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Abstract 
This article demonstrates the advantage of model predictive control (MPC) as an 
alternative to an already-existing conventional control system, in terms of total 
energy consumption and comfort criteria. In our case study, we consider one office 
in the main building of the E.ON Energy Research Center in Aachen, Germany. A 
dynamic heat transfer model for building thermal elements using the lumped-
capacitance method has been formulated. Then unknown parameters in this model 
have been estimated by minimizing the errors between measured and simulated 
temperatures. Finally, the model has been linearized and used in our proposed MPC 
to predict the future states of the system. MPC can, in contrast to the current control 
system, predict the future changes in the system and consequently makes wise 
control decisions before the system faces new conditions. The first results of this 
study show approximately 43% and 31% reduction in energy use after 
implementation of MPC during the estimation (01-05 December 2014) and 
validation (11-15 February 2015) periods, respectively. 

Keywords - model predictive control; energy consumption; thermal modelling; 
parameter estimation; HVAC 

1. Introduction  

Nearly one-third of the global energy consumption comes from the 
building sector, which makes it one of the principal contributors to the 
world’s total greenhouse gas emissions. In cold climate countries around 
50% of this energy demand is directly associated with space Heating, 
Ventilation and Air Conditioning (HVAC) [1]. On the other side, as the 
world’s population and also the tendency towards urbanization grow, even a 
higher energy demand is expected in the future. Thus, development of 
energy efficient buildings represents a great concern and has become the 
focus of many research activities. As a result, in addition to the use of high-
performance construction materials for new buildings and retrofitting the old 
ones, significant efforts have also been made to the optimization of the 



operation of HVAC systems using smart controllers instead of conventional 
ones. 

Developing a reliable dynamic model is of crucial importance to 
improving the energy efficiency of buildings, as it provides a very good 
platform to test different control strategies and select the most efficient one. 
A large number of studies has been carried out on simulation platforms and 
dynamic models that can be used to analyze HVAC control systems in 
buildings. 

In [2] a simulation framework including basic modular HVAC 
components in Simulink is proposed. The simulation results show a 
significant possibility to save energy through the optimal control of 
temperature and damper position.  

A simplified approach to develop a low-order linear time invariant (LTI) 
state-space model in Simulink is presented in [3]. This model, with the 
advantage of simplicity and computational efficiency, is aimed to be in 
excellent agreement with the field monitoring data of a building. Another 
approach to building space modelling is described in [4], and is based on 
parameter optimized second-order descriptions of each building envelope 
element. The result of this work is a detailed dynamic model, which enjoys 
flexibility, transparency and computational efficiency. 

A procedure to formulate a dynamic model for an HVAC system 
consisting of a zone, heating and cooling coils, humidifier and dehumidifier, 
duct work, fan and mixing boxes is shown in [5]. The results imply that the 
system is capable of rejecting disturbances more effectively (e.g. less energy 
consumption) after implementation of the dynamic model in the control 
system. 

Reference [6] demonstrates the modelling and simulation of the entire 
high-temperature heating circuit of the same building as in our case study 
here. The model has been developed in the equation-based object-oriented 
language Modelica and the maximum deviation between simulated and 
measured data is reported below 20% for boiler subsystems and below 10% 
for all other subsystems. 

Reference [7] illustrates a detailed model for the room air temperature. 
Computational Fluid Dynamics (CFD) has been applied in this study to show 
the effect of turbulence and movement of air molecules on the heat exchange 
between different air zones in a room. This highly accurate model is then 
transferred into the state-space format to decrease the computation time. 

Different approaches have been applied for the parameter identification. 
Use of Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) 
for simultaneous state estimation and parameter identification of building 
predictive model is reported in [8] and the results show that UKF 
outperforms EKF as it yields a more realistic estimation of wall 
temperatures. A Building Data-Dependent Identification (BDDI) algorithm 
is proposed as an alternative method for parameter identification of multi-



zone building models in [9]. The authors concluded that an experimental 
design is necessary for proper identification of real systems.   

