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►Biography of Speaker
Huai Wang is currently an Associate Professor and a research trust leader with the Center of Reliable Power
Electronics (CORPE), Aalborg University, Denmark. His research addresses the fundamental challenges in modelling
and validation of the failure mechanisms of power electronic components, and application issues in system-level
predictability, condition monitoring, circuit architecture, and robustness design. In CORPE, he also leads a capacitor
research group including multiple PhD projects on capacitors and its applications in power electronic systems, and is
the principal investigator of a project on Reliability of Capacitors in Power Electronic Systems. Dr. Wang is the co-
lecturer of a PhD course on Reliability of Power Electronic Systems at Aalborg University since 2013, an invited
speaker at the European Center for Power Electronics (ECPE) workshops, and a tutorial lecturer at leading power
electronics conferences (ECCE, APEC, EPE, PCIM, etc.). He has co-edited a book on Reliability of Power Electronic
Converter Systems in 2015, filed four patents in capacitive DC-link inventions, and contributed a few concept papers
in the area of power electronics reliability.

Dr. Wang received his PhD degree from the City University of Hong Kong, Hong Kong, China, and Bachelor degree
from Huazhong University of Science and Technology, Wuhan, China. He was a visiting scientist with the ETH Zurich,
Switzerland, from August to September, 2014 and with the Massachusetts Institute of Technology (MIT), Cambridge,
MA, USA, from September to November, 2013. He was with the ABB Corporate Research Center, Baden, Switzerland,
in 2009. Dr. Wang received the IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award, in
2016, for the contribution to the reliability of power electronic conversion systems. He serves as an Associate Editor
of IEEE Journal of Emerging and Selected Topics in Power Electronics and IEEE Transactions on Power Electronics.
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►Tutorial Schedule
 Introduction to Capacitors in Power Electronics Applications

 Functions of capacitors in power electronic systems
 Dielectric materials and types of capacitors

 Reliability of Capacitors
 Failure modes, failure mechanisms, and critical stressors of capacitors
 Mission profile based electro-thermal stress analysis
 Degradation testing of capacitors
 Condition monitoring of capacitors

 Design of Capacitive DC-links
 Considerations in capacitor bank configuration and design
 DC-link capacitor sizing criteria in power electronics
 Active capacitive DC-links
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►Aalborg University, Denmark

PBL-Aalborg Model 
Project-organized and 
problem-based

Inaugurated in 1974
22,000+ students 

2,000+ faculty
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►Department of Energy Technology

Energy production - distribution - consumption - control

40+ Faculty, 100+ PhDs, 30+ RAs & Postdocs, 20+ Technical staff
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►Department of Energy Technology

More information: Huai Wang and Frede Blaabjerg, Aalborg University fosters multi-disciplinary approach to 
research in efficient and reliable power electronics, How2power today,  issue Feb. 2015.  
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►Center of Reliable Power Electronics (CORPE)

An Industrial Initiated Strategic Research Center

CORPE

Design for Reliability
By obtaining high-reliability power electronic systems for use in all fields of
electrical applications used both in design and operation where the main drivers
are lower development cost, manufacturing cost, efficiency, reliability,
predictability, lower operational and maintenance costs during the lifetime.
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►Motivation for More Reliable Product Design

Reduce costs by 
improving reliability upfront

Source: DfR Solutions, Designing reliability in electronics, CORPE Workshop, 2012.  
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►Typical Lifetime Targets of Industry Applications

Applications Typical design target of Lifetime

Aircraft 24 years (100,000 hours flight operation)
Automotive 15 years (10,000 operating hours, 300, 000 km)
Industry motor drives 5-20 years (40,000 hours in at full load)
Railway 20-30 years (73,000 – 110,000 hours)
Wind turbines 20 years (120,000 hours)
Photovoltaic plants 30 years (90,000 to 130,000 hours)
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►The Scope of Reliability of Power Electronics
H. Wang (2012, 2014 IEEE)

