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Abstract 

Smart building energy management requires knowledge of individual appliance 

operation from reduced metering points. The key purpose of this study is to present 

a classification framework for offices that can help discover individual appliances 

and its operational modes from single-point aggregate measurements. This 

approach to non-intrusive load monitoring is supervised through labeled Office 

Plug Load Dataset. The classification approach is based on short episodes (also 

called subsequences) from time-series dataset within which appliance events lie 

hidden. A popular technique for discretizing time-series data known as Symbolic 

Aggregate approXimation lies at the heart of this framework. Mining large time-

series dataset, extracting characteristic appliance features and classifying them 

appropriately based on individual appliance events is facilitated through “Bag of 

Patterns” based Vector Space Model. This study focuses on classifying multiple 

events from three common aggregate appliance use-case scenarios in an office 

environment. The approach is promising at analyzing subsequence patterns from 

more than 1700 time-series episodes in the dataset. The results from classifying 

multi-functional device operations from aggregate signature show errors less than 

22% in scenario where three appliances are in operation, whereas error is less than 

37% when two appliances are in operation. The results also indicate that the 

approach is likely to work better as the dataset grows as in the case of big data. 

Additionally, the proposed approach enables visualizing subsequences of a time-

series using color-coding scheme. Such visualization helps in understanding the 

relative specificity of an event to others in the time series.             
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1. Introduction  

In modern office buildings, Information and Communication 
Technology (ICT) based office plug loads account for a significant share 
(about 15%) comparable to heating and cooling loads and they are predicted 
to grow to 36% by 2030 [1]. The problem aims at improving the energy 
efficiency of office plug load appliances not at the design stage but when 
buildings are in operation. For instance, operating ICT appliances rationally 
in offices within university campus has shown potential energy savings of 
more than 130,000 kWh annually [2]. The knowledge of appropriate 
appliance operation together with actionable feedback has shown a potential 
of 311kWh of desktop PC energy savings in a small office [3]. However, it is 
not only challenging but also impractical to meter and measure literally 
every office appliance in a fully operational building. Such an approach is 
expensive, time consuming and obstructive to occupants. To alleviate the 
situation several research efforts towards measuring a group of devices from 
a single point with multiple appliances operating in a single electrical circuit 
in a building has been evolving since 90s [4, 5]. This has been identified as a 
classical approach in building energy measurement and verification termed 
as Non-Intrusive Load Monitoring (NILM) or simply load disaggregation 
[6].  

1.1. Non-intrusive Load Monitoring in Offices 

NILM is a generic term to address methods and techniques to decipher 
individual appliance energy consumption and their states from a single, 
aggregate measurement point in a circuit. NILM in offices poses surprisingly 
different set of challenges unlike homes such as physically large spaces, 
diverse appliance types, several identical instances and overlapping 
operational patterns [6]. Therefore, non-intrusive plug load audits in offices 
need to be treated differently using a different kind of dataset and approach. 
The challenge for energy audit of ICT appliances in an office is the presence 
of several identical appliances on each of several workstations connected to a 
circuit and operating concurrently. A heuristic approach to the dataset is 
previously proposed [7]. This approximates every office workstation into a 
(dis) aggregating point associated with three or four common office 
appliances. Thus, the problem of NILM in offices reduces the metering 
points (for example only 25 instead of 75 appliances). This results in a 
considerable saving in both metering (and in turn auditing) cost and time.   

1.2. Office Plug Load Datasets 

The plug load dataset is a repository of electricity consumption data of 
several individual appliances (e.g. microwave oven, refrigerator, and 
computers) and their combination measured across multiple levels (e.g. 
whole-building or appliance-level) using energy meters. Generally such 



datasets vary based on building type (e.g. residences or offices) as well. A 
quick list of references to all public plug load datasets for NILM is available 
[8].  

The OPLD consists of measurements of both aggregate and individual 
appliance data of four common office workstation appliances. The 
appliances are: desktop PC, laptop PC, monitor and multi-function printing 
device (MFD). There are 5 possible use case scenarios possibly with these 4 
appliances combination. Typically every single appliance state combination 
is measured approximately for duration of 8 to 10 minutes at a rate of a 
sample per second. For more details on actual instrumentation scheme, 
experimental data collection plan and other data sanctity measures with 
respect to OPLD refer to [7].      

