

IECON 2016 Tutorial October 24, 2016, Florence, Italy

Capacitors in Power Electronics Applications – Reliability and Circuit Design

Huai Wang Email: hwa@et.aau.dk

Center of Reliable Power Electronics (CORPE) Department of Energy Technology Aalborg University, Denmark

Biography of Speaker

Huai Wang is currently an Associate Professor and a research trust leader with the Center of Reliable Power Electronics (CORPE), Aalborg University, Denmark. His research addresses the fundamental challenges in modelling and validation of the failure mechanisms of power electronic components, and application issues in system-level predictability, condition monitoring, circuit architecture, and robustness design. In CORPE, he also leads a capacitor research group including multiple PhD projects on capacitors and its applications in power electronic systems, and is the principal investigator of a project on Reliability of Capacitors in Power Electronic Systems. Dr. Wang is the collecturer of a PhD course on Reliability of Power Electronic Systems at Aalborg University since 2013, an invited speaker at the European Center for Power Electronics (ECPE) workshops, and a tutorial lecturer at leading power electronics conferences (ECCE, APEC, EPE, PCIM, etc.). He has co-edited a book on *Reliability of Power Electronic Converter Systems* in 2015, filed four patents in capacitive DC-link inventions, and contributed a few concept papers in the area of power electronics reliability.

Dr. Wang received his PhD degree from the City University of Hong Kong, Hong Kong, China, and Bachelor degree from Huazhong University of Science and Technology, Wuhan, China. He was a visiting scientist with the ETH Zurich, Switzerland, from August to September, 2014 and with the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, from September to November, 2013. He was with the ABB Corporate Research Center, Baden, Switzerland, in 2009. Dr. Wang received the IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award, in 2016, for the contribution to the reliability of power electronic conversion systems. He serves as an Associate Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics and IEEE Transactions on Power Electronics.

Tutorial Schedule

Introduction to Capacitors in Power Electronics Applications

- Functions of capacitors in power electronic systems
- Dielectric materials and types of capacitors

Reliability of Capacitors

- Failure modes, failure mechanisms, and critical stressors of capacitors
- Mission profile based electro-thermal stress analysis
- Degradation testing of capacitors
- Condition monitoring of capacitors

Design of Capacitive DC-links

- Considerations in capacitor bank configuration and design
- DC-link capacitor sizing criteria in power electronics
- Active capacitive DC-links

Aalborg University, Denmark

Inaugurated in 1974 22,000+ students 2,000+ faculty

PBL-Aalborg Model Project-organized and problem-based

Department of Energy Technology

40+ Faculty, 100+ PhDs, 30+ RAs & Postdocs, 20+ Technical staff

Energy production - distribution - consumption - control

Department of Energy Technology

More information: Huai Wang and Frede Blaabjerg, Aalborg University fosters multi-disciplinary approach to research in efficient and reliable power electronics, *How2power today*, issue Feb. 2015.

Center of Reliable Power Electronics (CORPE)

An Industrial Initiated Strategic Research Center

Design for Reliability

By obtaining high-reliability power electronic systems for use in all fields of electrical applications used both in design and operation where the main drivers are lower development cost, manufacturing cost, efficiency, reliability, predictability, lower operational and maintenance costs during the lifetime.

Motivation for More Reliable Product Design

Reduce costs by improving reliability upfront

Source: DfR Solutions, Designing reliability in electronics, CORPE Workshop, 2012.

Typical Lifetime Targets of Industry Applications

Applications	Typical design target of Lifetime	
Aircraft	24 years (100,000 hours flight operation)	
Automotive	15 years (10,000 operating hours, 300, 000 km)	
Industry motor drives	5-20 years (40,000 hours in at full load)	
Railway	20-30 years (73,000 - 110,000 hours)	
Wind turbines	20 years (120,000 hours)	
Photovoltaic plants	30 years (90,000 to 130,000 hours)	

The Scope of Reliability of Power Electronics

H. Wang (2012, 2014 IEEE)

Paradigm Shift

- From components to failure mechanisms
- From constant failure rate to failure level with time
- From reliability prediction to robustness validation
- From microelectronics to also power electronics

1 Introduction to Capacitors in Power Electronics

- Functions of capacitors in power electronic systems
- Dielectric materials and types of capacitors

