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Abstract

Smart building energy management requires knowledge of individual appliance
operation from reduced metering points. The key purpose of this study is to present
a classification framework for offices that can help discover individual appliances
and its operational modes from single-point aggregate measurements. This
approach to non-intrusive load monitoring is supervised through labeled Office
Plug Load Dataset. The classification approach is based on short episodes (also
called subsequences) from time-series dataset within which appliance events lie
hidden. A popular technique for discretizing time-series data known as Symbolic
Aggregate approXimation lies at the heart of this framework. Mining large time-
series dataset, extracting characteristic appliance features and classifying them
appropriately based on individual appliance events is facilitated through “Bag of
Patterns” based Vector Space Model. This study focuses on classifying multiple
events from three common aggregate appliance use-case scenarios in an office
environment. The approach is promising at analyzing subsequence patterns from
more than 1700 time-series episodes in the dataset. The results from classifying
multi-functional device operations from aggregate signature show errors less than
22% in scenario where three appliances are in operation, whereas error is less than
37% when two appliances are in operation. The results also indicate that the
approach is likely to work better as the dataset grows as in the case of big data.
Additionally, the proposed approach enables visualizing subsequences of a time-
series using color-coding scheme. Such visualization helps in understanding the
relative specificity of an event to others in the time series.
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1. Introduction

In modern office buildings, Information and Communication
Technology (ICT) based office plug loads account for a significant share
(about 15%) comparable to heating and cooling loads and they are predicted
to grow to 36% by 2030 [1]. The problem aims at improving the energy
efficiency of office plug load appliances not at the design stage but when
buildings are in operation. For instance, operating ICT appliances rationally
in offices within university campus has shown potential energy savings of
more than 130,000 kWh annually [2]. The knowledge of appropriate
appliance operation together with actionable feedback has shown a potential
of 311kWh of desktop PC energy savings in a small office [3]. However, it is
not only challenging but also impractical to meter and measure literally
every office appliance in a fully operational building. Such an approach is
expensive, time consuming and obstructive to occupants. To alleviate the
situation several research efforts towards measuring a group of devices from
a single point with multiple appliances operating in a single electrical circuit
in a building has been evolving since 90s [4, 5]. This has been identified as a
classical approach in building energy measurement and verification termed
as Non-Intrusive Load Monitoring (NILM) or simply load disaggregation

[61.
1.1. Non-intrusive Load Monitoring in Offices

NILM is a generic term to address methods and techniques to decipher
individual appliance energy consumption and their states from a single,
aggregate measurement point in a circuit. NILM in offices poses surprisingly
different set of challenges unlike homes such as physically large spaces,
diverse appliance types, several identical instances and overlapping
operational patterns [6]. Therefore, non-intrusive plug load audits in offices
need to be treated differently using a different kind of dataset and approach.
The challenge for energy audit of ICT appliances in an office is the presence
of several identical appliances on each of several workstations connected to a
circuit and operating concurrently. A heuristic approach to the dataset is
previously proposed [7]. This approximates every office workstation into a
(dis) aggregating point associated with three or four common office
appliances. Thus, the problem of NILM in offices reduces the metering
points (for example only 25 instead of 75 appliances). This results in a
considerable saving in both metering (and in turn auditing) cost and time.

1.2. Office Plug Load Datasets

The plug load dataset is a repository of electricity consumption data of
several individual appliances (e.g. microwave oven, refrigerator, and
computers) and their combination measured across multiple levels (e.g.
whole-building or appliance-level) using energy meters. Generally such



datasets vary based on building type (e.g. residences or offices) as well. A
quick list of references to all public plug load datasets for NILM is available
[8].

The OPLD consists of measurements of both aggregate and individual
appliance data of four common office workstation appliances. The
appliances are: desktop PC, laptop PC, monitor and multi-function printing
device (MFD). There are 5 possible use case scenarios possibly with these 4
appliances combination. Typically every single appliance state combination
is measured approximately for duration of 8 to 10 minutes at a rate of a
sample per second. For more details on actual instrumentation scheme,
experimental data collection plan and other data sanctity measures with
respect to OPLD refer to [7].