1.3. Applicability of time series data mining to NILM 

Typically the appliance load signatures collected by metering devices in 
buildings are temporal in nature. A time series dataset is simply a collection 
of several measurements made chronologically [9]. However, the application 
of time series data mining techniques to NILM, energy disaggregation and 
building energy analytics is limited. The methodology and results presented 
in this study ascertain the applicability of using time series subsequence data 
mining to study office appliances’ transient operations and classify them in 
aggregate data. The idea of discovering individual appliance events from 
aggregate signature is introduced as a classification problem based on 
supervised bag-of-rules approach. Visualizing the hidden subsequence 
patterns from several aggregate time series measurements in OPLD present 
the potential for individual load identification.            

1.4. Problem Statement 

The problem of NILM in the above context of offices therefore scales 
down to disambiguating single time series measurement obtained from 
disaggregating points into individual appliance states. The measurements are 
both time-stamped and labeled for individual appliance events. Therefore, it 
suits supervised approaches to time series classification.    

2. Methodology 

In this paper, NILM is treated as a classification problem. The goal is to 
classify episodes within aggregate time series data appropriately into 
individual hidden appliance events. The current scope of this paper is limited 
to disambiguate several transient events of multi-functional devices (MFD) 
that lie hidden in the aggregate measurements from several workstations. 
The reason for choice of MFD is that showed repetitive subsequence patterns 
also called characteristic motifs within several episodes of time series 
measurements. The relative class specificity of subsequent patterns (motifs) 



within time series episodes to be discussed later in section 3 is also a source 
of motivation.             

2.1. Dataset for classification 

This study employs measurements of three use case scenarios: (a) 
Desktop PC + Monitor + MFD (b) Laptop PC + Monitor + MFD and (c) 
Laptop PC + MFD from OPLD. For the classification presented in this 
paper, episodes from aggregate data involving MFD transient events such as 
copy, scan and print are retrieved. The data is not time stamped but 
temporally ordered. More than 1700 time series episodes from among all 
three scenarios are extracted. The length of each time series episodes is 480 
samples. This forms the classification dataset for analysis in this study. Fig. 2 
presents a simplistic view of such dataset for one such scenario.  

 

Fig. 2 A simplistic representation of an example dataset used in classification  

The rows in the dataset represent the individual episodes and columns 
represent every data point in the time series. The first column in the dataset 
represents the class corresponding to appliance event whereas the rest of the 
columns represent the time series data points. The following are some labels 
used in this study: (a) 1: MFD-COPY, (b) 2: MFD-SCAN and (c) 3: MFD-
PRINT. Each row in the dataset has multiple characteristic subsequence 
patterns (motifs) corresponding to the labeled classes. The role of proposed 
classification framework is to identify and exploit such characteristic 
subsequence pattern from several rows within the large dataset in classifying 
them appropriately.       

2.2. Classification Framework 

The proposed approach to classifying episodes of unknown time series 
data into appropriate hidden appliance events is supervised. It is based on 
two techniques namely SAX [10] and VSM [11] as introduced in [12]. This 
approach is chosen for analysis for the few reasons. Firstly, it has shown 
promising results in classifying several UCR time series datasets across 
domains [12]. Secondly, it exploits popular time series subsequence mining 



approach called SAX. Thirdly, entire classification framework is open 
source

1
. The outline flow of the sequences of steps involved in the proposed 

classification framework is presented in Fig. 3.  

 

Fig. 3 Conceptual clasification framework based on time-series subsequence mining  
 

The dataset for classification typically is composed of few hundreds of 
time series measurements. The first step is to prepare the dataset and load 
them into the framework. The plug load energy measurements obtained from 
OPLD is in CSV (Comma Separeted Values) format as previously presented 
Fig. 2. This step also involves separating the entire dataset into train and test 
data. This is followed by discretizing and symbolizing each data set 
separately. A popular technique called Symbolic Aggregate approXimation 
(SAX) [10] is implemented for this process of time series transformation. 
This treatment is carried out to transform the data patterns within short 
subsequences of time series into a collection of words. Such discretization 
combined with symbolizing time series data aid in representing appliance 
events using specific Context Free Grammar (CFG) rules. This 
transformation enables application of text data mining approaches in 
classifying subsequence patterns [11]. This technique requires three user 
defined parameters namely sliding window size (w), PAA size (p) and 
alphabet size (a). Several characteristic motifs specific to various appliance 
events are obtained for different combinations of w, p and a. Since the 
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classification dataset is large manual selection and tuning of SAX parameters 
for each and every time series data is impossible. Therefore at the next step, 
optimum selection of these parameters is performed with the help of 
Dividing RECTangles (DIRECT) algorithm and common cross-validation 
scheme. Such a SAX parameter optimization approach has been previously 
found applicable for wide range of time series datasets [12].  