Power Electronics

Reinvent the way electrical energy processed

Electricity generation

Interfaces

Integration to electric grid Power transmission Power distribution Power conversion Power control

Power Electronics

enable efficient conversion and flexible control of electrical energy

Electricity consumption

. . .

where \boldsymbol{e}_0 is the dielectric constant, \boldsymbol{e}_r is the relative dielectric constant for different materials, \boldsymbol{A} is the surface area and \boldsymbol{d} is the thickness of the dielectric layer; \boldsymbol{C} is the capacitance and \boldsymbol{V} is the voltage rating; \boldsymbol{P}_d is the maximum power dissipation, \boldsymbol{h} is the heat transfer coefficient, $\boldsymbol{\Delta}T$ is the temperature difference between capacitor surface and ambient and \boldsymbol{R}_s is the equivalent series resistance (ESR).

Capacitors in Power Electronics

Various types of capacitors (Picture courtesy of CDE).

Important factors Voltage rating Capacitance Capacitance stability **Ripple current rating** Leakage current **Temperature range Resonant frequency** Equivalent series resistance (ESR) Equivalent series inductance (ESL) **Volumetric efficiency** Lifetime Cost . . .

Functions of Capacitors in Power Electronic Systems

Capacitors in typical power Converters

(Source: http://www.cde.com/catalog/switch/power/)

Functions of Capacitors in Power Electronic Systems

Typical applications of capacitors in motor drives (Figure source: TDK EPCOS product profile: Film Capacitors for Industrial Applications)

Typical applications of capacitors in Photovoltaic (PV) inverters (Figure source: TDK EPCOS product profile: Film Capacitors for Industrial Applications)

Capacitor Types According to Dielectric Materials

1100 V film capacitors 470 μF and 1100 μF

450 V Al-Electrolytic capacitors 5600 μF

Energy storage density for various dielectrics (M. Marz, CIPS 2010).

¹⁾ Al electrolytic capacitors lose about one order of magnitude in energy storage density in the winding construction, due to the overhead necessary to achieve the self-healing property.

Typical Capacitor Voltage and Capacitance

Comparison of 3 Types of Capacitors (Typical)

Al-CapsAluminum Electrolytic CapacitorsMPPF-CapsMetallized Polypropylene Film CapacitorsMLC-CapsMultilayer Ceramic Capacitors

Performance comparisons of the 3 types of capacitors

CeraLink Ceramic Capacitors

(Source: Juergen Konrad, TDK-EPCOS)

- Anti-ferroelectric ceramics of modified Pb La (Zr, Ti) 03
- Copper inner electrodes
- High-temperature stable ceramic-metal interconnects based on sintered silver to realize capacitance values up to 100 µF

CeraLink Ceramic Capacitors

(Source: Juergen Konrad, TDK-EPCOS)

μF/cm³

A/cm³

2 Reliability of Capacitors

- Failure modes, failure mechanisms, and critical stressors of capacitors
- Mission profile based electro-thermal stress analysis
- Degradation testing of capacitors
- Condition monitoring of capacitors

Reliability Critical Components

Percentage of the response to the most frangible components in power electronic systems from an industry survey (% may vary for different applications and designs)

Data sources: S. Yang, A. Bryant, P. Mawby, D. Xiang, R. Li, and P. Tavner, "An Industry-Based Survey of Reliability in Power Electronic Converters," IEEE Transactions on Industry Applications, vol. 47, pp. 1441-1451, 2011.

Failure Modes, Mechanisms, and Stressors

Aluminum Electrolytic Capacitors (Al-Caps)

	Failure modes	Critical failure mechanisms	Critical stressors
Al-Caps -	Open circuit	Electrolyte loss	V _C , T _a , i _C
		Poor connection of terminals	Vibration /shock
	Short circuit	Dielectric breakdown of oxide layer	V _C , T _a , i _C
	Wearout: electrical parameter drift (C, ESR, tanō, I _{LC} , R _p)	Electrolyte loss	T _a , i _C
		Electrochemical reaction (e.g. degradation of oxide layer, anode foil capacitance drop)	V _C , T _a , i _C

Failure Modes, Mechanisms, and Stressors

Metallized Polypropylene Film Capacitors (MPPF-Caps)