Analytical 
Physics

Power 
Electronics 
Reliability

Physics-of-
failure

Component
physics

Paradigm Shift
■ From components to failure mechanisms
■ From constant failure rate to failure level with time
■ From reliability prediction to robustness validation
■ From microelectronics to also power electronics
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1 Introduction to Capacitors in Power Electronics
 Functions of capacitors in power electronic systems
 Dielectric materials and types of capacitors
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►Power Electronics
Reinvent the way electrical energy processed

Electricity 
generation
…

Electricity 
consumption
…

Interfaces
Integration to electric grid
Power transmission
Power distribution
Power conversion
Power control 

Power Electronics 
enable efficient conversion 
and flexible control of electrical energy    
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►Capacitors

Aluminum Electrolytic CapacitorSandwich
(Source: http://www.jhdeli.com/Templates/Cold_Sandwich.html) 

Capacitance

where ɛ0 is the dielectric constant, ɛr is the relative dielectric constant for different materials, A is
the surface area and d is the thickness of the dielectric layer; C is the capacitance and V is the
voltage rating; Pd is the maximum power dissipation, h is the heat transfer coefficient, ∆T is the
temperature difference between capacitor surface and ambient and Rs is the equivalent series
resistance (ESR).

Volumetric efficiencyRipple current rating
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►Capacitors in Power Electronics

Various types of capacitors (Picture courtesy of CDE). 

Important factors
Voltage rating
Capacitance
Capacitance stability
Ripple current rating
Leakage current
Temperature range
Resonant frequency
Equivalent series resistance (ESR)
Equivalent series inductance (ESL)
Volumetric efficiency
Lifetime
Cost
…
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►Functions of Capacitors in Power Electronic Systems

Capacitors in typical power Converters 
(Source: http://www.cde.com/catalog/switch/power/) 
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►Functions of Capacitors in Power Electronic Systems

Typical applications of capacitors in motor drives
(Figure source: TDK EPCOS product profile: Film Capacitors for Industrial Applications) 

Typical applications of capacitors in Photovoltaic (PV) inverters 
(Figure source: TDK EPCOS product profile: Film Capacitors for Industrial Applications) 
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►Capacitor Types According to Dielectric Materials

1100 V film capacitors 
470 µF and 1100 µF 

450 V Al-Electrolytic 
capacitors 5600 µF
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►Capacitor Dielectrics 

Energy storage density for various dielectrics (M. Marz, CIPS 2010).
1) Al electrolytic capacitors lose about one order of magnitude in energy storage density in the winding 
construction, due to the overhead necessary to achieve the self-healing property.  
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►Typical Capacitor Voltage and Capacitance
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►Comparison of 3 Types of Capacitors (Typical)

Al-Caps

MPPF-Caps

MLC-Caps
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Performance comparisons of the 3 types of capacitors

Al-Caps Aluminum Electrolytic Capacitors
MPPF-Caps Metallized Polypropylene Film Capacitors
MLC-Caps Multilayer Ceramic Capacitors
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►CeraLink Ceramic Capacitors

■ Anti-ferroelectric ceramics of modified Pb La (Zr, Ti) O3 
■ Copper inner electrodes 
■ High-temperature stable ceramic-metal interconnects based on sintered silver to 

realize capacitance values up to 100 μF

(Source: Juergen Konrad, TDK-EPCOS)
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►CeraLink Ceramic Capacitors
(Source: Juergen Konrad, TDK-EPCOS)

μF/cm3 A/cm3
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2 Reliability of Capacitors
 Failure modes, failure mechanisms, and critical stressors of capacitors
 Mission profile based electro-thermal stress analysis
 Degradation testing of capacitors
 Condition monitoring of capacitors
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►Reliability Critical Components

Percentage of the response to the most frangible components in power electronic systems from an 
industry survey (% may vary for different applications and designs) 
Data sources: S. Yang, A. Bryant, P. Mawby, D. Xiang, R. Li, and P. Tavner, "An Industry-Based Survey of Reliability in 
Power Electronic Converters," IEEE Transactions on Industry Applications, vol. 47, pp. 1441-1451, 2011.
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►Failure Modes, Mechanisms, and Stressors 
Aluminum Electrolytic Capacitors (Al-Caps)