The next step is to transform the time series subsequences into large 
collection of SAX rules and apply Vector Space Model for classifying them 
into appropriate appliance events. This involves discretizing the entire 
dataset and creating Bag of Rules (BoR) repository very similar to the one 
described in [13]. However, other approaches to extract subsequent features 
from time series data for classification are also available [14-16]. Both 
parameter optimization and time series discretization steps in the framework 
employs SAX mechanism. Individual bags of SAX words are created for 
every time series in both train and test data as shown in Fig. 4. They are 
combined on the basis of classes (labels) to form corpus of SAX words. 
Representing CFG rules in vector space and techniques for classification 
them are derived from Information theory [11]. The vector space model 
builds a term frequency (tf) and inverse document frequency (idf) matrices 
for the entire dataset. The tf for every SAX word captures the number of 
times a particular subsequence pattern appears in a time series. On the other 
hand, the idf for every SAX word indicates a measure of its relative presence 
across entire corpus. The tf*idf based weighting scheme for every 
subsequence (word) is determined. Finally a cosine similarity measure 
between the tf*idf matrix for the corpus and the bag of rules for test dataset is 
computed. The classification of test data to an appliance event (i.e. class) is 
based on the highest cosine similarity score. By combining SAX based Bag 
of Rules and Vector Space Model (VSM), the proposed approach transforms 
time series dataset into vectors in space to help classify based on class-
specific subsequence. Finally, a simple scheme for estimating the error in 
classification is implemented to determine the classification performance. 
This is done by comparing the percentage of false prediction of the number 
of labels of time series in test dataset. 

The proposed SAX based VSM approach based on open source 
implementation [12] to supervised appliance event classification from 
aggregate signature has the following characteristics. Firstly, it considers 
every possible subsequence pattern (an appliance event) in the aggregate 
time series. Secondly, in classifying an unknown aggregate time series the 
cosine similarity measures considers relative weights of every SAX word 
(representative of appliance event) in the labeled (known) time series.       
The complete implementation of this classification framework is done in 
CRAN-R. 

 



 

Fig. 4 Illustration of SAX discretization step to crete corpus of SAX words 

3. Results and Discussion 

The application of time series classification framework presented in 
section 2.2 in the context of NILM is the main purpose of this study. The 
analysis of appropriately identifying the individual hidden appliance and its 
events from approximately 1700 disjoint aggregate time series measurements 
across multiple office appliance use case scenario is discussed. A brief 
discussion on the possible visualization of subsequence pattern specificity 
with the help of VSM is also presented.    

A. Classification performance of three use case scenarios in offices   

The three distinct office appliance use case scenarios from OPLD as 
discussed in section 2.1 are analyzed. The result of classification of 
aggregate time series measurements for each scenario is presented in Table 
1. Note that for each scenario the target appliance to be classified from the 
aggregate time series measurement in this analysis is MFDs. Three different 
instances of MFD (i.e. P1, P2 and P3) from OPLD are analyzed. Some key 
measures of classification are summarized in Table 1.  

They are the following: SAX parameters, count of total number of 
training and testing time series measurements, and %error in classification. 
The classification results obtained are with optimum selection of SAX 
parameters (w, p & a) as listed in the Table 1. The split strategy similar to 
UCR dataset [17] is considered for breaking the entire dataset into training 
and testing sets. The following are some observation drawn from each 
scenario in Table 1. 

 Desktop PC + Monitor + MFD: For the scenario 1, a total of 
about 705 time series measurements are analyzed. The overall 
error in classifying MFDs across all events from aggregate time 
series measurements ranges from 0% to 22%.  
 



Table 1. Summary of classification results of Vector Space Model applied to OPLD 

 

 Laptop PC + Monitor + MFD: In the scenario 2, a total of 849 
time series measurements are analyzed and classification error 
ranges between 11% and 18%. The improved classification is 
possibly a result of increased number of time series instances in 
scenario 2 against scenario 1.     