	Failure modes	Critical failure mechanisms	Critical stressors
MPPF-Caps	Open circuit (typical)	Connection instability by heat contraction of a dielectric film	T _a , i _C
		Reduction in electrode area caused by oxidation of evaporated metal due to moisture absorption	Humidity
	Short circuit (with resistance)	Dielectric film breakdown	V _c , dV _c /dt
		Self-healing due to overcurrent	T _a , i _C
		Moisture absorption by film	Humidity
	Wearout: electrical parameter drift (C, ESR, tanō, I _{LC} , R _p)	Dielectric loss	V _c , T _a , i _c , humidity

Failure Modes, Mechanisms, and Stressors

Multilayer Ceramic Capacitors (MLC-Caps)

	Failure modes	Critical failure mechanisms	Critical stressors
MLC-Caps	Short circuit (typical)	Dielectric breakdown	V _C , T _a , i _C
		Cracking; damage to capacitor body	Vibration /shock
	Wearout: electrical parameter drift (C, ESR, tanð, I _{LC} , R _p)	Oxide vacancy migration; dielectric puncture; insulation degradation; micro-crack within ceramic	V _c , T _a , i _{c,} vibration /shock

Typical flex crack of MLC-Caps (Source: Kemet)

Red crack represents flex crack; green crack represents typical thermal shock crack; blue crack represents mechanical damage. (Source: Kemet)

Failure Modes, Mechanisms, and Stressors Summary

	Al-Caps	MPPF-Caps	MLCC-Caps	
Dominant failure modes	wear out			
Dominant faiture modes	open circuit	open circuit	short circuit	
Most critical stressors	T _a , V _C , i _C	T_a , V_c , humidity	T_a , V_c , vibration/shock	
Self-healing capability	moderate	good	no	

Al-Caps Aluminium Electrolytic Capacitors MPPF-Caps Metallized Polypropylene Film Capacitors MLC-Caps Multilayer Ceramic Capacitors

Mission Profile based Electro-Thermal Modeling An example of 3 kW single-phase PV inverter application

A grid-connected PV system with a 3 kW single-phase PV inverter

A method for long-term electro-thermal stress modeling

Mission Profile based Electro-Thermal Modeling An example of 3 kW single-phase PV inverter application - Specifications

PV inverter specifications

T

*Installed PV capacity at 1000 W/m², 25 °C

DC-link capacitor parameters

Parameter	Value
Rated capacitance	2200 µF
Rated voltage	385 V
Maximum ESR at 20 °C, 100 Hz	$38 \text{ m}\Omega$
Thermal resistance	2.3 °C/W

Mission Profile based Electro-Thermal Modeling

An example of 3 kW single-phase PV inverter application – Ripple Current

An example of ripple current harmonic spectrum at rated power and 25°C (FFT - Fast Fourier Transform)

Capacitor ripple currents under different solar irradiance levels, at 25°C

Mission Profile based Electro-Thermal Modeling An example of 3 kW single-phase PV inverter application – ESR

Frequency dependency of the DC-link capacitor equivalent series resistor (ESR), where Ta = 25°C.

Equivalent series resistance (ESR) frequencydependency under different testing temperatures.

Mission Profile based Electro-Thermal Modeling

An example of 3 kW single-phase PV inverter application – electro-thermal

FFT based capacitor loss model

Fast Fourier transform (FFT) based instantaneous thermal modelling of the DC-link capacitor

Thermal modelling for the DC-link capacitors based on the ripple current reconstruction method

 $T_{\rm h}$ – hot-spot temperature

Simplified thermal model of a capacitor

 $T_{\rm c}$ – case temperature $T_{\rm a}$ – ambient temperature

Mission Profile based Electro-Thermal Modeling

An example of 3 kW single-phase PV inverter application – thermal stresses

A Widely Used Lifetime Model for Capacitors

$$L_x = L_0 \times \left(\frac{V_x}{V_0}\right)^{-n} \times exp\left[\left(\frac{E_a}{K_B}\right)\left(\frac{1}{T_x} - \frac{1}{T_0}\right)\right]$$

MLC-Caps

Typically $E_a = 1.3$ to 1.5, and n = 1.5 to 7 (the large discrepancies are attributed to the ceramic materials, dielectric layer thickness, etc.)

