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Abstract 
In large and complex HVAC systems, control optimization is always adopted to improve the 
operational efficiency since a small increase in the operational efficiency may lead to 
substantial energy savings. As the HVAC system becomes more and more complex, the real-time 
optimization of the system operation becomes a challenge due to the computational complexity. 
Almost all of the developed optimization methods are time-driven, in which the optimization is 
driven by “time” with a fixed optimization frequency. It is well-known that optimization should 
be done when the operational condition experiences a significant change, which may cause the 
current settings not optimal. Hence, “time” may not be the real optimization driver and the 
fixed optimization frequency may lead to unnecessary or delayed actions. To overcome these 
limitations, this paper proposes an event-driven optimization method, which originates from the 
event-driven control in control engineering. The key idea of the event-driven method is to use 
“event”, rather than “time”, as the optimization trigger. The “event” should be a well-defined 
condition, reflecting the system state or the state change. Optimizations will be conducted only 
when predefined events happened. The computation load and the energy saving of the proposed 
method are compared with that of a time-driven method by simulation. The results show that the 
computation loads of the proposed method are greatly reduced (up to 90%) compared with the 
time-driven method. The proposed method saves 10.65% of energy consumption based on the 
benchmark (no optimization is conducted), while the time-driven method saves 10.01%.  

Keywords - HVAC optimal control; event-driven optimization; complex HVAC systems 

1. Introduction  

HVAC systems contribute the major part (20-50%) of building energy 
consumption [1]. It is worthwhile to consider the optimal control since a small increase 
in operating efficiency may lead to substantial energy savings [2], especially in 
complex HVAC systems. The optimal control of HVAC systems is achieved by finding 
optimal control settings and operation modes under dynamic working conditions [3]. 
With the increasing complexity of HVAC systems, the real-time control optimization of 
the system becomes a challenge in practice [4] because of the huge computation 
requirement. Plenty of optimization methods have been developed in the past either in a 



component level, a sub-systems level or a whole-system level. ASHRAE handbook [3] 
reviewed the publications since 1980s. New developments (till 2008) were surveyed by 
Wang and Ma [5].   

Almost all of the developed methods belong to the type of time-driven 
optimization, in which the optimization is driven by “time” (often in a fixed frequency). 
For instance, in [6], the supply air temperature set-points and supply air static pressure 
set-points were updated every hour. A reduction of 7.66% in total energy consumption 
was achieved. Sun et al. [4] proposed a multiplexed optimization scheme which 
optimizes and updates one decision variable every 20 minutes. The results show that the 
computation load is drastically reduced together with the improved operation stability 
and energy performance.  

These studies have demonstrated the potential savings associated with the control 
optimization in HVAC systems. However, it could be found that “time” may not be the 
real driver for a certain control optimization in HVAC systems. It is well-known that 
optimization should be done when the operational condition experiences a significant 
change, which may cause the current control settings or operation modes not optimal 
any more. Hence, defining the optimization driver based on the operational condition 
should be more appropriate than “time”. Indeed, the fixed optimization frequency of the 
time-driven method may lead to unnecessary or delayed actions in real practices. For 
example, in the time-driven method, optimizations are also conducted when there is no 
need to (e.g., the operational condition is stable). This is surely an unnecessary wastage 
of resources like computation load and communication bus load [7]. Inevitably, this 
would also cause unnecessary changes of the actuator and therefore leads to 
unnecessary energy consumption as well as actuator attrition [8]. On the other hand, 
when there is a need to do optimizations (e.g., the operational condition experiences a 
critical change), optimizations may not be conducted on time because it did not happen 
exactly at the scheduled optimization time instants. Such delayed actions will cause the 
system operating at non-optimal settings for a period of time, which deteriorates the 
energy performance. Of course, the optimization frequency can be increased so that the 
delay can be reduced, but the computation load would also increase, which is bad. 
Meanwhile, frequent updating the set-points would cause stability issues and bring in 
disturbance to the control systems which, in turn, would also affect the system 
performance [9].  