 Laptop PC + MFD: The scenario 3 is quite different from 
other two scenarios. A total of 213 time series measurements 
are analyzed. The overall misclassification of appliances ranges 
between 35% and 37%. The results produced show a slightly 
poor classification performance over others possibly due to the 
size of its input dataset. The size of input dataset ranges around 
70 time series for each MFD instance unlike 250 plus in other 
scenarios.      

However, there are other observations that can be drawn from across all 
three scenarios. They are summarized as follows.  

 From among all three instances of MFD only appliance 
instance P1 strongly exhibits its characteristic events 
consistently across all scenarios. This is reflected in the 
optimized SAX parameters selected for classification. 
Additionally it also reflects a hidden appliance property that 3 
distinct events such as copy, scan and print for P1 is likely to 
be similar due to identical optimal sliding window (w) and 
PAA size (p).   

 It can be seen that although the MFD appliance instances (i.e. 
P1, P2 and P3) are same across all three scenarios, the SAX 



parameters that yield optimal classification results are indeed 
different. This strongly suggests that appropriate parameter 
optimization step is necessary to make right choice of w, p and 
a.  

In summary, the proposed classification framework helps to discover 
multiple hidden appliance operation from single-point, aggregate energy 
data. The analysis presented in this study is focused on discovering several 
multi-functional imaging devices (MFD) and their operation modes from 
aggregate appliance energy data. The overall result of classification is 
reasonably good (with error <22%) at disambiguating three aggregate office 
appliance scenario in contrast to two aggregate office appliance scenario 
(with error ~37%). The latter is possibly due to the limited dataset size. This 
indicates that larger the size of the dataset, accurate classification is possible 
with such a framework. Additionally the approach can be promising for big 
data NILM studies because SAX can help reduce the dimensionality of the 
data.  

B. Visualizing hidden appliance events in aggregate data 

Visualizing subsequence patterns (also called motifs) corresponding to 
individual hidden appliance events can be more powerful. A simple 
illustration of the proposed vector space model for visualizing appliance 
events such as MFD-COPY, SCAN and PRINT from one such aggregate 
time series data is presented in Fig. 5. A sample aggregate measurement 
from OPLD when a desktop PC, monitor and MFD is working together in an 
office circuit is presented in Fig. 5(a). This is described as a time series data 
with several labeled episodes corresponding to distinct MFD operation.  

As discussed in section 2.2, the vector space model based on bag of 
rules help to build the tf*idf matrix. The columns in the matrix indicate the 
measure of relative specificity of every subsequence pattern to the appliance 
class. This measure is color coded to present effective insights into the data 
patterns through visualization. An example episode for each class i.e. copy, 
scan and print from the aggregate time series is presented in Fig. 5(b), (c) 
and (d) respectively. From the color coded time series episodes, it can be 
seen that most of the characteristic appliance subsequent patterns are specific 
to its class represented in either blue or green colors. This serves an 
indication that tf*idf matrix based classification of aggregate time series is 
appropriate in using hidden appliance subsequence patterns as features.    

4. Conclusion 

Classification as an approach to NILM in offices is demonstrated in this 
study with the help of a time series subsequence data mining framework. It is 
one of the first studies to transform office appliance plug load dataset into an 
approximate symbolic rules using SAX. An existing approach using vector 
space model as an extension to previously introduced Naïve classification of 



OPLD is considered. The proposed framework can help discover multiple 
hidden appliance operation from single-point, aggregate energy data. The 
analysis presented in this study so far is focused on discovering several 
multi-functional imaging devices (MFD) and their operation modes from 
aggregate appliance energy data. The result of classification is promising and 
shows potential for application in big data NILM scenarios.  

 

Fig. 5 (a) An example aggregate measurement of scenario-1: Desktop PC+Monitor+MFD with 

labeled episodes of MFD events. One sample episode for (b) MFD-COPY (c) MFD-SCAN and 

(d) MFD-PRINT using colour coding to capture relative specificity of time series subsequence 

obtained using SAX-VSM framework is presented.     

5. Future Work 

The analysis presented in this study is so far limited to only identifying 
one appliance and its operating state from a combination of two or three 
appliances operating together in an office sub-circuit. The next step would be 
to extend the implementation to identifying every individual appliance and 
its multiple operational states. The future work will also address slightly 
large errors resulting due to limited dataset size using alternate similarity 
metrics for classifying CFG rules.  
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