
Aalborg Universitet

CLIMA 2016 - proceedings of the 12th REHVA World Congress

volume 8

Heiselberg, Per Kvols

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Heiselberg, P. K. (Ed.) (2016). CLIMA 2016 - proceedings of the 12th REHVA World Congress: volume 8.
Department of Civil Engineering, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 06, 2025

https://vbn.aau.dk/en/publications/cd42481c-d63a-4aba-9ac7-f779e332efd5


A Building Model Framework for a Genetic Algorithm  
Multi-objective Model Predictive Control 

K. Arendt#1, A. Ionesi#2, M. Jradi#3, A. Singh#4, M.B. Kjærgaard#5,  
C.T. Veje#6, B.N. Jørgensen#7 

#Center for Energy Informatics, University of Southern Denmark 
Campusvej 55, Odense, Denmark 

1krza@mmmi.sdu.dk 
2ai@mmmi.sdu.dk 

3mjr@mmmi.sdu.dk 
4asi@mmmi.sdu.dk 

5mbkj@mmmi.sdu.dk 
6veje@mmmi.sdu.dk 
7bnj@mmmi.sdu.dk 

Abstract 
Model Predictive Control (MPC) of building systems is a promising approach to 
optimize building energy performance. In contrast to traditional control strategies 
which are reactive in nature, MPC optimizes the utilization of resources based on 
the predicted effects. It has been shown that energy savings potential of this 
technique can reach up to 40% compared to conventional control strategies 
depending on the particular building type. However, the effort needed to implement 
MPC in buildings is significant and often considered prohibitive. That is why until 
now fully-functional MPC has been implemented only in few buildings. The 
following difficulties hinder the widespread usage of MPC: (1) significant model 
development time, (2) limited portability of models, (3) model computational 
demand. In the present study a new model development framework for an MPC 
system based on a Genetic Algorithm (GA) optimization is proposed. The framework 
is intended to allow easy model adaptation for new buildings and fast simulations to 
meet the strict performance requirements of the GA optimization approach. This is 
achieved by the introduction of the generic zone model concept and the 
implementation of the Functional Mock-Up Interface, which is used to link the 
models with the MPC system. The framework was used to develop and run initial 
thermal and CO2 models. Their performance and the implementation procedure are 
discussed in the present paper. The framework is going to be implemented in the 
MPC system planned to be deployed in chosen public and commercial buildings in 
Denmark and United States. 
 

Keywords – building energy simulation; model development framework; model 
predictive control; functional mock-up interface; multi-objective optimization 



1. Introduction 

Buildings are responsible for about 40% of energy use in the developed 
countries. While the exact structure of the energy consumption in a building 
depends on the building’s type and function, in most cases the majority of 
energy is used to maintain the indoor thermal comfort, visual comfort and air 
quality. 

Currently, in most buildings the efforts to decrease the energy 
consumption are not well coordinated. Building heating, cooling, ventilation 
and lighting systems are controlled by separate control systems and the 
influence of building dynamics is usually disregarded. While all these efforts 
result in the energy reduction, potentially better results could be achieved by 
a fully integrated approach in which all building systems are managed by a 
single control system being able to predict the overall effect of their 
operation.  

Such an integrated system is currently being developed within the 
COORDICY project [1], a strategic DK-US interdisciplinary research project 
for advancing ICT-driven research and innovation in energy efficiency of 
public and commercial buildings. The system, called Controleum [2, 3, 4], is 
responsible for choosing an optimal control strategy for all HVAC and 
lighting systems in the building based on the predicted future indoor 
conditions. Controleum analyzes each room separately. The time horizon can 
vary from several minutes to few days. The predictions are based on 
numerical simulations, performed for a number of possible control strategies 
in each of the rooms. The Genetic Algorithm (GA) was chosen as the main 
optimization technique. By definition, this kind of a system is considered as 
a Model Predictive Control (MPC) system. 