Considering the limitations mentioned above, the time-driven optimization may not 
be a very good solution. Thus, how to find a more suitable optimization driver, rather 
than simply using “time”, becomes an interesting issue. With the recent development in 
control engineering, some new ideas are inspiring and some results are quite promising. 
As we known, the majority of the research and work in automatic control considers 
periodic control (equi-distant sampling interval), mainly due to the existence of a well-
established system theory and sampled control systems (i.e., periodic or time-triggered) 
[10]. However, there are cases where it is interesting to consider event-driven control 
systems in which the action is event-triggered rather than time-triggered. Actually, what 



drives many of the processes are instantaneous “events” [11]. Much of the technology 
we have invented is event-driven, e.g., communication networks. In building energy 
control, actions are taken only when the networked sensors detect some “meaningful” 
changes in the environment, such as the temperature or humidity is passing some levels. 
Therefore, the HVAC optimal control problem actually has the event-driven nature. For 
applications, several case studies in control engineering have already shown that the 
computation load can be reduced effectively while still ensuring the control 
performance. For example, 50% of computation reduction was achieved in [12] and 70-
80% of computation reduction was achieved in [13], while the control performance was 
guaranteed.   

Unlike the conventional method that uses “time” to trigger the optimization action, 
this research aims to develop a control optimization method in which actions are 
triggered by the “event”. The “event” should be a well-defined condition, which can 
reflect the system state or the state change. The control policy is defined such that 
optimizations are conducted only when predefined events happened. The main 
contribution of this paper is that we demonstrate that the event-driven optimization 
works in a complex HVAC system, which suggests that the proposed method could be 
a more reasonable and efficient method for HVAC optimal control compared with the 
time-driven method. Section 2 presents the basic idea of the event-driven optimization 
together with the event definitions and the methodology of performance comparison. 
Case studies are given in Section 3, which contains the introduction of the HVAC 
system, the simulation platform, the mathematical problem formulation and the 
implementation procedure. Results and analyses are given in Section 4, while 
conclusions are drawn in Section 5. 

2. Event-driven Optimization  

2.1  Basic Idea 

 
Fig. 1  Diagrams of time-driven and event-driven approaches. (t1≠t2≠t3) 

The difference between the time-driven and the event driven optimization is 
illustrated in Fig. 1. The time-driven approach conducts optimizations in a fixed 
frequency (time interval “t” is equal) no matter how the condition changes, while the 
event-driven approach triggers optimizations only when certain events happened. 



Normally, the time intervals between events are different. A possible advantage of the 
event-driven approach is that the optimization frequency could adapt to the changing 
operational condition (if events are properly defined), which may avoid unnecessary or 
delayed optimization actions that the time-driven approach may encounter.   

2.2  Event Definitions 

In the proposed event-driven approach, the event definition will drastically affect 
the optimization performance since it determines when to take actions. The overall 
strategy is defined as: when there is a “meaningful change” that will affect the system 
performance happened, an optimization is triggered; otherwise, no action is taken.  Here, 
events are defined to capture the “meaningful change” in the HVAC system. In order to 
show the feasibility of the proposed method, two simple events are defined based on 
domain knowledge. 

(1) Chiller on/off status change: The reason is that the load distribution will have a 
sudden change when turn on/off a chiller or chillers. Thus, an optimization is needed.  

(2) Part-load ratio (PLR) change: The reason is that the PLR has a significant effect 
on the component (e.g., chiller [14]) efficiency. Basically, the algorithm will check the 
PLR every 20 minutes and compare the current PLR with the PLRs in the past 30 
minutes. If the maximal deviation is greater than a threshold, an optimization is 
triggered. The initial threshold for PLR change is chosen to be 10%. Here, checking the 
PLR value every 20 minutes is used to prevent the potential frequent event occurrence.  

2.3  Methodology of Performance Comparison 

The performance of the proposed event-driven optimization method is evaluated by 
comparing with the conventional time-driven optimization method using computer 
simulation since it is cheaper and faster compared with experiments [15]. The virtual 
HVAC system representing the real building HVAC system (modeled in TRNSYS [16]) 
is used to produce the online operation data (i.e., status data), while the control settings 
are computed in a separate MATLAB platform. The computation load and the energy 
performance of different methods are compared based on two indices.  

