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Abstract 
Recent advances of environmental control technologies have led to new practical opportunities 
to reduce the heating demand of buildings. The applied technologies follow different paths to 
achieve energy savings, the use of advanced control systems as predictive control algorithms 
show promising results with considerable optimization potential.  
In the present contribution, we describe the development of an advanced control algorithm that, 
starting from an actual room's comprehensive thermal characterization, derives a simplified 
mathematical model. Moreover, the procedure involves a co-simulation setup that incorporates 
the implementation of a realistic dynamic heater behavior. 
Heating demand with different control algorithms from simple 2-point switching control, 
analogue PI-controller, to predictive control and model predictive control (MPC) strategy are 
implemented and compared. Together with the control algorithms, the dynamic thermal 
characteristics of the room heating elements, realized as radiators or floor heating, are modeled 
with their different time constants for heating up and cooling down and considerably different 
orders of time constants. The energy saving potential of the proposed approach is documented 
via comparative simulation studies.  

Keywords - co-simulation, predictive control, heater dynamics 

1. Introduction  

Recent advances of environmental control technologies, the potential of advanced 
electronics, and innovations in the digital realm have led to many new practical 
opportunities to reduce the heating demand of buildings. 'Smart' and advanced 
thermostats are a fast growing market and attract start-ups as well as big players in 
computer engineering. The applied technologies follow different paths to achieve 
energy savings, the use of advanced control systems is one important direction of 
research. In this context, predictive control algorithms show promising results with 
considerable optimization potential and the capacity to accommodate a wide range of 
input parameters. 

Some control theory and model approaches are using either data driven models [6] 
with extensive data volumes and records gathered over a long time and/or using high 
numbers of input variables and sensor data [2]. Others are using an approach with quite 
complex physical models [6] or are developing models for prediction of input and 
system variables to reach high precision levels. Most approaches require high hardware 



and computer complexity and resources [9]. Simplified numerical models [8,6] can 
provide reasonable accurate model results [10] and are more easily applicable and 
practicable for a commercial environment and for use in embedded controllers. 

This project takes an approach for minimal system complexity and is not striving 
for extreme data precision but focuses to provide a selection help for such thermal 
system models with limited hardware resources. The objective is to provide a 
comparative result of thermal control by different predicting algorithms and their 
forecasts on potential heating energy savings. 

2. Model 

2.1 Reference Building 
For this project a representative real-world setup was selected. This building is part 

of the Vienna University of Technology; reasons for the selection of this room were the 
availability of various sensor data and the weather station on the adjacent tower, 
providing weather data in direct vicinity of the reference room (Fig. 1). Furthermore it 
was possible to take measurements for a prolonged free-running period and to obtain 
the thermal characteristics without any heating or occupancy perturbations. 

 
Fig. 1 - Reference building 

 
2.2 Reference Model 
For the heat energy simulations a reference model for EnergyPlus was developed. 

The parameters of the model were fitted to the measured data following the method as 
presented in [16]. This model representation allows freely exerting inputs as heating 
power, occupancy schedules, thermostat settings etc. Hence the reference model is 
more versatile compared to the real zone, which only had been measured for a limited 
period and in free running mode. This reference model also represents the thermal 
reference system for the simulation of different control strategies and is used to derive 
the difference of heating demand for a longer period beyond the measurement period. 
Moreover the reference model also serves to establish the thermal dynamics as step 
responses to isolated inputs. In turn, these system responses are used to develop thermal 
systems lead times; derived lead time tables are the basis for the table look-up function 
of lead-time control algorithms which allow adjusting the heating process to reach the 
thermostat settings exactly in time.  

 



2.3 Reduced Model 
What is the use for yet another model? For algorithms, as for the 'Model Predictive 

Control' (MPC), a mathematical representation of the underlying system is required. 
Such model allows simulating and estimating the depending variables as e.g. the room 
temperature as direct result to applied input variables as e.g. heating energy input. 

The objective for the mathematical representation is to provide a best fit of the 
thermal characteristics of the model with the real system. Thus, if the mathematical 
representation has similar thermal dynamic characteristics as the reference room, input 
sequences can be applied to the model and the resulting simulated output will be 
sufficiently close to the output the real system under identical conditions. This allows to 
'predict' the output trajectory in time, based on the known input parameters over time 
(applied heating power), it is hence possible to vary and optimize potential input 
sequences without applying them to the actual system. Optimizing the input sequences 
in the mathematical model - e.g. heating power over future time - and evaluating the 
output variables with target-/cost functions leads to 'optimal' input trajectories in time. 
This represents the operating mode of a model predictive control algorithm (MPC). 