Regarding control strategies for HVAC systems numerous studies have 
been conducted, either in theoretical or in practical fields. A comprehensive 
comparison between different advanced and classical control techniques has 
been made in [10,11], where model predictive control is reported as an 
appropriate choice for buildings applications as it improves thermal comfort 
mainly by reducing overheating (because of including a model for future 
disturbances). However, complexity of the mathematical modelling as well 
as the expensive installation of MPC, especially in old buildings, are 
mentioned as its drawbacks. 

In [12] MPC and PID controllers have been embedded in a Building 
Energy Management System (BEMS) to compare their performances. It is 
reported that MPC reduces energy consumption up to 18% as compared to 
PID controllers. In addition, the number of switching cycles (on-off) of the 
heat pump is decreased from 144 to 35 cycles in case of using MPC. The 
prediction of disturbances, however, is considered without any uncertainties. 

Besides the appealing advantages of MPC, several problems and 
difficulties related to the design and implementation of MPC for buildings 
have been presented in [13]. Ensuring stability and feasibility of MPC, 
uncertainties involved in the disturbance prediction, convergence of 
nonconvex MPC problems to suboptimal solutions, computational 
complexity and equipment retrofitting in sense of adding more sensors or the 
need to replace existing control systems with digital versions are some of 
these issues.  

The major challenge of using MPC lies in the prediction of disturbances 
(e.g. weather and internal gain) due to the stochastic nature of them. The 
impacts of model uncertainties on MPC controllers as well as methodologies 
for handling them are addressed in many papers. Stochastic Model Predictive 
Control (SMPC) is proposed as a well-suited approach for building climate 
control in [14], where a chance-constrained formulation of comfort bounds is 
employed to cope with the uncertainties. References [15,16] present two 
approaches to minimize model uncertainty: (1) using a Parameter-Adaptive 
Building (PAB) model to capture system dynamics through an online 
estimation of time-varying parameters of a model; and (2) proposing two 
robust MPC frameworks against additive uncertainties: Open-Loop Robust 
Model Predictive (OL-RMPC) and Closed-Loop Robust Model Predictive 
(CL-RMPC). The latter is capable of maintaining room temperature within 
the comfort range for model uncertainties up to 75%. 

The objective of this work is to demonstrate advantages of model 
predictive control as an alternative to the existing conventional control 
systems, in terms of total energy consumption and comfort criteria. In our 
case study, we consider one office in the main building of the E.ON Energy 
Research Center in Aachen, Germany, which is introduced in section 2. 



Section 3 represents a dynamic heat transfer model formulated for this case 
study. The methodology for estimation and validation of model parameters is 
described in section 4. The mathematical model has been then linearized and 
transferred into the MPC framework as shown in sections 5 and 6. Results 
from the comparison between the existing control system and our proposed 
MPC as well as some discussion about influence of prediction horizon on the 
performance of MPC are presented in section 7. Finally, conclusions are 
drawn in section 8. 

2. The Case Study 

The main building of the E.ON Energy Research Center has a net floor 
area of 7222 m2 located in the Campus Melaten of RWTH Aachen 
University in Germany. Its state-of-the-art building technologies, multi-level 
usage and complex HVAC equipment makes it an ideal case study for 
various control and energy related researches. Detailed information about 
this building is given in [6,17–19]. Besides laboratories and conference 
rooms, the building mainly consists of offices for more than 200 occupants 
equipped with the Concrete Core Conditioning (CCC) system and Façade 
Ventilation Units (FVU) as the sources of energy supply.  

The aim of this study is to develop a detailed procedure for design and 
implementation of MPC for one of the offices, which is introduced as our 
case study (illustrated in Fig. 1). As the types of offices are very similar, the 
same approach can be applied to the rest of the offices with minor 
modifications. 

 
Fig. 1  Layout of the 2nd floor of E.ON ERC main building and location of our case study [19]. 

3. Mathematical Model 

A dynamic heat transfer model for building thermal elements using the 
lumped-capacitance method has been formulated, where the air and walls are 
assumed to have uniform temperatures across their volumes. This approach 



helps analysts to obtain a fast and low-order model, which is appropriate for 
the control purposes. The model takes following terms into account: (1) 
conduction through the window and walls, (2) convection due to the air 
movement, (3) solar radiation through the window, (4) absorption of solar 
radiation in external walls, (5) heat supplied by HVAC components (CCC & 
FVU), (6) internal heat gain, (7) internal surface radiation between walls, and 
(8) heat storage capacity of the room air and walls. For a better illustration of 
the heat transfer phenomena in the system, the thermal equivalent circuit 
model is represented in Fig. 2. 