The first index is the time used to search the optimal solutions. The computation 
load is measured by the time required by the optimization method in searching the 
optimal solution. The smaller the time is, the lighter the computation load is. The 
functions Tic and Toc in MATLAB are used to record the time duration, where Tic 
recorded the start time of the optimization and Toc recorded the elapsed time. The 
second index is the daily energy saving percentage. This index is used to indicate the 
energy performance. A larger energy saving percentage means a better performance.  

3. Case Studies 

3.1  System Structure and Fundamental Controls 

In case studies, the HVAC system consists of a condenser water loop, a chiller 
plant, a chilled water primary loop, a chilled water secondary loop and air distribution 



sub-systems. Fundamental controls of different sub-systems used in this study are 
presented as follows. 

Chiller sequencing control determines which and how many chillers should be 
switched on or off according to the current load condition. Total cooling load based 
sequencing control is used, in which the sequence is determined according to the 
instantaneous cooling load  Qch measured by (1). The calculated cooling load Qch is 
compared with the thresholds (Qon/off 

z ) to determine the operation of chiller sequence. 
Generally, a dead band is adopted in this control to avoid frequent switch actions when 
the load is at the boundary. The switch-on/off thresholds are calculated in (2) and (3), 

 ( )sup,, chwrtnchwwpch TTMCQ −=  (1) 

 ( )banddeadQzQ rated
on
z _1+××=   (2) 

 ( ) ( )banddeadQzQ rated
off
z _11 −××−=   (3) 

, where Cp is the specify heat of water; Mw is the water mass flow rate; Tchw,rtn
 and  

Tchw,sup are the chilled-water return and supply temperature; Q on 
z is the switch-on 

threshold; Qoff 
z  is the switch-off threshold; z is the number of chillers in operating; Qrated

 

is the rated cooling capacity of chiller (here, each chiller has the same rated cooling 
capacity); dead_band is the dead band which is a user-defined number between 0 and 1. 
If the measured cooling load is larger than a predefined threshold and this state lasts for 
a period longer than a time limit, a chiller and its interlocked pump(s) will be switched 
on. If the measured cooling load is smaller than a predefined threshold and this state 
lasts for a period longer than a time limit, a chiller and its interlocked pump(s) will be 
switched off. 

Cooling tower sequencing control determines which and how many cooling towers 
should be switched on according to the amount of the heat required to be rejected. The 
number of cooling towers Nct is determined simply by the number of operating chillers 
as shown in (4), where α depends on system configuration.  

 chct NN α=   (4)                                           
Controls of critical temperatures: cooling-water supply temperature is controlled by 

adjusting the frequency of the cooling tower fans; chilled-water supply temperature 
from chiller(s) is controlled by modulating the flow rate of refrigerant inside the 
refrigeration cycle; chilled-water supply temperature from heat exchanger(s) is 
controlled through adjusting the water pump speed; supply air temperature is controlled 
through adjusting the chilled water flow rate through the cooling coils in the AHUs. 

3.2  Simulation Platform (TRNSYS Model) 

The TRNSYS model was established based on a real building in Hong Kong. The 
central chiller plant contains six identical water cooled centrifugal chillers with the 
rated capacity of 7230 kW. Each chiller is interlocked with two constant speed water 
pumps (i.e., chilled water pump in primary side and cooling water pump). The rated 
flow rates of the chilled water pump and cooling water pump are 345 l/s and 410 l/s 
respectively. Heat exchangers are adopted to deliver the chilled water from lower to 
upper floors. The returned chilled water is distributed evenly to the operating chillers. 



Eleven identical cross-flow cooling towers are used with the nominal water flow rate of 
250 l/s. The validated models of centrifugal chillers, cooling towers and pumps 
developed in [17, 18] are adopted. The standard component Type 699 and Type 508a in 
TRNSYS are directly used to model the heat exchangers and the AHUs. A time delay 
model, i.e., Type 661, is used to mimic the transportation time delay of the chilled 
water and the cooling water. In order to track the optimal set-points, several PI/PID 
controllers are used in local control loops. The first PI controller (P= -0.95, I=35s) is 
used to maintain the cooling-water supply temperature at its set-point. The second PID 
controller (P= -0.9, I=10s, D=5s) is adopted to control the chilled-water supply 
temperature in the secondary loop. The third PI (P= -0.3, I=2s) controller is used to 
control the supply air temperature from the AHUs. These PI/PID parameters are tuned 
through the trial-and-error method and kept unchanged when running with different 
optimization methods.  