1.3. Applicability of time series data mining to NILM

Typically the appliance load signatures collected by metering devices in
buildings are temporal in nature. A time series dataset is simply a collection
of several measurements made chronologically [9]. However, the application
of time series data mining techniques to NILM, energy disaggregation and
building energy analytics is limited. The methodology and results presented
in this study ascertain the applicability of using time series subsequence data
mining to study office appliances’ transient operations and classify them in
aggregate data. The idea of discovering individual appliance events from
aggregate signature is introduced as a classification problem based on
supervised bag-of-rules approach. Visualizing the hidden subsequence
patterns from several aggregate time series measurements in OPLD present
the potential for individual load identification.

1.4. Problem Statement

The problem of NILM in the above context of offices therefore scales
down to disambiguating single time series measurement obtained from
disaggregating points into individual appliance states. The measurements are
both time-stamped and labeled for individual appliance events. Therefore, it
suits supervised approaches to time series classification.

2. Methodology

In this paper, NILM is treated as a classification problem. The goal is to
classify episodes within aggregate time series data appropriately into
individual hidden appliance events. The current scope of this paper is limited
to disambiguate several transient events of multi-functional devices (MFD)
that lie hidden in the aggregate measurements from several workstations.
The reason for choice of MFD is that showed repetitive subsequence patterns
also called characteristic motifs within several episodes of time series
measurements. The relative class specificity of subsequent patterns (motifs)



within time series episodes to be discussed later in section 3 is also a source
of motivation.

2.1. Dataset for classification

This study employs measurements of three use case scenarios: (a)
Desktop PC + Monitor + MFD (b) Laptop PC + Monitor + MFD and (c)
Laptop PC + MFD from OPLD. For the classification presented in this
paper, episodes from aggregate data involving MFD transient events such as
copy, scan and print are retrieved. The data is not time stamped but
temporally ordered. More than 1700 time series episodes from among all
three scenarios are extracted. The length of each time series episodes is 480
samples. This forms the classification dataset for analysis in this study. Fig. 2
presents a simplistic view of such dataset for one such scenario.
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Fig. 2 A simplistic representation of an example dataset used in classification

The rows in the dataset represent the individual episodes and columns
represent every data point in the time series. The first column in the dataset
represents the class corresponding to appliance event whereas the rest of the
columns represent the time series data points. The following are some labels
used in this study: (a) 1: MFD-COPY, (b) 2: MFD-SCAN and (c) 3: MFD-
PRINT. Each row in the dataset has multiple characteristic subsequence
patterns (motifs) corresponding to the labeled classes. The role of proposed
classification framework is to identify and exploit such characteristic
subsequence pattern from several rows within the large dataset in classifying
them appropriately.

2.2. Classification Framework

The proposed approach to classifying episodes of unknown time series
data into appropriate hidden appliance events is supervised. It is based on
two techniques namely SAX [10] and VSM [11] as introduced in [12]. This
approach is chosen for analysis for the few reasons. Firstly, it has shown
promising results in classifying several UCR time series datasets across
domains [12]. Secondly, it exploits popular time series subsequence mining



approach called SAX. Thirdly, entire classification framework is open
source®. The outline flow of the sequences of steps involved in the proposed
classification framework is presented in Fig. 3.

Train | data

Optimization Algorithm

Cross-
-7 validation

RREES DIRECT
algorithm

- Param-Optimization

SAX
Engine

=~

Time-series
Discretization

Test

Train|data  Test|data

A 4 A 4

Bag of Rules

Classification
(VSM)

Error Estimation

Fig. 3 Conceptual clasification framework based on time-series subsequence mining

The dataset for classification typically is composed of few hundreds of
time series measurements. The first step is to prepare the dataset and load
them into the framework. The plug load energy measurements obtained from
OPLD is in CSV (Comma Separeted Values) format as previously presented
Fig. 2. This step also involves separating the entire dataset into train and test
data. This is followed by discretizing and symbolizing each data set
separately. A popular technique called Symbolic Aggregate approXimation
(SAX) [10] is implemented for this process of time series transformation.
This treatment is carried out to transform the data patterns within short
subsequences of time series into a collection of words. Such discretization
combined with symbolizing time series data aid in representing appliance
events using specific Context Free Grammar (CFG) rules. This
transformation enables application of text data mining approaches in
classifying subsequence patterns [11]. This technique requires three user
defined parameters namely sliding window size (w), PAA size (p) and
alphabet size (a). Several characteristic motifs specific to various appliance
events are obtained for different combinations of w, p and a. Since the

! https://github.com/jMotif/jmotif-R
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classification dataset is large manual selection and tuning of SAX parameters
for each and every time series data is impossible. Therefore at the next step,
optimum selection of these parameters is performed with the help of
Dividing RECTangles (DIRECT) algorithm and common cross-validation
scheme. Such a SAX parameter optimization approach has been previously
found applicable for wide range of time series datasets [12].