 
Fig. 2  Thermal equivalent circuit model for heat transfer phenomena in the case study. 

Dynamic thermal behavior of the system is obtained from (1) – (17). For 
the sake of simplicity and in order to keep the circuit model clear and 
understandable, the internal radiative heat exchanges between surfaces of the 
internal walls (Q̇w1i

rad,in) are not shown in Fig. 2. This term, however, is 
considered in the model and is calculated using (11) – (13) from Ref. [20]. 
Equation (8) determines the supply heat from façade ventilation unit. 

Cr1 dTr1/dt = Σ(Ts1
w1j–Tr1)/Ri,1j + (Tamb–Tr1)/Rwin + Q̇int + Q̇FVU + Q̇sol,win (1) 

Cw12 dTw12/dt = (Ts1
w12 – Tw12)/R12 + (Ts2

w12 – Tw12)/R12  (2) 
Cw13 dTw13/dt = (Ts1

w13 – Tw13)/R13 + (Ts3
w13 – Tw13)/R13  (3) 

Cw14 dTw14/dt = (Ts1
w14 – Tw14)/R14 + (Ts4

w14 – Tw14)/R14   (4) 
Cw15 dTw15/dt = (Ts1

w15 – Tw15)/R15 + (Ts5
w15 – Tw15)/R15 + Q̇ccc-w15  (5) 

Cw16 dTw16/dt = (Ts1
w16 – Tw16)/R16 + (Ts0

w16 – Tw16)/R16          (6) 
Cw17 dTw17/dt = (Ts1

w17 – Tw17)/R17 + (Ts0
w17 – Tw17)/R17 + Q̇ccc-w17  (7) 

Q̇FVU = ṁsa cpa (Tsa – Tr1)   (8) 
Q̇sol,win = τwin Awin q"

rad,t   (9) 



(Tr1 – Ts1
w1j)/Ri,1j + (Tw1j – Ts1

w1j)/R1j + Q̇w1j
rad,in = 0  (10) 

Q̇w1i
rad,in = Aw1i εw1i ΣΦw1i,w1j [ė w1j + (1- ε w1i) Iave] − Ė w1i  (11) 

Ėw1j  =  Aw1j ėw1j  = Aw1j εw1j σ (Tw1j + 273.15)4   (12) 
Iave = ΣĖw1j/Σ(Aw1j εw1j)   (13) 
(Tamb – Tso

w1j)/Ro,1j + (Tw1j – Tso
w1j)/R1j + Q̇w1j,sol – Q̇w1j,sky = 0   , i=6,7 (14) 

Q̇w16,sol = α Aw16 q"
rad,t   (15) 

Q̇w17,sol = α Aw17 q"
rad,h   (16) 

Q̇w1j,sky = ε σ Aw1j ((Tw1j+273.15)4 – (Tsky+273.15)4)                  , i=6,7 (17) 

The following 11 parameters are disturbances to the model. Note that in 
this work the prediction of disturbances is assumed to be perfect and without 
uncertainties: 

 Temperature of adjacent rooms (Tr2 – Tr5). 
 Ambient temperature (Tamb). 
 Solar radiation on horizontal and tilted surfaces (q"

rad,h & q"
rad,t). 

 Internal heat gains due to presence of people in the room as well 
as operation of electronic devices (Q̇int). 

 Supply heat from concrete core conditioning system to the floor 
(Q̇ccc-w15) and ceiling (Q̇ccc-w17), because the control system of 
CCC is separate from the office and the local controller in the 
office has no influence over it. 

 Mass flow rate of the high-temperature air stream from FVU 
(ṁsa). This value is defined according to the ventilation 
requirements and the control system cannot change it. 

