaneously on both Vcn
 − and δn

−
. For simplifications, Pn

− and

Q
n

− can be transformed to variables [29] defined as Pd
− and Q

d

−,

which are independent from the magnitude and phase of the 

grid impedance Zg. The transform equation is given by 

sin cosd n nP P Q      (16) 

cos sind n nQ P Q      (17) 

By substituting (16) and (17) into (14) and (15), and 

considering δn
−

 is small enough, the following expressions can

be yielded 
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Fig. 10. Proposed LVRT control block based on negative sequence droop method. 

 
Fig. 11. Steady-state negative sequence droop characteristics. 
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From (18) and (19), it can be concluded that the decoupled 

power Pd
−  and Q

d

−  predominately dependent upon the power 

angle δn
−

 and voltage amplitude Vcn
 −, respectively, and thus can 

be implemented in the droop method to control the active and 

reactive power flow. Consequently, the negative sequence 

power controller is proposed by introducing artificial droops 

into negative sequence output voltage reference, i.e., Pd
−– 𝛿n

− 

and Q
d

− − Vcn
 −  droop schemes. The proposed control law is 

expressed in (20) and (21), and the corresponding block 

diagram is depicted in Fig. 10. 

  0 ( )I

p d ref

m
m P P

s
 



         (20) 

  0 ( )I

p d ref

n
V V n Q Q

s



         (21) 

where δ
−

 and V−  are the amplitude and phase angle of the 

negative sequence voltage reference, while V0
 − and δ0

 −
 are the 

nominal value of the negative sequence voltage amplitude and 

phase angle, Pref
−

 and Q
ref

−  are respectively the reference of 

fundamental negative sequence active and reactive power, mp
−, 

mI
− and np

−, nI
− are the proportional and integral coefficients for 

the active and reactive power controllers, respectively. 

Moreover, it needs to be clarified that since both primary power 

controller and the proposed LVRT controller changes the 

voltage reference amplitude and phase angle, thus the primary 

power controller should be disabled if secondary controller is 

activated to avoid coupling between these two controllers. 

Furthermore, if θ is 90°, the decoupled power will be identical 

with the real output power of the converters, and thus (20), (21) 

can still be derived from (14), (15) with the same form expect 

Pd
−  and Q

d

−  are replaced by Pn
−  and Q

n

− , respectively. These 

indicate that the proposed control strategy can also function 

properly under inductive/resistive line impedance. 

The steady-state negative sequence droop characteristics are 

shown in Fig. 11. Obviously, if the proportional droop 

coefficients mp
− and np

− increase, better power sharing accuracy 

can be achieved at the expense of degrading the voltage 

regulation. This inherent tradeoff can be a serious limitation in 

terms of transient response and power sharing accuracy. In 

order to fully control the transient behaviors of the converter, 

the integral coefficients mI
− and nI

− are introduced. These two 

coefficients give us extra freedoms to modify the transient 

response, meanwhile keeping constant the steady-state 

frequency and amplitude of the output voltage. 

VI. SMALL SIGNAL ANALYSIS AND CONTROL PARAMETERS 

DESIGN 

Small signal model and stability analysis of the proposed 

negative sequence controller are yielded to show the stability of 

the system and to properly design the control system 

parameters. 

In order to realize the control strategy defined by (20) and 

(21), the power injected to the grid should be calculated. And 

due to the low pass filter used in this calculation, the bandwidth 

of the inner voltage and current control loops are much higher 

than that of the outer power control loop. Therefore, the 

inverter can be assumed as an ideal voltage source which output 

voltage is directly governed by the references generated by the 

proposed control law. Then, the small signal dynamics of the 

filtered negative sequence active and reactive power can be 

obtained by linearizing (18) and (19). 

 
sin coscn g g cnc

d

c g

V V V V
P

s Z

  



     


  

   
   

 (22) 

 
cos sincn g g cnc

d

c g

V V V V
Q

s Z

  


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
  

   
   

 (23) 

where Δ denotes perturbed values while uppercase variables 

indicates the equilibrium point values, ωc is the cutoff angular 

frequency of the low pass filters. 
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Fig. 12. Root locus diagrams. (a) 0.0001 ≤ mp

− ≤ 0.01 and (b) 0.0001 ≤ mI
− ≤ 0.01. 