In contrast to traditional control strategies which are reactive in nature, 
MPC adapts the strategy based on the expected indoor/outdoor conditions 
and predicted events. As an example a standard PID controller applies a 
change in system settings after a discrepancy between the setpoint and actual 
controlled parameter is found. An exemplary limitation of this approach is 
that it does not enable to take the advantage of building thermal dynamics. 
An MPC system, on the other hand, can find that an optimal strategy is to 
take some actions before the expected event, e.g. due the expected rise of the 
electricity price. An exemplary action could be a prior heat up of the indoor 
space and the utilization of the thermal mass during a price peak, or the 
adaptation of the ventilation rate to the expected pricing scheme. It has been 
shown that energy savings potential of this technique can reach up to 40% 
compared to conventional control strategies [5]. 

However, the effort needed to implement MPC in buildings is often 
considered prohibitive. Comparing to traditional control systems, which can 
be easily tuned without any knowledge about the building itself, MPC 
requires a lot of information and sensors in order to be effective. Models 
have to reflect the building structure, topology, material thermal properties, 



system operation, occupancy, equipment and much more. Simulations 
require a weather forecast and occupancy predictions. Sensor readings are 
needed to set initial conditions in simulations.  

Thus, until now fully-functional MPC has been implemented only in 
few buildings [6]. The main implementation difficulties are associated with 
the significant model development time and the limited portability of 
models. Additionally, some optimization techniques, like the Genetic 
Algorithm, require hundreds or thousands of simulations to choose the 
optimum control strategy, which puts an additional constraint on the model 
computational demand. 

The present paper presents a building model framework for a Genetic 
Algorithm multi-objective Model Predictive Control system, being 
developed within the project COORDICY. The framework is intended to 
allow easy model adaptation for new buildings and fast simulations to meet 
the strict performance requirements of the GA optimization approach.  This 
is achieved by the introduction of a generic zone model concept and the 
implementation of the Functional Mock-Up Interface [7]. 

Controleum is planned to be implemented in the chosen case study 
buildings in Denmark and United States. Three main candidates for the 
implementation are the OU44 building at the Odense Campus of the 
University of Southern Denmark (DK) and the Sudardja Dai Hall building at 
the University of Berkeley (USA). 

 

2. Model Development Framework 

Controleum performs the optimization on both the zone and the 
building level. Two kinds of building models are expected to be provided 
for each case study building: zone models, system models (HVAC, 
lighting). The aim of zone models is to predict the indoor environment 
parameters for a specified time horizon depending a chosen control strategy. 
The aim of system models is to calculate the energy consumption of each 
system and to check if the selected control strategy is viable to be applied.  

It was decided to model zones separately rather than using a whole-
building modeling approach. The separation of zones gives a capability to 
iterate over a single zone without the need to re-calculate all zones in a 
building. The model framework has to be flexible enough to enable a rough 
strategy selection for a longer time horizon and a subsequent refinement of 
the strategy in selected rooms for the short-term future. Controleum can 
operate on different time scales in differnet zones.  

Each zone in a building is modeled using the generic zone model 
(GZM). The concept of GZM is that the number of models in a building 
should be reduced to minimum and each model should be simple enough to 
automatically read all input parameters from a Building Information Model 



(BIM) or to enable automatized parameter estimation based on historical 
measurements. In other words, a single model is used to simulate all zones, 
and all information needed by the model to create an instance of a zone is 
supplied by the master environment (Controleum). All model parameters 
needed to instantiate a new zone are treated as model input parameters. 

Since each model type needs different parameters, an additional 
translational layer around the model is needed to convert the available data 
into the usable inputs. For example a simple lumped model based on an RC 
thermal network is defined by resistors and capacitors representing building 
partitions. These parameters are calculated based on the dimensions and 
material parameters (thermal conductivity, specific heat capacity, density) 
of each layer. Depending on the structure of the model, each 
resistance/capacitance can represent one, two or all sourounding partitions. 
Alternatively these parameters can be estimated based on the historical 
measurements using one of the available techniques, for example the 
Unscented Kalman Filter [8]. Both methods, the direct calculation from 
BIM and the paremeter estimation, can be used interchangebly, depending 
on the available data. For example the parameter estimation may not 
provide reliable results if there is insufficient number of sensors in a room. 
On the other hand, the direct calculation from BIM relies on the BIM 
quality. A seamless switch between the methods based on the model 
accuracy should be implemented. 