Besides the above-mentioned disturbances, the following parameters are 
categorized as known parameters in our model: 

 Surface area of the window and walls (Aw1j & Awin).  
 Shape factors for radiative heat exchange between wall i and j 

(Φi,j), obtained from [21]. 
 Emissivity of the walls (εi). 
 Heat capacity of air at constant pressure (cpa). 
 Stefan Boltzmann constant for radiation (σ). 

And finally 23 unknown parameters, which need to be estimated, are 
all thermal resistances (R1j, Ri,1j & Ro,1j), the heat storage capacities of the 
room and walls (Cr1 & Cw1j), the transmissivity of the window (τwin), and 
absorptivity coefficient of the external walls (α). The procedure to estimate 
these parameters and validate the estimation is explained in details in the 
next section. 

4. Parameter Estimation and Validation of Estimated Parameters 

Estimation of unknown parameters has been done through formulation 
of an optimization problem in Simulink to minimize the error between 
measured and simulated temperatures of the office with respect to the upper 
and lower bounds of these parameters, as shown in (18). The monitored data 



(all known inputs and disturbances as explained in section 3) for 5 days 
during a heating period (from 01.12.2014 to 05.12.2014) is used for the 
estimation of parameters. The final results of the parameter estimation are 
listed in Table 1. 

min S = Σ (Ti
sim- Ti

mes)2    
subj. to            (18) 
lower bounds ≤ estimated parameters ≤ upper bound  

Table 1. Results of parameter estimation. 

Param. 
Value  

Param. 
Value  

Param. 
Value  

Param. 
Value  

(mK/W) (mK/W) (MJ/K) (-) 
Ri,12 6.804 R12 6.598 Cr1 0.691 τwin 0.889 
Ri,13 6.804 R13 6.598 Cw12 2.901 αwall 0.870 
Ri,14 9.071 R14 8.797 Cw13 2.901   
Ri,15 3.828 R15 16.387 Cw14 2.176   
Ri,16 11.658 R16 215.582 Cw15 84.418   
Ri,17 4.396 R17 92.150 Cw16 3.293   
Ro,16 3.264   Cw17 23.313   
Ro,17 1.854       

In order to validate the estimated parameters shown in Table 1, the 
thermal behavior of the same office has been simulated with respect to the 
estimated parameters. This time, however, different monitored data again 
during another heating period (11.02.2015 to 15.02.2015) have been used. 
Simulation results from the validation, as depicted in Figures 3 and 4, are in 
great agreement with the measured room temperature. 

5. Linear State-Space Model 

The mathematical model, which is developed in section 3, is non-linear 
on two accounts: Firstly, the forth power of temperature in (12) and (17). 
Secondly, the control input (Tsa) and one of the states of the system (Tr1) are 
multiplied by a disturbance variable (ṁsa) as seen in (8), which also forces a 
non-linearity. After linearization around an equilibrium point and using 
Euler’s discretization method, the dynamic model of the system can be 
simplified as shown in the following equation: 

 xt+1 = Axt + But + Edt (19) 

Where x is the state vector (temperature of the room and walls), u is the 
control input (temperature of supply air from FVU), d is the disturbance 
vector (temperature of adjacent rooms, ambient temperature, solar radiation, 



internal heat gain, heat from CCC and airflow from FVU) and t represents 
the time step. A, B and E are matrices of proper dimensions. 

As the full range of variation in temperature of the room and walls is not 
very wide, a linearization of the model about an equilibrium point is fairly 
accurate and does not introduce a significant error [22], which is also proved 
in Fig. 3. On the other side, dealing with a linear model decreases the 
computation time dramatically.  

According to Fig. 4, the simulation error for 95% of the data-points falls 
into the range of ±3.0% and ±3.5% for nonlinear and linearized models, 
respectively. This means the linearization results in a slightly less accurate, 
but acceptable model, as discussed earlier. 

 
Fig. 3  Measured room temperature vs. nonlinear and linearized models. 

 
Fig. 4  A graphical representation of distribution of errors for nonlinear and linearized models. 

6. Design of Model Predictive Control 

The linear state-space model from the previous section is used to 
formulate a model predictive control problem with the objective of 
minimizing the total energy consumption as seen in (20) and (21). 