The mathematical representation needs to be as close to the actual thermal 
dynamics but, for hardware and numerical resources reason, especially the limited 
possibilities in embedded controllers, at the same time as simple as possible. 

 
2.4 Model Structure 
In the literature [1,3,4,5,6] a variety of different model structures for the 

description of thermal behavior of rooms are presented and discussed. The physical 
background and the thermal dynamics are described by a set of differential equations. 
For easier representation these are 'translated' into electrical circuit equivalents. Such 
reduced model descriptions and their parameters represent the dynamic characteristics 
only, any geometry and material details are subsumed in virtual elements as capacities 
and resistances.  

This project follows the systematic approach and categorization of [1]. The basic 
model structures, terminology and states of the model were adopted. Some 
modifications were applied to make the models more suitable for this project as: 
• the solar irradiation energy applied via a sol-air temperature (Tsolair, see below) 

instead of feeding solar energy to the envelope element, 
• adding the parameter of an adjacent thermal zone (Tadj) to represent temperature 

and cross ventilation effects. This especially in view of the actual situation with 
considerable cross ventilation from a hallway. 
For the selected model (Fig. 2, Table 1) a direct thermal influence from ambient 

temperature and adjacent temperature is added. These parameters allow modelling an 
effect of infiltration and ventilation as well as cross ventilation from an adjacent 
thermal zone (e.g. hallway). The thermal characteristics of the radiators (and interior) 
with their thermal capacity add a lag time to the dynamics of the systems (also see 
'radiator dynamics' below).  
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Fig. 2 - Model structure 

Table 1: Model Parameters 
Parameter Description Parameter Description

Ti Troom, interior temperature, representation as a state  [°C] Ria thermal resistance interior-ambient  [°C/kW]
Te state representing virtual envelope temperature  [°C] Rib thermal resistance interior-adjacent  [°C/kW]
Th state representing virtual radiator temperature  [°C] Rie thermal resistance interior-envelope  [°C/kW]
Ci thermal capacitance, internal  [kWh/°C] Rea thermal resistance envelope-ambient  [°C/kW]
Ce thermal capacitance, envelope  [kWh/°C] Rih thermal resistance interior-heater  [°C/kW]
Ch thermal capacitance, heater  [kWh/°C]  

 
2.5 Mathematical Description 
The representation of the system by its equivalent electrical circuit can be directly 

translated into form of differential equations (1). For the selected model, including all 
important parameters, the description in form of a set of differential equations leads to: 
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 Mathematical models as representation of dynamic systems in control engineering 
are often transformed to such set of coupled first order differential equations. Every 
such differential equation is describing a 'state' variable. The states of such state space 
model do not represent an actually measurable physical parameter, some virtual states 
can only be mathematically accessed or observed but cannot be directly measured. Also 
the interpretation of such states in form of accessible physical parameters is not 
necessarily simple or possible. 

The continuous system description as above can be converted to discrete systems 
where parameters are evaluated at discrete points in time only. Similar to the 
continuous state space description, discrete systems can then be described in difference 
equations (2) in the form of: 

( 1) *x(t) * ( )
y(t) * ( ) * ( )
x t A B u t

C x t D u t
+ = +
= +    (2) 



The parameters of the differential equation and the state space matrices 
respectively were obtained through a grey box identification process in MATLAB®, 
best fitting the system output to the measured values of the reference room and the 
results of the reference model simulation. 

 
2.6 Radiator Dynamics 
The response characteristics of the radiators represent asymmetric dynamic effects 

and require special adaptions to the mathematical and simulation model. Radiators 
represent a first order lag element; unfortunately not just a 'simple' PT1 element but 
with different thermal dynamics and time constants for heating up and cooling down 
(Fig. 3). For heating up, hot fluid is immediately available from the heating system, 
only the metal parts need to be warmed up, whereas for cooling down the heat is stored 
in the metal parts as well as in the contained water. Considerable differences in time 
constants (Table 2) for heating up and cooling down are in the range of factor of 5 to 6. 

To generate such thermal characteristics a PT1 subsystem was programmed in 
MATLAB®, the dynamically resulting heat energy subsequently is transferred as 
heating input to the EnergyPlus model. The time constants of the mathematical 
representation of the radiator system are adapted, depending whether the radiator is 
heating up or cooling down. 