To enable such a level of flexibility, the model itself should be isolated 
from the code responsible for the preparation of input data, and a uniform 
interface should be formulated for the communication between the control 
system and the models. The Functional Mock-Up Interface (FMI) – an 
open, tool independent standard for exchange of simulation models [7] 
provides this flexibility. The standard specifies how to export a model to a 
Functional Mock-Up Unit (FMU) and how to communicate with the model. 
An FMU is a zip file containing a DLL library (with a model and possibly a 
solver) and an additional XML file describing the model and its variables. 

The FMI is implemented in the Controleum system in a module called 
Model Manager (Fig. 1). The implementation is based on the javaFMI 
wrapper library [9], but introduces additional functionality needed by the 
Controleum system. Apart from a higher level of building-specific 
abstraction, the added functionality enables to query the model about its 
type (zone/system) and needed inputs, including the information about the 
source to be used to get the input data from (e.g. from sensor readings, from 
weather forecast, from control system). 

 
 



 
Fig. 1  Schema of the Controleum-model interface 

 
The Model Manager serves as an entry point in the communication 

with all models. Controleum can use the Model Manager’s API to: 
1) create an instance of a specific model (specific FMU), 
2) set the simulation time and time stepping, 
3) get the model ID, name and description, 
4) get names of needed sensor readings (inputs), 
5) get names of needed weather forecast parameters (inputs), 
6) get names of needed zone/system parameters (inputs), 
7) get names of needed control parameters (inputs), 
8) get names of available outputs, 
9) set zone/system parameters (e.g. geometry, materials), 
10) simulate the model (with a specific set of input parameters), 
11) get lists with results (after simulation completes), 
12) terminate the model and free the memory. 

Each FMU serves as a “blueprint” for instantiation of specific zones or 
systems (Fig. 1). New FMUs can be easily added or replaced and the 
models updated, making the system extremely flexible. Controleum does 
not have to know anything about the model being plugged in, since all 
information needed to use the model can be fetched by the Model Manager. 

The GZM outputs are temperature, relative humidity, CO2 
concentration and illuminance (Fig. 2). Each output is calculated by a 
specific submodel. The submodels may be coupled with one another, 
depending on the complexity of the model. If any of the outputs is not 
needed (e.g. because a specific parameter cannot be controlled in the 
building), the respective submodel does not have to be included in the 
FMU. 

 



 
Fig. 2  Inputs, outputs and the modular structure of the model enclosed in the FMU 

 
Models can be implemented in any FMI-compliant tool. The initial 

models for the system were developed in the Modelica language [10], which 
is an equation-based, object-oriented modeling language, allowing a rapid 
model development. Using a Modelica it is easy to isolate the mathematical 
formulation of the model from the data management and solution approach. 
Additionally, some of the major Modelica environments, like Dymola, 
OpenModelica or JModelica provide a strong support for the FMI. 

 

3. Implementation of Initial Models 

The presented building model framework was used to develop two test 
generic zone models. The models were used to calculate the indoor 
temperature and CO2 level in a small conference room in the Green Tech 
House building (Green Tech Center, Denmark). The selected room has an 
area of 20.38 m2 and is located at the third (top) floor. The room is equipped 
with mechanical ventilation and one radiator. The model performance was 
studied based on offline simulations, i.e. without Controleum. Results for a 
24 hour long period (November 27, 2015) are discussed hereafter. 