Al-Caps and MPPF-Caps

A simplified model derived from the above equation (with special case of $E_a = 0.94 \text{ eV}$)

$$L_x = L_0 \times \left(\frac{V_x}{V_0}\right)^{-n} \times 2^{\frac{T_0 - T_x}{10}}$$

a simplified model derived from the above equation (E_a = 0.94 eV) Typically *n* = 1 to 5 for Al-Caps and *n* = 3.5 to 9.4 for MPPF-Caps

 L_x – expected operating lifetime; L_0 – expected lifetime for full rated voltage and temperature; V_x – actual applied voltage; V_o – rated voltage; T_0 – maximum rated ambient temperature; T_x – actual ambient temperature; E_a is the activation energy, K_B is Boltzmann's constant (8.62×10–5 eV/K)

Lifetime Models from Manufacturers

Manufacturer 1

$$L_x = L_0 \times \left(4.3 - 3.3 \frac{V_x}{V_0}\right) \times 2^{\frac{T_m - T_x}{10}}$$

Manufacturer 2

$$L_x = L_0 \times \left(\frac{V_x}{V_0}\right)^{-4.4} \times 2^{\frac{T_0 - T_x}{10}} \times 2^{\frac{\Delta T_0 - \Delta T_x}{K}}$$

Observations

Limited to electrical and thermal stresses

Other critical stressors, like humidity and mechanical stress are missed

 $\Delta T_x \leq 25^{\circ}\text{C}, K = 10; \ 25^{\circ}\text{C} < \Delta T_x < 45^{\circ}\text{C}, K = 10 \ (\geq 300\text{Hz}), K = 5 \ (\geq 120\text{Hz}, < 300\text{Hz})$ $\Delta T_x > 45^{\circ}\text{C}, K = 10 \ (> 1000\text{Hz}), K = 7 \ (\geq 300\text{Hz}, < 1000\text{Hz}), K = 5 \ (\geq 120\text{Hz}, < 300\text{Hz})$

Manufacturer 3

 $L_x = L_0 \times 2^{\frac{T_0 - T_x}{10}} \times 2^{\frac{\Delta T_0 - \Delta T_x}{K}}$

K = 10 (below rated ripple current); K = 5 (above rated ripple current)

. . .

Manufacturer N

 L_x – expected operating lifetime; L_0 – expected lifetime for full rated voltage and temperature; V_x – actual applied voltage; V_o – rated voltage; T_m – Maximum permitted internal operating temperature; T_0 – maximum rated ambient temperature; ΔT_0 – rated ripple heat generation at $T_{0;}$ T_x – actual ambient temperature; ΔT_x – actual ripple heat generation from application.

Capacitor Wear Out Testing System

System configuration

- Climatic chamber
- 2000 V (DC) / 100 A (AC) / 50 Hz to 1 kHz ripple current tester
- 2000 V (DC) / 50 A (AC) / 20 kHz to 100 kHz (discrete) ripple current tester
- 500 V (DC) / 30A (AC) / 100 Hz to 1 kHz (discrete) ripple current tester
- LCR meter
- IR / leakage current meter
- Computer

System capability

- Temp. range -70 °C to +180 °C
- Humidity range (for a certain range of temp.): 10 % RH to 95 % RH
- DC voltage stress up to 2000 V and ripple current stress up to 100 A and 100 kHz
- Measurement of capacitance, ESR, inductance, insulation resistance, leakage current and hotspot temperature

CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY | HUAI WANG | 24.10.2016 | SLIDE 37

Testing Results MPPF-Caps Capacitance (normalized)

Analysis Method of the Testing Data Weibull Distribution

$$f(t) = \begin{cases} \frac{\beta}{\eta^{\beta}} t^{\beta-1} \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right] & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

$$R(t) = \exp\left[-\left(rac{t}{\eta}
ight)^{eta}
ight]$$
 (Two parameters)

- Wallodi Weibull 1887-1979 Wallodi Shown at Age 88 in 1975 Photo by Sam C. Saunders
- η Characteristics life (the time when 63.2% of items fail)
- β Shaping factor
- γ Failure free time

Testing Data Analysis Method Weibull Distribution

Shape, β Scale (characteristic life), η

Location (minimum life), γ Curves shown for $\gamma = 0$

When β = 1, Weibull distribution is the exponential distribution When β = 3.5, Weibull distribution approximates to normal distribution

Weibull distribution can be used to model a wide range of life distributions characteristic of engineered products

Weibull Plots of the Testing Data

1000

Time (Hour)

100

Humidity-Dependent Lifetime of the MPPF-Caps

B10 lifetime – the time when reliability is 0.9 (i.e., 10% failure)

Failure Analysis – Visual Inspection

More transparent sections Less transparent sections

Photography of the capacitor film at 25m into the capacitor roll of Cap 10 in the test Group 1.