 
Fig. 13. Root locus diagrams. (a) 0.0001 ≤ np

− ≤ 0.1 and (b) 0.0001 ≤ nI
− ≤ 0.1. 

 
Fig. 14. Root locus diagram when 0.1mH ≤ Lg ≤ 10mH. 

By linearizing (20) and (21), we have 

 ( )I

p d

m
m P

s




        (24) 

 ( )I

cn p d

n
V n Q

s



        (25) 

Substitute (22), (23) into (24), (25) respectively, we obtain 

  ( ) cI

p pe cn pd

c

m
m k V k

s s


 





         


 (26) 

  ( ) cI

cn p qe cn qd

c

n
V n k V k

s s








         


 (27) 

where 

sing

pe

g

V
k

Z

 

  

cosg cn

pd

g

V V
k

Z

  

  

cosg

qe

g

V
k

Z

 

  

sing cn

qd

g

V V
k

Z

  
  

Finally, the small signal dynamics of the closed-loop system 

can be obtained by substituting (27) into (26) 

 
4 3 2 0s as bs cs d                   (28) 

where 

 2 p qe p pd ca n k m k      

 

 

21 p qe p pd p p pd qe p p pe qd c

I pd I qe c

b n k m k m n k k m n k k

m k n k




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 
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

 

  2
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It is worth noting that the small signal analysis under 

inductive and resistive line impedance is not presented, since 

they are merely a special case of complex line impedance. By 

analyzing (28), the stability of the closed-loop system can be 

evaluated, and the root locus diagrams are shown in Figs. 12-14 

by using the parameters listed in Table I. It can be observed 

from Fig. 12(a) that faster system dynamic can be obtained by 

increasing mp
−. The root locus in Fig. 12(b) shows that by 

λ3 λ4

λ1

λ2

λ1

λ1

λ2

λ3

λ2
λ4

(a) (b)

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4
-2 -1.5 -1 -0.5 0

1.5

1

0.5

0

-0.5

-1

-5
-1.5

0.5 -4.5 -4 -1 0-3.5 -3 -2.5 -2 -1.5 -0.5

λ3 λ4

λ1

λ2

λ3 λ4

λ1

λ2

4

-7 -6 -5 -4 -4

4

3

2

1

0

-1

-2

-3

-4
0-3 -2

(a)
-1

3

2

1

0

-1

-2

-3

-4
-3.5 -3 0-2.5 -2 -1-1.5

(b)
-0.5

λ3 λ4

λ1

λ2

4

3

2

1

0

-1

-2

-3

-4

5

-0.5 0-2 -1-1.5-3 -2.5-4 -3.5
-5

-4.5



IEEE Transactions on Power Electronics 

 

8 

 
Fig. 15. Output current waveforms of the converters. (a) converter 1 and (b) 

converter 2. 

 
Fig. 16. Active power of the converters. (a) active power and (b) reactive 

power. 

 
Fig. 17. Grid voltage with 0.1 p.u. voltage sag. (a) grid voltage and (b) zoomed 

grid voltage. 

 
Fig. 18. Load voltage during the sag. (a) load voltage and (b) zoomed load 
voltage. 

 
Fig. 19. Output current of the converters. (a) converter 1 and (b) converter 2. 

 

 
Fig. 20. Positive sequence output power of the converter. (a) active power and 
(b) reactive power. 

 
Fig. 21. Negative sequence active power and reactive power. 

increasing mI
−, a near second-order behavior is obtained. Also, 

the system dynamics by varying np
− and nI

− are shown in Fig. 

13. Finally, these four parameters can be selected by locating 

the poles to where a fast and stable system can be obtained. 

The stability of the system has also been evaluated by 

varying the grid inductance Lg. Fig. 14 shows that the system is 

stable even if the value of Lg is 0.1 mH. This is because that the 

grid resistance provides enough damping to the system. 

VII. SIMULATION AND EXPERIMENTAL RESULTS 

Simulation was conducted for a two-parallel-inverter system 

connecting to the grid with the configuration shown in Fig.6. 