The models share the same CO2 balance submodel, but differ in the 
thermal submodel. The CO2 balance model is based on the following 
transient balance equation: 

 
 dVCO2 / dt = n × VCO2occ,su + VCO2ve,su – VCO2ve,ex , (1) 
 
where VCO2 is the CO2 volume in the room [m3], n is the number of 
occupants, VCO2occ,su is the CO2 generation rate per person [m3/h], VCO2ve,su is 
the CO2 supplied by ventilation and infiltration (sum) [m3/h], VCO2ve,ex is the 
CO2 extracted by ventilation and infiltration (sum) [m3/h] and t is time. The 
CO2 supplied by ventilation/infiltration is calculated based on the CO2 



concentration in the fresh air, which for the considered location is 420 ppm. 
The ventilation airflow rate is calculated based on the ventilation valve 
position (linear dependence, maximum airflow 500 m3/h). The infiltration 
airflow rate depends on many factors difficult to be quantified. In addition, 
the infiltration can be divided to the airflow from the outdoors and from the 
surrounding indoor spaces (interzonal airflow). For the purpose of the study 
this phenomenon is significantly simplified and it is assumed that the total 
infiltration rate is constant, equal to 38.3 m3/h (0.5 air changes per hour), and 
that the infiltration air entirely flows in from the adjacent hall space. The 
infiltration rate is calibrated based on the CO2 dissipation rate during periods 
when the ventilation system was turned off and the door and the operable 
window were closed. 

The thermal submodels are based on the thermal RC network approach 
(Fig. 3a). The R3C3 model consists of three thermal capacitors and three 
resistors. The capacitors represent the external partitions, internal partitions 
and indoor air. Each partition (walls, floors, windows) is divided into two 
equal parts and each resistor represents its inner (Rext,i) or outer part (Rext,e). 
Only the inner part of all internal partitions is taken into account (Rint,i) and 
an adiabatic boundary condition is assumed at each partition’s midplane. 
Since all external and internal partitions are represented by single nodes with 
lumped parameters, the respective capacitances and resistances are 
calculated as follows: 

 
 Cwall = ∑ ρlayclayVlay , (2) 
 Ctot = ∑ Cwall , (3) 
 1/Rwall = (∑ dlay / λlay) / Awall , (4) 
 1/Rtot = ∑ 1 / Rwall , (5) 
 

where C is the thermal capacitance [J/K], R is the thermal resistance [K/W], 
d is the width [m], λ is the thermal conductivity [W/m K], A is the surface 
area [m2] and the subscripts lay, wall and tot stand for layer, wall and total, 
respectively. 

In addition to the thermal conduction through building partitions, there 
are heat loads applied directly to the indoor air node resulting from the 
heating qh, solar radiation qsol, occupancy qocc and convection qcon 
(ventilation and infiltration). 

 



 
Fig. 3  Thermal submodels: a) R3C3, b) R0C1 

 
The second thermal submodel, R0C1, is equivalent to R3C3 but without 

the thermal conduction through internal and external walls (Fig. 3b). In other 
words, only the heating, solar radiation, ventilation, infiltration and 
occupancy are taken into account. 

The computational time of both models (R3C3+CO2 and R0C1+CO2) is 
below 10 ms per 24 h simulation time (counted on a modern desktop 
computer, single core computations). The exact time, however, depends not 
only on the computer performance and the model type, but also on the 
“smoothness” of input functions and the precision restrictions, since an 
adaptive time step technique is employed. 

 

4. Performance of Initial Models 

The results are presented for two occupancy schedules (Fig. 4). The 
schedules are based on the PIR sensor measurements in the chosen room.  

 

 
Fig. 4  Two occupancy schedules taken into account in simulations 

 
The PIR sensor can only indicate the presence in the room, and not the 

actual number of occupants. Therefore, the first schedule (maximum 
occupancy) assumes that there is maximum number of occupants every time 



the PIR sensor indicates presence. The second schedule (corrected 
occupancy) is arbitrarily corrected based on the typical usage of conference 
rooms. In example, it is unlikely that 5 people occupied the conference 
room for 5 minutes at 4:00 a.m. Likewise, small meetings are usually 
shorter than long ones. Although the accuracy of both schedules is unsure, 
the aim of both cases is rather to analyze the influence of the uncertainty in 
the occupancy data than to calibrate the number of occupants to fit the 
simulation results with actual data. 