The more transparent sections indicate corrosion of the metallization layer

Failure Analysis – Optical Microscopy Investigation

A new capacitor sample (at 1 m into the roll)

The metallization layer is fairly intact

Cap 10 in Group 1 after the degradation testing (at 1 m into the roll) Small metal islands left, the rest of the metallization layer has corroded

Corroded areas Metal islands

Microscopy images of the metallization film from a new capacitor and from a tested capacitor (the scale bars represent a distance of 200 µm).

Classification of Capacitor Condition Monitoring Methods

H. Soliman, H. Wang (IEEE, 2016)

Key Indicators for Condition Monitoring

H. Soliman, H. Wang (IEEE, 2016)

 $C_o =$ Initial capacitance. $C_{EOL} =$ Capacitance at End-Of-Life. $ESR_o =$ Initial equivalent series resistance. $ESR_{EOL} =$ equivalent series resistance at End-Of-Life. $*C_{EOL}$ could be larger or smaller than ESR_{EOL} , it depends on the application and the capacitor type.

Condition Monitoring of DC-Link Capacitors (Example)

M. A. Vogelsberger (IEEE, 2011)

Model and impedance characteristics of capacitors.

The principle of ESR estimation.

Photo of prototype for online ESR estimation of DC-link capacitors.

Based on capacitor's power loss Temperature effect compensation Criterion: ESR increases to double

Remaining Lifetime Prediction of Capacitors (Example) K. Abdennadher (IEEE, 2010)

Algorithm for online remaining lifetime prediction of DC-link capacitors.

3 Design of Capacitive DC-links

- Considerations in capacitor bank configuration and design
- DC-link capacitor sizing criteria in power electronics
- Active capacitive DC-links

Function of DC-Link Capacitors

Capacitive DC-link function

- balance power
- limit voltage ripple (both for steady-state and transient)
- energy storage

Energy storage and instantaneous power of a capacitive dclink in a single-phase AC-DC or DC-AC system (typical).

Low-Inductance Capacitor Bank Design (Source: CREE application note)

Printed circuit board layers

Capacitor series connection magnetic field cancellation scheme

Schematic of a 3-phase inverter with a DC-link bank

Low-Inductance Capacitor Bank Design

(Source: CREE application note)

Prototype photo of a 3-phase inverter with a DC-link bank

Impedance vs. frequency for each set of DC link connections and ESL differences

Low-Inductance Capacitor Bank Design (Source: Juergen Konrad, TDK-EPCOS)

Voltage Balancing of Series-Connected Capacitors

Simplified circuit model of two series connected capacitors

(*R*p is the voltage balance resistor, R_{IR1} and R_{IR2} are insulation resistances, I_{L1} and I_{L2} are leakage currents)

Typical variation of leakage current with time (Source: Vishay)

Typical variation of leakage current with temperature (Source: Vishay)

- The R_p should be selected for the lowest insulation resistances
- Trade-off between the power losses of R_p and voltage balancing
- Active voltage balancing solutions are available, but with increased complexity.

DC-link Capacitor Sizing Criteria

Criteria (Application-Specific)

- Voltage ripple (steady-state)
- Voltage ripple (transients and abnormal operation)
- Energy storage requirement (e.g., hold-up time)
- Stability (related to control performance)
- **...**

Considerations

- Temperature range
- Capacitance stability
- Frequency characteristics
- Lifetime
- End-of-life parameters and tolerances
- · · · ·

Sizing Criteria - Stability

An example of three-phase inverters in PV applications (Source: T. Messo, IEEE TPEL, 2014)

Characteristics of a PV generator

CC- Constant current region, when the dynamic resistance is higher than the static resistance
 CV - Constant voltage region, when the dynamic resistance is higher than the static resistance

Sizing Criteria - Stability

Single-stage three-phase PV inverter (Source: T. Messo, IEEE TPEL, 2014)

RHP pole in the dc-link voltage control loop

$$\omega_{RHP} = \frac{1}{C_{dc}} \left(\frac{I_{\rm pv}}{U_{\rm pv}} - \frac{1}{r_{\rm pv}} \right)$$