Table 2: Radiator dynamics 
Time constants time time
heating system heating up cooling down

[min] [min]
radiator heating 5 30

floor heating, dry structure 27 123
floor heating, wet structure 90 638  
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Fig. 3 - Radiator dynamics 

3. Simulation and Co-Simulation 

The thermal simulation of the reference model was run in EnergyPlus, whereas the 
control algorithms and calculation of applied heating power was run in the MATLAB® 
environment. The co-simulation of the algorithms in MATLAB® and the thermal 
dynamics in EnergyPlus was controlled by the MLE+ toolbox; it is an open-source 
MATLAB® toolbox for co-simulation with the simulation software EnergyPlus via the 
BCVTB interface and provides objects and parameters for running the co-simulation.  

 



3.1 Lead time control - simple 'predictive' control - look-up tables 
For systems with short response time, as in the example of the reference room, the 

biggest savings are expected during the warm-up period. In order to reach the required 
thermostat setting at a given time, standard thermostat-timers have to be set to start 
heating well before the stipulated time to cover the worst case of heating-time and to 
get the temperature to the requested level. Thus, in all cases but the 'worst case' (lowest 
initial room temperature) and a higher temperature, the heater will start too early for the 
room temperature to reach its target temperature. The room will be heated earlier than 
requested. The heating energy for this time span is not necessary and could be saved. 
For the reference model the worst starting temperature is 6.5°C, the time required to 
heat the room to the set temperature is around 60 minutes. 

A setting for the thermostat timer to start heating as late as possible, but sufficiently 
early to exactly reach the set temperature at the scheduled would be the best strategy to 
satisfy the combined target of least heating energy use and to get to the requested 
temperature level at the stipulated time (Fig. 4). 

This saving can be realized if the lead time is derived as a function of the initial 
room temperature and the known response time of the system. The measured/simulated 
thermal response characteristic of the room allows forecasting the system response. A 
control, adapting the heating lead time by measurement or by look-up tables of 
simulation results of a 'reference' model represents in principle a form of 'model 
predictive control'. However, as such control strategy does not exactly correspond to a 
'model predictive control' in terms of control theory, the term look-up control, or simple 
predictive control is used in the context of this project. 

 
Fig. 4 - Saving potential in heating up period 

Thermostat controller algorithms representing simple on/off controller and 2-point 
switch controller with hysteresis have been programmed in MATLAB®, using the table 
look-up technique. These control strategies have shown that with relatively little 
information on measured data and system response characteristics there are potential 
heating energy savings. In view of the simplicity of the system - e.g. it does not require 



any other sensors than the room temperature sensor - the saving potential is 
considerable. 

Advantages: 
• Does not need any additional sensors apart from the room sensor, which is in any 

case necessary for the control of a room temperature. 
• Relatively simple way to get to the look-up tables by e.g. using defined heating 

curves and measuring the response (e.g. step response, cooling response during 
night setback period). 
Disadvantages: 

• Does not take into consideration any other influence parameters as e.g. appliances 
that are running also in non-heating periods which however may reduce the heating 
up period. 
 
Model predictive controller 
The model predictive control method consists in optimizing its input variable for 

desired output by evaluating the response of the mathematical model. As the model is 
representing the room dynamics, including the radiator inertia, the principle model 
predictive control strategy is 'designed' to adjust for lagging effects as radiator lag. 

 
Fig. 5 - Model predictive controller 

The results (Fig. 5) show a relatively smooth temperature trend, which however 
can show some disturbances due to slight dynamical differences between reference 
model and mathematical model. 

  
Comparison of heating demand simulation 
Due to the numerically more involving algorithms of the PI and MPC controller 

and the consequently longer simulation runs, the simulation concentrated on 4 selected 
days. These are the days with minimum starting temperature for heating up, and the 
days representing the lower-, upper- quantile and the median starting temperature 
respectively. 

Table 3 shows the heating energy for the different starting temperatures in the 
room and with different control strategies as a 2 point switch with fixed lead time and 
variable lead time (look-up table) controls as 2 point switch and PI-controller. A model 
predictive controller (MPC) completes the set. The 2 point switch with fixed lead time 
corresponds best to standard thermostats and serves as reference of heating energy 



demand. Indicated values for heating power refer to 24 hours timespan of the specified 
days. 