Specifications of power stage and control system are given in 

Table I. Note that per unit value is used in the table, and the 

base value for power and voltage is 2.2 kVA and 398 V, 

respectively. 

Figs. 15 and 16 show the transient response of the converter 

output current and active power with the load step from 0 to 

1500 W at t = 2.5s. These results show a fast dynamic response 

of the proposed controller for load step changes, also the equal 

current sharing is validated. 

Simulation has been tested also in the presence of a 0.1 p.u. 

voltage sag, which occurs at t = 3.5s (shown in Fig. 17). Fig. 18 

depicts three-phase load voltage during the voltage sag. It is 

obvious that the load voltage increased to 320V while the 

negative sequence voltage becomes almost negligible. 

Fig. 19 shows the converter output current. As it can be seen, 

the current can be shared equally between the converters. The 

positive/negative sequence active and reactive powers injected 

to the grid are shown in Fig. 20 and Fig. 21, respectively. It can 

be seen that the converter can provide appropriate positive and 

negative sequence power according to the depth of the voltage 

sag. 

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)
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Fig. 22. Experimental testbed. 

TABLE I 

SYSTEM PARAMETERS 

Power Stage Parameters 

Parameters Symbol Value 

Converter Side Inductors L
* 

con 0.008 p.u. 

Grid Side Inductors L
* 

g  0.008 p.u. 

Capacitors C* 4.9 p.u. 

Load R* 1 p.u. 

Grid Impedance Z
* 

g  0.028+j0.028 p.u. 

Nominal Voltage V* 1 p.u. 

DC Voltage V
* 

DC 1.63 p.u. 

Nominal Frequency f 50 Hz 

Switching Frequency fs 10 kHz 

Primary Controller 

Parameters Symbol Value 

Voltage Loop Controller kvp, kvr 0.05, 10 

Current Loop Controller kip, kir 10, 600  

Proportional Phase Droop mP 0.00005 

Integral Phase Droop mI 0.001 

Proportional Voltage Droop nP 0.005 

Integral Voltage Droop nI 0.01 

Virtual Impedance Z
* 

v  0.014+j0.014 p.u. 

Secondary Controller 

Parameters Symbol Value 

Positive Sequence Droop Controller 
m

+ 

p ,m
+ 

I , 

n
+ 

p , n
+ 

I  

0.00005, 0.001, 

0.01, 0.07 

Negative Sequence Droop Controller 
m

− 

p ,m
− 

I , 

n
− 

p , n
− 

I  

0.0005, 0.035, 

0.003, 0.0006 

A lab-scale MG was also built in the laboratory [34] to 

validate the effectiveness of the proposed control strategy. The 

MG platform consists of three Danfoss three-phase three-leg 

converters with LC filters. Detailed electrical configuration can 

be seen in Fig. 6. One of the converters is utilized to emulate the 

grid along with a Regatron bidirectional DC source and extra 

grid impedances, while the other two converters are 

programmed with the proposed controller. An unbalanced load 

is connected between phases B and C to emulate local loads. 

The whole experimental test bed is shown in Fig. 22. Note that 

the control system is compiled to dSPACE system via 

Matlab/Simulink. 

 
Fig. 23. Grid voltage with a two-phase 0.2 p.u. sag. 

Performance of the proposed control strategy has been tested 

in the presence of a 0.2 p.u. two-phase voltage sag. As shown in 

Fig. 23, the sag occurs at t = 0.1s and clears at t = 0.6s. Based on 

the analysis presented in previous sections, the converter 

should provide positive sequence active/reactive power and 

negative sequence active/reactive power to compensate the 

voltage sag. It is worth noting that considering the converter 

capacity limitations, the output current is limited at 6A. Bigger 

inductors and higher converter capacity will contribute to 

restore the grid voltage, as explained in the previous sections. 