When in the constant current (CC) region: dynamic resistance is higher than the static resistance RHP – Right half-plane

Minimum required capacitance to ensure stability:

$$C_{
m min} = k_{
m RHP} k_i rac{I_{
m sc}}{U_{
m pv} ext{-min} \omega_c}$$

 $I_{\rm SC}$ - short-circuit current of the PV generator $k_{\rm RHP}$ - ratio between the crossover frequency of the dc-link voltage control loop and the RHP. $k_{\rm i}$ - a constant to take into account the cloud enhancement

Sizing Criteria - Stability

Two-stage three-phase PV inverter (Source: T. Messo, IEEE TPEL, 2014)

DC-Link Design Solutions

Passive capacitive DC-links

Active capacitive DC-links

Hybrid DC-Link Bank Design

M. A. Brubaker (SBE, PCIM 2013)

250 kW inverter Ripple current on the order of 400 Arms DC bus voltage of 1000 Vdc

Photo of the DC-link bank.

Low pass filter response created by parallel addition of film capacitor to electrolytic bank.

Illustration of ripple current harmonic reduction by adding a parallel 2mF Power Ring Film Capacitor to an existing 40mF electrolytic bank.

Active DC-link Design – Parallel Circuit

R. Wang (2011, IEEE): 15kW single-phase PWM rectifier with active dc-link design

Photo of prototype

Active DC-link Design – Series Circuit (1/5)

H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

DC-link module with DC-link capacitors and series-connected voltage compensator.

DC-link module for 1 kW AC-DC-DC application with a 110µF film capacitor (Max: 1.6kW).

Series compensator

Voltage ripple reduction Reactive power only Low voltage components Simple circuit and control

Active DC-link Design – Series Circuit (2/5)

H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

 ${\it P_{ab}}$ ideally equal to 0 except for the case when $\omega_1=\omega_2$ and $\delta_1
eq\delta_2$

Low S_{ab} can be achieved and compromised with the capacitance value

Active DC-link Design – Series Circuit (3/5)

H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

Implementation of the proposed DC-link module.

Parameter	Value / part no.	Parameter	Value / part no.
V _d	400V	PL	600W
V _{DC}	50V	С	120μ F, 450V
C _{DC}	1000μF, 63V	L _f	120 μΗ
C _f	3.3μF, 100V	R _a	100kΩ
Ca	10 μ F, 35V	R _b	33kΩ
C _b	0.1μF, 50V	a	0.06
S ₁ – S ₄	FDD86102	ß	0.1

20% energy storage in the DC-link module with respect to E-Cap solution.1.1W increase of power loss.

Active DC-link Design – Series Circuit (4/5)

H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

10% load to full load (with DC-link module) (v_{di} 100V/div, v_{ci} 100V/div, v_{ab} :40V/div, i_{di} 2A/div, Timebase: 50ms/div).

Full load to 10% load (with DC-link module) (v_{d} : 100V/div, v_{c} :100V/div, v_{ab} :40V/div, i_{d} : 2A/div, Timebase: 50ms/div).

10% load to full load (with 660µF E-Caps) (v_c :100V/div, v_{ab} :40V/div, i_{out} : 50A/div, Timebase: 50ms/div).

Full load to 10% load (with 660µF E-Caps) (v_c :100V/div, v_{ab} :40V/div, i_{out} : 50A/div, Timebase: 50ms/div).

Active DC-link Design – Series Circuit (5/5)

H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

To fulfill the hold-up time requirement in PFC application

 $(v_{C}:100V/\text{div}, v_{S}: 300V/\text{div}, i_{out}: 20A/\text{div}, Timebase: 10ms/\text{div}).$

(100% energy storage with capacitor only)

 $(v_{d}:100V/\text{div}, v_{s}: 300V/\text{div}, v_{ab}: 20V/\text{div}, i_{out}: 50A/\text{div}, Timebase: 10ms/\text{div}).$

(**72%** energy storage with the DC-link module)

Waveforms after a sudden supply outage under 600 W loading condition.

Active DC-link Design

There are many other active DC-link solutions in literature

Which DC-link design solution is the best? In terms of what?

CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY | HUAI WANG | 24.10.2016 | SLIDE 67

General Structures of Active DC-link Circuits

Synthesis from the General Structures

Take DC-Parallel as an example

Topology Derivation of Active DC-Links (Partly)

Auxiliary circuit topology (red)			Full-bridge	Half-bridge	Buck
			А	В	С
			1A	1B	1C
Hang mode		1			
	A-C _{aux}	2	swtich short circuit	cap short circuit	swtich short circuit
	A-D _{aux}	3	swtich short circuit	swtich short circuit	1C
	B-C _{aux}	4	swtich short circuit	cap short circuit	swtich short circuit
	B-D _{aux}	5	swtich short circuit	swtich short circuit	1C
Float mode	C-C _{aux}	6	6A	6B	6C
	C-D _{aux}	7	6A		IC
	D-C _{aux}	8	6A	6B	6C
	D-D _{aux}	9	6A	7B	1C

Capacitor Energy Storage

Total energy storage is the sum of the energy storage in all the capacitors

$$E_{\rm c-tot} = \frac{1}{2} C_{\rm dc} V_{\rm dc-max}^2 + \frac{1}{2} C_{\rm b} V_{\rm c-max}^2$$

Cost Evaluation of Power Semiconductor

Cost Evaluation of Power Semiconductor

Cost Evaluation of Power Semiconductor

Cost Evaluation of Capacitor

Cost model by curve fitting (Source: Digikey→http://www.digikey.dk/)

Cost Evaluation of Inductor

Considerations

- **Current ripple ratio**
- Winding factor (35-40 %)
- Core structure and material (high flux ferrite core and solid round winding)
- Data from Magnetics and Digikey

Cost Comparison with Different Designed Lifetime

Cost Scalability of Designed Power Ratings

3 Study Cases

Cost v.s. Designed Power Ratings (1kW to 12kW)

CORPE

CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY | HUAI WANG | 24.10.2016 | SLIDE 78

Summary of the Tutorial

► References

- 1. H. Wang and F. Blaabjerg, "Reliability of capacitors for dc-link applications in power electronic converters-an overview," IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3569–3578, Sept 2014.
- 2. H. Soliman, H. Wang, and F. Blaabjerg, "A review of the condition monitoring of capacitors in power electronics converters," IEEE Transactions on Industry Applications, accepted, online available.
- 3. H. Wang, and F. Blaabjerg, Aalborg University fosters multi-disciplinary approach to research in efficient and reliable power electronics, How2power today, issue Feb. 2015.
- 4. H. Chung, H. Wang, Frede Blaabjerg, and Michael Pecht, *Reliability of power electronic converter systems*, IET, 2015.
- H. Wang, M. Liserre, F. Blaabjerg, P. P. Rimmen, J. B. Jacobsen, T. Kvisgaard, J. Landkildehus, "Transitioning to physics-of-failure as a reliability driver in power electronics," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 1, pp. 97-114, Mar. 2014.
- 6. H. Wang, M. Liserre, and F. Blaabjerg, "Toward reliable power electronics challenges, design tools and opportunities," IEEE Industrial Electronics Magazine, vol.7, no. 2, pp. 17-26, Jun. 2013.
- 7. H. Wang, F. Blaabjerg, and K. Ma, "Design for reliability of power electronic systems," in Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IECON), 2012, pp. 33-44.
- 8. F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. on Power Electron., vol. 19, no. 4, pp. 1184-1194, Sep. 2004.
- 9. F. Blaabjerg, M. Liserre, and K. Ma, "Power electronics converters for wind turbine systems," IEEE Trans. on Ind. Appl., vol.48, no.2, pp.708-719, Mar-Apr. 2012.
- 10. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid connected inverters for photovoltaic modules," IEEE Trans. on Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep. 2005.
- 11. H. Wang, D. A. Nielsen, and F. Blaabjerg, "Degradation testing and failure analysis of DC film capacitors under high humidity conditions," Microelectronics Reliability, in press, doi:10.1016/j.microrel.2015.06.011.
- 12. H. Wang, Henry S. H. Chung, and Wenchao Liu, "Use of a series voltage compensator for reduction of the dc-link capacitance in a capacitor-supported system," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1163-1175, Mar. 2014.
- 13. M. Marz, A. Schletz, B. Eckardt, S. Egelkraut, and H. Rauh, "Power electronics system integration for electric and hybrid vehicles," in Proc. International Conference on Integrated Power Electronics Systems (CIPS), 2010.
- 14. T. Messo, J. Jokipii, J. Puukko, and T. Suntio, "Determining the value of DC-link capacitance to ensure stable operation of a threephase photovoltaic inverter," IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 665-673, Feb. 2014.
- 15. Y. Yang, K. Ma, H. Wang, and F. Blaabjerg, "Instantaneous thermal modeling of the DC-link capacitor in photovoltaic systems," In Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 2733-2739, 2015.
- 16. R. X. Wang, F. Wang, D. Boroyevich, R. Burgos, R. X. Lai, P. Q. Ning, and K. Rajashekara, "A high power density single-phase PWM rectifier with active ripple energy storage," IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1430-1443, May 2011.
- 17. Y. Sun, Y. Liu, M. Su, W. Xiong, and J. Yang, "Review of active power decoupling topologies in single-phase systems," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4778–4794, July 2016.