The next step is to transform the time series subsequences into large
collection of SAX rules and apply Vector Space Model for classifying them
into appropriate appliance events. This involves discretizing the entire
dataset and creating Bag of Rules (BoR) repository very similar to the one
described in [13]. However, other approaches to extract subsequent features
from time series data for classification are also available [14-16]. Both
parameter optimization and time series discretization steps in the framework
employs SAX mechanism. Individual bags of SAX words are created for
every time series in both train and test data as shown in Fig. 4. They are
combined on the basis of classes (labels) to form corpus of SAX words.
Representing CFG rules in vector space and techniques for classification
them are derived from Information theory [11]. The vector space model
builds a term frequency (tf) and inverse document frequency (idf) matrices
for the entire dataset. The tf for every SAX word captures the number of
times a particular subsequence pattern appears in a time series. On the other
hand, the idf for every SAX word indicates a measure of its relative presence
across entire corpus. The tf*idf based weighting scheme for every
subsequence (word) is determined. Finally a cosine similarity measure
between the tf*idf matrix for the corpus and the bag of rules for test dataset is
computed. The classification of test data to an appliance event (i.e. class) is
based on the highest cosine similarity score. By combining SAX based Bag
of Rules and Vector Space Model (VSM), the proposed approach transforms
time series dataset into vectors in space to help classify based on class-
specific subsequence. Finally, a simple scheme for estimating the error in
classification is implemented to determine the classification performance.
This is done by comparing the percentage of false prediction of the number
of labels of time series in test dataset.

The proposed SAX based VSM approach based on open source
implementation [12] to supervised appliance event classification from
aggregate signature has the following characteristics. Firstly, it considers
every possible subsequence pattern (an appliance event) in the aggregate
time series. Secondly, in classifying an unknown aggregate time series the
cosine similarity measures considers relative weights of every SAX word
(representative of appliance event) in the labeled (known) time series.
The complete implementation of this classification framework is done in
CRAN-R.
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Fig. 4 lllustration of SAX discretization step to crete corpus of SAX words

3. Results and Discussion

The application of time series classification framework presented in
section 2.2 in the context of NILM is the main purpose of this study. The
analysis of appropriately identifying the individual hidden appliance and its
events from approximately 1700 disjoint aggregate time series measurements
across multiple office appliance use case scenario is discussed. A brief
discussion on the possible visualization of subsequence pattern specificity
with the help of VSM is also presented.

A. Classification performance of three use case scenarios in offices

The three distinct office appliance use case scenarios from OPLD as
discussed in section 2.1 are analyzed. The result of classification of
aggregate time series measurements for each scenario is presented in Table
1. Note that for each scenario the target appliance to be classified from the
aggregate time series measurement in this analysis is MFDs. Three different
instances of MFD (i.e. P1, P2 and P3) from OPLD are analyzed. Some key
measures of classification are summarized in Table 1.

They are the following: SAX parameters, count of total number of
training and testing time series measurements, and %error in classification.
The classification results obtained are with optimum selection of SAX
parameters (w, p & a) as listed in the Table 1. The split strategy similar to
UCR dataset [17] is considered for breaking the entire dataset into training
and testing sets. The following are some observation drawn from each
scenario in Table 1.

= Desktop PC + Monitor + MFD: For the scenario 1, a total of
about 705 time series measurements are analyzed. The overall
error in classifying MFDs across all events from aggregate time
series measurements ranges from 0% to 22%.




Table 1. Summary of classification results of Vector Space Model applied to OPLD

Appliance Classification Classification Output
EhlE: Use-ca.se L2 B Plin aggregate | P2in aggregate | P3in aggregate
Scenarios
SAX parameters [25, 6, 6] [23,7,6] [34,6,7]
1 D+M+P [w, p, 3l
# Training Set 79 75 92
# Testing Set 154 155 150
% Error 18.18% 0% 22%
SAX parameters [25, 6, 6] (18,7, 4] [25,6,7]
2. L+M+P [w, p, al
# Training Set 100 100 100
# Testing Set 190 184 175
% Error 11.05% 17.39% 13.14%
SAX parameters [25,6,4] [25, 6, 6] [32,6,7]
3. L+P [w, p, a]
# Training Set 30 45 30
# Testing Set 42 25 41
% Error 35.71% 36% 36.59%

Laptop PC + Monitor + MED: In the scenario 2, a total of 849
time series measurements are analyzed and classification error
ranges between 11% and 18%. The improved classification is
possibly a result of increased number of time series instances in
scenario 2 against scenario 1.