The results show that the occupancy prediction highly affects both the 
indoor temperature and CO2 concentration (Fig. 5-6). The knowledge about 
the presence in the room is not sufficient to accurately predict both indoor 
environment parameters. The indoor temperature in the case of maximum 
occupancy (Fig. 5a) is generally overestimated (up to 1.5 °C) throughout the 
majority of the analyzed period. 

 

 
Fig. 5  Simulation temperature results vs. measured temperature: a) maximum occupancy, b) 

corrected occupancy 
 

The type of the thermal submodel (R3C3 or R0C1) does not have such 
high influence on the temperature result as the occupancy prediction. It is so 



even though the thermal conduction through all surrounding partitions in the 
model R0C1 is entirely neglected. The mean relative error of the model 
R3C3 for the maximum occupancy is 1.83%, while for the model R0C1 it is 
2.36%. In the case of the corrected occupancy both thermal submodels 
performed much better, with the mean relative errors being equal to 1.05% 
and 1.20% for R3C3 and R0C1, respectively. The maximum absolute 
temperature error is around 0.6 °C. 

The CO2 results are also highly dependent on the occupancy prediction 
(Fig. 6). The accuracy of the simple CO2 balace equation (1) is sufficient if 
the occupancy prediction is realistic. In the case of maximum occupancy the 
CO2 level is overestimated. The highest difference is found in the morning 
hours (8:00-11:00) and reaches 280 ppm, indicating that the actual number 
of occupants in the room had to be lower. The mean relative error in the 
case of maximum occupancy is equal to 12.34%. The corrected occupancy 
schedule significantly increases the accuracy of the CO2 model, with the 
mean relative error of 4.46%. 

 

 
Fig. 6  Simulation CO2 results vs. measured CO2 concentration: a) maximum occupancy, b) 

corrected occupancy 



Based on the results it can be concluded that the accurate occupancy 
prediction is crucial to obtain high quality predictions of indoor 
environment parameters. A separate task is already designated in the 
COORDICY project to advance the occupancy prediction algorithms [11].  

In addition, the presented models characterize with a high uncertainty 
in the infiltration data. The simplified approach adopted in the study is 
based on the infiltration rate calibrated for the door and window being 
closed. In this configuration the CO2 dissipation rate is the lowest possible. 
Based on the theoretical analysis of the interzonal airflow (empirical 
correlations from Said et al. [12]) between the room and the hall it is 
estimated that the open door can cause additional airflow with the rate of 
500 m3/h (for 2 °C temperature difference between the zones), i.e. over 13 
times more than the infiltration rate assumed in the study. In general, 
however, the actual openness of doors is not known. The related uncertainty 
can have a predominant effect on the final model accuracy. This issue, 
however, is unlikely to be solved using a fully deterministic approach. 
Therefore, one of the next aims of the project is to develop a model being 
able to accurately account for the interzonal airflow. This task may be 
integrated with the occupancy prediction, since they are strictly related. 
 

5. Conclusions 

The results show that even simple generic zone models can provide 
accurate indoor environment predictions. However, the occupancy 
prediction and the infiltration rate can have a prevailing effect on the model 
accuracy. 

The presented approach to model development and usage in MPC 
significantly reduces the model implementation time. However, the entire 
MPC system has to be more integrated to provide all input data needed to 
instantiate models and perform simulations. Tasks aimed at the 
development of such an integrated tool are assigned within the COORDICY 
project. Modules responsible for the extraction of data from BIM, sensor 
reading queries and occupancy prediction are under development. 

The implementation of the fully integrated system is planned at the end 
of 2016 in the OU44 building at the Odense Campus of the University of 
Southern Denmark.  

The implementation of the Modelica and FMI standards is partially 
aligned with the aims of the project IEA EBC Annex 60 [13]. 
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