► References

- 18. I. Serban, "Power decoupling method for single-phase h-bridge inverters with no additional power electronics," IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4805–4813, Aug 2015.
- 19. W. Cai, B. Liu, S. Duan, and L. Jiang, "An active low-frequency ripple control method based on the virtual capacitor concept for PV systems," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1733–1745, April 2014.
- 20. R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning, and K. Rajashekara, "A high power density single-phase PWM rectifier with active ripple energy storage," IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1430–1443, May 2011.
- 21. Y. Tang, Z. Qin, F. Blaabjerg, and P. C. Loh, "Decoupling of fluctuating power in single-phase systems through a symmetrical halfbridge circuit," IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1855–1865, March 2015.
- 22. H. Wang, H. Wang, G. Zhu, and F. Blaabjerg "Cost assessment of three power decoupling methods in a single-phase power converter with a reliability-oriented design procedure," IEEE ECCE Asia 2016, May, 2016, China.
- 23. B. J. Pierquet and D. J. Perreault, "A single-phase photovoltaic inverter topology with a series-connected energy buffer," IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4603–4611, Oct 2013.
- 24. T. Shimizu, T. Fujita, G. Kimura, and J. Hirose, "Unity power factor PWM rectifier with dc ripple compensation," IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 447–455, Aug 1997.
- 25. S. Li, W. Qi, S.-C. Tan, and S. Y. R. Hui, "Integration of an active filter and a single-phase ac/dc converter with reduced capacitance requirement and component count," IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4121–4137, June 2016.
- 26. Q. Wenlong, W. Hui, T. Xingguo, W. Guangzhu, and K. D. T. Ngo, "A novel active power decoupling single-phase PWM rectifier topology," in Proc.IEEE APEC'2014, March 2014, pp. 89–95.
- 27. H. Wu, S.-C. Wong, C. K. Tse, and Q. Chen, "Control and modulation of bidirectional single-phase ac-dc three-phase-leg SPWM converters with active power decoupling and minimal storage capacitance," IEEE Tran. Power Electron., vol. 31, no. 6, pp. 4226–4240, June 2016.
- 28. R. Burkart and J. W. Kolar, "Component cost models for multiobjective optimizations of switched-mode power converters," in Proc. IEEE ECCE'2013, Sept 2013, pp. 2139–2146.
- 29. S. Yang, A. Bryant, P. Mawby, D. Xiang, R. Li, and P. Tavner, "An Industry-Based Survey of Reliability in Power Electronic Converters," IEEE Transactions on Industry Applications, vol. 47, pp. 1441-1451, 2011.
- 30. J. Konrad, Next Generation of Power Capacitors for High Temperatures (CeraLink), ECPE Workshop on Innovations in Passive Components for Power Electronics Applications, Oct. 2014, Germany.
- 31. CREE, Application note, Design Considerations for Designing with Cree SiC Modules Part 2. Techniques for Minimizing Parasitic Inductance, 2013.
- 32. M. A. Brubaker, D. El Hage, T. A. Hosking, H. C. Kirbie, and E. D. Sawyer, "Increasing the Life of Electrolytic Capacitor Banks Using Integrated High Performance Film Capacitors," PCIM 2013.
- 33. B. Sloka, Flex crack mitigation, KEMET Electronics Corporation Technical Topics, Apr. 2008.
- 34. Vishay, Application note, Electrolytic capacitors, Jan. 2014.

Capacitors in Power Electronics Applications – Reliability and Circuit Design

Huai Wang

Contact: Prof. Huai Wang eMail: <u>hwa@et.aau.dk</u> www.corpe.et.aau.dk