Table 3: Heating power vs. control strategies 
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heating energy [kWh] 18.2 14.1 11.9 5.7 17.1 12.8 10.6 5.0 17.8 12.9 10.2 3.8 17.4 12.8 10.0 3.7
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As expected, heating energy savings can be shown, especially for higher initial 

room temperatures. Under the assumption that all parameters are set for an optimal 
heating starting point, correct look-up tables are available and the mathematical model 
has a good fit to the reference model (EnergyPlus model), it would be expected that 
there are no savings for the case of the lowest initial room temperature. From the results 
(Table 3) it therefore could be deducted that the expected inaccuracy for the shown 
heating demand would be in the range of ±2% to±4%. 

 
Summary - model predictive control 
Above results for predictive control strategies indicate significant energy saving 

potentials. The results of simple predictive control (look-up tables) and model 
predictive control show that optimal heat up start time is accounting for the biggest 
savings. Especially for the transition period considerable savings - for systems with 
radiator lag up to 35% - could be achieved. Based on a controller simulation, which was 
run for the selected days as well as for an entire half year period, the heating energy 
demand for the half year period was estimated - see Table 4. For the realistic case of a 
system with radiator lag savings of 12% for a half years period can be shown. 

Table 4: Estimated 6 months relative heating power vs. control strategies 

0%

20%

40%

60%

80%

100%

2p
 c

on
tro

l
fix

ed
 le

ad
 ti

m
e

2p
 c

on
tro

l
va

ria
bl

e 
le

ad
 ti

m
e

PI
 c

on
tro

l
va

ria
bl

e 
le

ad
 ti

m
e

M
od

el
 P

re
di

ct
iv

e
C

on
tro

l

100%
91% 90% 88%1036 kWh

946 kWh 928 kWh 913 kWh

es
tim

at
ed

 h
ea

tin
g 

po
w

er
 [%

]

estimated
6 months heating power

2p
co

nt
ro

l-
fix

ed
le

ad
tim

e

2p
co

nt
ro

l-
va

ria
bl

e
le

ad
tim

e

PI
co

nt
ro

l-
va

ria
bl

e
le

ad
tim

e

M
od

el
Pr

ed
ic

tiv
e

C
on

tro
l

results without radiator lag
heating energy [kWh] 842.4 746.8 780.4 797.9
relative heating power [%] 100% 89% 93% 95%
results with radiator lag
heating energy [kWh] 1036.8 946.3 928.3 912.9
relative heating power [%] 100% 91% 90% 88%

 
 

Systems with slow thermal response 
Beyond the actual reference room setup, a hypothetical floor heating with longer 

time constants and therefore much slower dynamic characteristic was added to the 
simulations. Simple control strategies, as e.g. 2-point switching, are not suitable for 



such slow systems, therefore only the model predictive algorithm (PMC) was simulated 
(Fig. 6). The extended thermal lag times due to the big thermal mass of the floor 
construction lead to in average considerably higher temperatures in the room and hence 
cause a generally much higher energy demand. 

  
Fig. 6 - Floor heating with model predictive controller (with occupancy) 

4. Conclusion 

This work has identified potential heating energy savings for conditions of a 
selected building. Several thermostat strategies - from simple switching to model 
predictive control algorithms - were simulated.  

The simulation results have shown significant saving potential in the heating-up 
process from setback periods. With tight lead time control energy savings up to 11-15% 
for systems without radiator lag and 9-10% for systems with radiator lag and for 
warmer ambient conditions could be shown (Table 4). The lead time control is working 
with predictions of the system behavior/outputs; either based on look-up tables derived 
from measured thermal system responses, or on the principles of model predictive 
control. Objective for all methods is to start the heating process as late as possible, but 
in time to reach the thermostat set point exactly at the requested time. 

This can be done by relatively simple switching thermostats. The look-up table 
principle is not limited to single input parameters, but can be extended to impact factors 
as controlled flow temperature systems. The look-up values can also be derived by an 
intelligent thermostat from measurements of the output and the known switching states, 
e.g. during phases of heating up or cooling down. 

In systems with radiator lag, thermostats with more complex control algorithms, as 
model predictive control, do show better results, with savings of 4-35% (Table 3) on the 
specified days; especially for the heating system running in the partial-load operational 
range (warmer ambient conditions). For setting the beginning of the heating-up process 
they do work on basically the same principle, therefore the results do not differ. 
Difference is the 'online' calculation of the right point in time, based on a prediction and 
optimization process with mathematical model representation of the thermal system.  

The advantage of these systems comes for systems with higher thermal lag and for 
the higher control precision; they work in a narrower band around the thermostat setting 



and better reduce overshooting of the target temperature through anticipated power 
reduction. 
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