Laptop PC + MFED: The scenario 3 is quite different from
other two scenarios. A total of 213 time series measurements
are analyzed. The overall misclassification of appliances ranges
between 35% and 37%. The results produced show a slightly
poor classification performance over others possibly due to the
size of its input dataset. The size of input dataset ranges around
70 time series for each MFD instance unlike 250 plus in other
scenarios.

However, there are other observations that can be drawn from across all
three scenarios. They are summarized as follows.

From among all three instances of MFD only appliance
instance P1 strongly exhibits its characteristic events
consistently across all scenarios. This is reflected in the
optimized SAX parameters selected for classification.
Additionally it also reflects a hidden appliance property that 3
distinct events such as copy, scan and print for P1 is likely to
be similar due to identical optimal sliding window (w) and
PAA size (p).

It can be seen that although the MFD appliance instances (i.e.
P1, P2 and P3) are same across all three scenarios, the SAX



parameters that yield optimal classification results are indeed
different. This strongly suggests that appropriate parameter
optimization step is necessary to make right choice of w, p and
a.

In summary, the proposed classification framework helps to discover
multiple hidden appliance operation from single-point, aggregate energy
data. The analysis presented in this study is focused on discovering several
multi-functional imaging devices (MFD) and their operation modes from
aggregate appliance energy data. The overall result of classification is
reasonably good (with error <22%) at disambiguating three aggregate office
appliance scenario in contrast to two aggregate office appliance scenario
(with error ~37%). The latter is possibly due to the limited dataset size. This
indicates that larger the size of the dataset, accurate classification is possible
with such a framework. Additionally the approach can be promising for big
data NILM studies because SAX can help reduce the dimensionality of the
data.

B. Visualizing hidden appliance events in aggregate data

Visualizing subsequence patterns (also called motifs) corresponding to
individual hidden appliance events can be more powerful. A simple
illustration of the proposed vector space model for visualizing appliance
events such as MFD-COPY, SCAN and PRINT from one such aggregate
time series data is presented in Fig. 5. A sample aggregate measurement
from OPLD when a desktop PC, monitor and MFD is working together in an
office circuit is presented in Fig. 5(a). This is described as a time series data
with several labeled episodes corresponding to distinct MFD operation.

As discussed in section 2.2, the vector space model based on bag of
rules help to build the tf*idf matrix. The columns in the matrix indicate the
measure of relative specificity of every subsequence pattern to the appliance
class. This measure is color coded to present effective insights into the data
patterns through visualization. An example episode for each class i.e. copy,
scan and print from the aggregate time series is presented in Fig. 5(b), (c)
and (d) respectively. From the color coded time series episodes, it can be
seen that most of the characteristic appliance subsequent patterns are specific
to its class represented in either blue or green colors. This serves an
indication that tf*idf matrix based classification of aggregate time series is
appropriate in using hidden appliance subsequence patterns as features.

4. Conclusion

Classification as an approach to NILM in offices is demonstrated in this
study with the help of a time series subsequence data mining framework. It is
one of the first studies to transform office appliance plug load dataset into an
approximate symbolic rules using SAX. An existing approach using vector
space model as an extension to previously introduced Naive classification of



OPLD is considered. The proposed framework can help discover multiple
hidden appliance operation from single-point, aggregate energy data. The
analysis presented in this study so far is focused on discovering several
multi-functional imaging devices (MFD) and their operation modes from
aggregate appliance energy data. The result of classification is promising and
shows potential for application in big data NILM scenarios.
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Fig. 5 (a) An example aggregate measurement of scenario-1: Desktop PC+Monitor+MFD with

labeled episodes of MFD events. One sample episode for (b) MFD-COPY (c) MFD-SCAN and

(d) MFD-PRINT using colour coding to capture relative specificity of time series subsequence
obtained using SAX-VSM framework is presented.

5. Future Work

The analysis presented in this study is so far limited to only identifying
one appliance and its operating state from a combination of two or three
appliances operating together in an office sub-circuit. The next step would be
to extend the implementation to identifying every individual appliance and
its multiple operational states. The future work will also address slightly
large errors resulting due to limited dataset size using alternate similarity
metrics for classifying CFG rules.
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