3.3  Mathematical Problem Formulation 

The optimal settings for local control loops are optimized such that the overall 
system power consumption is minimized. For all-electric cooling without thermal 
storage (which is this case), minimizing power requirement at each point in “time” or 
“event” is equivalent to minimizing the power consumption [3]. Thus, the event-driven 
optimization problem can be mathematically represented as follows, 
    ( )UTTTTfPPPPP esaechweprmchwecwetotfanetotpumpetotctetotchetotsys ,,,, ,sec,,,,,,,,,,,,,,, =+++=  (5) 

   ( )
esaechweprmchwecw TTTT

etotsysesaechweprmchwecw PTTTT
,sec,,,,, ,,,

,,
*

,
*

sec,,
*

,,
*

, minarg,,, =     (6) 

, subject to operational constraints and comfort constraints; where e is the event; P 
is the power and T is the temperature; subscripts sys, tot, ct, pump and fan represent 
system, total, cooling tower, pump, and fan; subscripts  cw, chw, prm, sec and sa 
represent cooling water, chilled water, primary, secondary and supply air; for instance, 
Tcw,e is the cooling-water supply temperature set-point at event e; T* 

e  is the optimal 
temperature set-point at event e; U is the vector of uncontrolled variables.  

The operational constraints under the summer condition are shown in (7)-(10). 
Besides, two additional constraints are adopted as shown in (11) and (12). For 
simplicity, the indoor thermal comfort is assumed to be satisfied. 
 CTC ecw °≤≤° 3528 ,   (7) 

 CTC eprmchw °≤≤° 85 ,,   (8) 

  CTC echw °≤≤° 105.6 sec,,   (9) 

 CTC esa °≤≤° 1812 ,  (10)

 CTTT Thresekke °=∆≤−+ 5.0)1(   (11) 

 echweprmchw TCT ,sec,,, 8.0 ≤°+  (12) 



Equation (11) is used to prevent the system instability issues caused by dramatic 
set-point change. If the change is greater than the threshold, it is deliberately set to 
ΔTThres . Equation (12) is to ensure a minimal temperature difference between the 
primary and secondary sides of the chilled water loop. Please note that the system total 
power requirement can be written as a function of four controlled variables and 
uncontrolled variables (equation (5)) based on the component performance models. 

To solve this control optimization problem, a simple search tool, exhaustive search, 
is used. As shown in (11), the temperature set-point difference cannot be larger than 0.5 
°C at each updating. To search the optimal settings (i.e., a combination of four decision 
variables), a step change of 0.1 °C is used here, which is based on a previous study that 
also adopted the exhaustive search method [19].  

3.4  Implement Issues 

The implementation steps of the proposed event-driven optimization were executed 
at each time step and are listed in Table 1. The policy is simply defined as (step 3 in 
Table 1): if any of the two events happened, optimization actions will be taken. 
Otherwise, no action was taken. The simulation time step is 30 seconds and the overall 
simulation period is 24 hours. Uncontrolled variables are building cooling load, ambient 
air wet-bulb and dry-bulb temperature, which are derived from typical daily load and 
weather profiles of a real building in Hong Kong.  

Table 1 Implementation steps 

Function Steps Details 
Check load condition Step 1 Calculate the current PLR 
Change operation mode Step 2 Change the operation modes according to 

section 3.1 when necessary.  
Check event occurrence Step 3 If the “Chiller on/off status change” or 

“PLR change” happened, go to step 4. 
Otherwise, no action was taken. 

Apply constraints Step 4 According to the equations (7)-(12), 
generate all possible set-point 

combinations with 0.1 °C step change.  
Control optimization Step 5 Find out the set-point combination with the 

minimal system power requirement by 
exhaustive search. 

4. Results and Analysis 

4.1  Energy Performance and Computation Load Comparison 

The energy performances of the time-driven method and the event-driven method 
are compared with a benchmark case in which the set-points were fixed at Tcw=30°C, 
Tchw,prm=6°C, Tchw,sec=7.5°C, Tsa=15°C. 