F = Σ { ṁsa(t) cpa [Tsa(t) – 1/2×(Tr1(t)+T0(t))] } Δt    (20) 
min {|F|1 + ρ (|ϵlb|1 + |ϵub|1)}   (21) 
subj. to 
xt+k+1|t = Axt+k|t + But+k|t + Edt+k|t  
Tlb - ϵlb,t+k|t ≤ Tr1,t+k|t ≤ Tub + ϵub,t+k|t  



ϵlb,t+k|t & ϵub,t+k|t ≥ 0  
Ulb,t+k|t ≤ ut+k|t ≤ Uub  
δUlb ≤ ut+k|t – ut+k-1|t ≤ δUub 

Here Tlb and Tub are the lower and upper comfort bounds, Ulb,t+k|t and Uub 
correspond to the lower and upper limits of supply air temperature (the lower 
limit depends of the ambient temperature and changes with time, but the 
upper level is constant and equals to 34°C), δUlb and δUub are the lower and 
upper limits of the change of supply air temperature due to the dynamics of 
the FVU heat exchanger. 

In order to guarantee constraints satisfaction at all times (i.e. feasibility) 
and to penalize comfort bounds violations, soft constraints denoted by ϵlb and 
ϵub as well as a comfort penalty factor (ρ) are considered in the formulation 
of MPC as well. We use the YALMIP toolbox and Gurobi solver to set up 
and solve the MPC optimization problem in Matlab. 

7. Results and Discussion 

The measured room temperature, obtained from the current control 
system, together with the results of MPC are shown in Fig. 5. As the current 
controller, in contrast to our proposed MPC, does not predict the future 
changes in the system, it makes control decisions shortly after the system 
faces new changes. This results in an overreaction of the control system (i.e. 
overshooting) and waste of energy. In addition, it is not able to satisfy 
comfort bounds at all times as it becomes evident from this figure. 

 
Fig. 5  Results of the current control system and MPC. Blue dotted lines are lower and upper 

comfort bounds (21.5°C and 25°C) during the working hours (7:00 AM to 7:00 PM). 

Cumulative energy consumptions during the estimation and validation 
periods are illustrated in Fig. 6. We consider N = 9 hours as the prediction 
horizon for our model predictive controller. Larger values might result in less 
energy consumption, but increase the computational time needed for solving 
the optimization problem. Smaller values, on the other hand, do not provide 
enough time for the controller to adjust control input and consequently it 
might lead to a violation of comfort constraints. 

From these figures it can be seen that the cumulative energy 
consumption for the estimation period (01-05 December 2014) falls from 



57.25 to 32.76 kWh (i.e. around 43% reduction in energy consumption) as a 
result of implementing a model predictive controller instead of the already-
existing control system. Similarly, energy consumption during the validation 
period decreases from 5.46 to 3.76 kWh (i.e. around 31% reduction) after 
implementation of MPC. 

 
Fig. 6  Cumulative energy consumption during the estimation period (01-05 December 2014). 

Another major conclusion can be drawn from Fig. 6: MPC decreases the 
energy consumption during the estimation period much more than during the 
validation period. The reason lies in the fact that the heat load of the building 
through the estimation period becomes larger due to the lower ambient 
temperature and solar radiation (see Fig. 7). In general, as the energy demand 
of a zone increases, the control system must deal with larger amounts of 
energy flows. In such cases, energy loss in conventional control systems 
becomes noticeable and a dramatic improvement can be achieved by using 
optimal control techniques such as MPC.  

 
Fig. 7  Comparison of ambient temperature and solar radiation between the estimation and 

validation periods. 

8. Conclusions  

In summary, we have introduced a model predictive controller for an 
office building. The advantage of MPC over a conventional controller is 
prediction of disturbance load to the building, which is obtained from 
weather forecast and occupancy schedules of the building. This results in 
optimal control inputs and less energy consumption compared to the 
conventional controllers. Finally, by replacing the current controller with a 



model predictive controller, we achieved about 43% and 31% reduction in 
the overall energy use during the estimation and validation periods, 
respectively, while the comfort parameters were also kept within an 
acceptable range. In this paper, the prediction horizon of MPC is considered 
to be 9 hours and the prediction of disturbances is assumed to be perfect and 
without any uncertainties.  
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