As shown in Fig. 24, the active and the reactive power 

injected by the converters climb rapidly from 0W/Var to 

1200W/Var in about 0.2s once the fault is detected. Also, it can 

be seen that the injected power is well shared between the two 

converters. Note that the value of k in (1) is set to 3 which 

means the power reference is 1200 W/Var. Besides, output 

power of the converters is set to 0 intentionally before t = 0.1s, 

since a power step from 0 to the required value is more 

challenge for the designed control system and during this 

period the load is energized by the grid. Fig. 25 depicts the 

negative sequence active and reactive power injected to the grid 

during the voltage sag. In the studied case, both negative 

sequence active and reactive power are regulated to 50W/Var 

due to the limitation of the converter capacity. 

From Figs. 24 and 25, it is obvious that the converter can 

provide appropriate positive and negative sequence power 

according to the depth of the voltage sag. In such a way, the 

load voltage can be restored, and thus the customer side 

electrical equipment can be protected from potential damages. 

To demonstrate the negative sequence voltage elimination 
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Fig. 24. Positive sequence output power of the converters. (a) active power and (b) reactive power. 

 
Fig. 25. Negative sequence output power of the converters. (a) active power and (b) reactive power. 

 
Fig. 26. Voltage unbalance factor. (a) grid voltage and (b) load voltage. 

 
Fig. 27. Load voltage during the voltage sag. 

performance, voltage unbalance factor [35], [36] of the grid 

voltage and load voltage are depicted in Fig. 26. As it can be 

seen, with the negative sequence power injection, load voltage 

unbalance factor decreases dramatically. 

The load voltage is depicted in Fig. 27. Compared with the 

grid voltage shown in Fig. 23, the load voltage is boosted up 

and is more balanced thanks to the injected positive and 

negative sequence power. 

In order to examine the dynamic response of the proposed 

LVRT controller, the converters output current waveforms are 

illustrated in Fig. 28. As can be seen, the current reaches the 

steady-state in about 5 cycles, and goes back to the pre-fault 

state after the sag is cleared. 

In Fig. 29, phases A, B, and C output current of the 

converters are shown separately to examine the current sharing 

accuracy of the proposed control strategy. It can be seen that the 

current can be well shared between the converters. Note that a 

small difference exists in the current magnitude since the line 

impedances of the converters are not identical. 

Moreover, since a severe grid fault (e.g. more than 2s) may 

occur in real applications, and under this circumstance, the MG 

should disconnect with the grid for safety considerations. Thus, 

experiments regarding transition from grid-interactive to 

islanded mode are performed to test the stability of the 
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Fig. 28. Output current waveforms. (a) converter 1 and (b) converter 2. 

Fig. 29. Output current of converters 1 and 2. (a) phase A, (b) phase B and (c) phase C. 
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Fig. 30. Output current waveforms in transition from grid-interactive to islanded mode. (a) converter 1 and (b) converter 2. 

Fig. 31. Load voltage in transition from grid-interactive to islanded mode. 

proposed LVRT controller. Figs. 30 and 31 show the 

corresponding experimental results. The disconnection of the 

MG occurs at t = 0.5s. As can be seen in Fig. 30, the unbalanced 

load can be equally shared between the converters even after 

disconnected with the grid. Also, the fast response allows load 

voltage returns to normal operation within 2 cycles, which is 

illustrated in Fig. 31. 

VIII. CONCLUSION

In this paper, a negative sequence droop method based 

LVRT control algorithm has been proposed for grid-interactive 

MGs. Compared with the conventional LVRT strategies, the 

proposed control algorithm is capable of utilizing 

droop/voltage-controlled converters, which is widely used in 

MGs, to provide positive/negative sequence power during 

voltage sags. In order to explore the effect of line impedance to 

the system, system phasor analysis is presented under 

asymmetrical voltage sags. Furthermore, a power decoupling 

strategy is adopted to control the output power of the converter. 

The proposed control structure includes two levels: the primary 

inner loop level and secondary control level. The primary level 

mainly takes care of the bus voltage regulation and the current 

sharing among converters, while the secondary controller 

embeds the converter with LVRT capability. The effectiveness 

of the control scheme has been validated with a lab-scale MG. 

The obtained experimental results show that the negative and 

positive sequence power can be injected properly according to 

the grid code requirements while ensuring the current sharing 

accuracy among the converters. 
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