In the time-driven optimization method, different optimization frequencies were 
tested. Firstly, it can be seen from Table 2 that the energy consumption saving increases 
as the optimization time interval decrease, which agrees well with the perception that 
higher optimization frequency leads to higher energy saving [20]. Secondly, using 
“Chiller on/off and PLR change” as the optimization trigger can save 10.65%, which is 
even better than conducting optimizations every 15 minutes (10.01%). A possible 
reason is that the time-driven optimization may have the delay when react to condition 
changes, while the event-driven method can take actions instantly without delay. 
Besides, using “Chiller on/off” only can already save 9.15%, which suggests that the 
“Chiller on/off” is an important event in terms of the energy saving.  

Table 2 Energy performances and computation loads of different strategies 

Op. methods 
Power 

consumption 
(kWh) 

Power 
consumption 

saving 

Op. 
times 

Computation 
time (s) 

Computation 
saving 

No Op. 225129 0.00% 0 0 / 
One Op. / 2hrs 207599 7.79% 12 55.81 82.2% 
One Op. / 1.5hrs 205929 8.53% 16 74.67 76.2% 
One Op. / 1hrs 204518 9.16% 24 107.6 65.6% 
One Op. / 30mins 203034 9.81% 48 198.9 36.5% 
One Op. / 15mins 202604 10.01% 96 313.2 0.0% 
Ch. On/Off 204534 9.15% 7 32.02 89.8% 
Ch. On/Off & 
PLR Change  201150 10.65% 15 70.33 77.5% 

(Note: Ch. = Chiller; Op. = Optimization; hrs = hours; mins = minutes.) 

In the load comparison, “one optimization per 15 minutes” is used as the 
benchmark (as shown in Table 2), based on which the computation saving can be 
calculated. In the time-driven methods, the computation load decreases as the 
optimization frequency decreases, which is normal. Using the event “Chiller on/off” 
can save 89.8% of computation, while 75.5% of computation can be reduced by using 
the event “Chiller on/off and PLR change”. It is noticed that the event-driven method 
only uses few times of optimizations (i.e., 7 and 15 times compared with 96 times in the 
benchmark), which results in a significant computation reduction. The reason is that the 
event-driven method has the ability to avoid unnecessary optimizations (when events 
are properly defined). For example, when the system is running stably, no action will be 
taken and control settings are kept unchanged.   

4.2  Discussions 

In Fig. 2, total power requirements of different methods are plotted against the 
simulation time. It is noticed that the total system power requirements of three 
optimization methods are very similar at the morning and evening periods, while 
considerable power requirement reductions can be observed from 9:00 to 18:00 by 
adopting control optimizations. Comparing with the time-driven method, the proposed 



event-driven method seems like finding a way that can further reduce the power 
consumption. If both energy savings and computation savings are considered in the 
comparison, the event-driven optimization should be better than the time-driven 
optimization since it outperforms almost all the cases of the time-driven method (Table 
2). A main reason is that the event-driven method can avoid unnecessary optimizations. 
Besides, it has a quicker response to the critical condition changes since optimization 
actions can be taken instantly when events happened, while the time-driven method 
may have delay.  

 
Fig. 2 System power requirements of different optimization methods 

5. Conclusions 

In traditional HVAC control optimization methods, “time” is used as the 
optimization driver. Intuitively, if we go one step deeper, we can find that “time” may 
not be the real optimization driver. In this research, an event-driven control 
optimization method has been proposed for complex HVAC systems with the aim to 
conduct optimizations in a more reasonable and efficient manner. The case studies 
suggest that events, like “Chiller on/off status change” and “PLR change”, can be used 
as the optimization triggers. The results show that the computation load of the proposed 
method can be greatly reduced (up to 90%) in comparison with the time-driven method. 
Compared with the benchmark case in which no optimization was used, the proposed 
method achieves a slightly higher daily energy saving percentage (10.65%) than the 
time-driven method (10.01%). It has been found that the control optimization can be 
performed in a more efficient manner with the proposed event-driven approach, and 
thus it is more practical for real-time applications. It should be noted that defining the 
proper “events” requires more sophisticated techniques compared to simply reacting to 
“time”. In the future, the event definitions will be further investigated and more events 



will be defined. For instance, different threshold values of the PLR change can be tested 
to analyze its effect on system performance.  
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