Failure modes Critical failure mechanisms Critical 
stressors 

Al-Caps

Open circuit
Electrolyte loss VC, Ta, iC

Poor connection of terminals
Vibration
/shock

Short circuit Dielectric breakdown of oxide layer VC, Ta, iC

Wearout: electrical 
parameter drift
(C, ESR, tanδ, ILC, 
Rp)

Electrolyte loss Ta, iC

Electrochemical reaction (e.g. 
degradation of oxide layer, anode foil 
capacitance drop)

VC, Ta, iC
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►Failure Modes, Mechanisms, and Stressors 
Metallized Polypropylene Film Capacitors (MPPF-Caps)

MPPF-Caps

Open circuit (typical)

Connection instability by heat 
contraction of a dielectric film Ta, iC

Reduction in electrode area caused 
by oxidation of evaporated metal due 
to moisture absorption

Humidity

Short circuit (with 
resistance) 

Dielectric film breakdown VC, dVC/dt

Self-healing due to overcurrent Ta, iC

Moisture absorption by film Humidity

Wearout: electrical 
parameter drift
(C, ESR, tanδ, ILC, Rp)

Dielectric loss VC, Ta, iC, 
humidity

Failure modes Critical failure mechanisms Critical 
stressors 
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►Failure Modes, Mechanisms, and Stressors 
Multilayer Ceramic Capacitors (MLC-Caps)

Failure modes Critical failure mechanisms Critical 
stressors 

MLC-Caps

Short circuit (typical)
Dielectric breakdown VC, Ta, iC

Cracking; damage to capacitor body
Vibration
/shock

Wearout: electrical 
parameter drift
(C, ESR, tanδ, ILC, Rp)

Oxide vacancy migration; dielectric 
puncture; insulation degradation; 
micro-crack within ceramic

VC, Ta, iC, 
vibration
/shock

Red crack represents flex crack; green crack 
represents typical thermal shock crack; blue 
crack represents mechanical damage.
(Source: Kemet)Typical flex crack of MLC-Caps

(Source: Kemet)
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►Failure Modes, Mechanisms, and Stressors 
Summary

Al-Caps Aluminium Electrolytic Capacitors
MPPF-Caps Metallized Polypropylene Film Capacitors
MLC-Caps Multilayer Ceramic Capacitors

Al-Caps MPPF-Caps MLCC-Caps

Dominant failure modes
wear out

open circuit open circuit short circuit

Most critical stressors Ta , VC , iC Ta , VC , humidity Ta , VC , vibration/shock

Self-healing capability moderate good no
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application

A grid-connected PV system with a 3 kW single-phase PV inverter

A method for long-term electro-thermal stress modeling
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application - Specifications

A clear day

A cloudy day

DC-link capacitor parameters

PV inverter specifications
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application – Ripple Current

An example of ripple current harmonic spectrum at 
rated power and 25°C (FFT - Fast Fourier Transform)

Capacitor ripple currents under different 
solar irradiance levels, at 25°C
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application – ESR

Frequency dependency of the DC-link capacitor 
equivalent series resistor (ESR), where Ta = 25°C. 

Equivalent series resistance (ESR) frequency-
dependency under different testing temperatures.
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application – electro-thermal

Simplified thermal model of a capacitor
Fast Fourier transform (FFT) based instantaneous 
thermal modelling of the DC-link capacitor

Thermal modelling for the DC-link capacitors based on the ripple current reconstruction method

Eq.(6)
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►Mission Profile based Electro-Thermal Modeling
An example of 3 kW single-phase PV inverter application – thermal stresses

DC-link capacitor hot-spot 
thermal stress in a clear day

DC-link capacitor hot-spot 
thermal stress in a cloudy day
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►A Widely Used Lifetime Model for Capacitors

Lx – expected operating lifetime; L0 – expected  lifetime for full rated voltage and temperature; Vx –
actual applied voltage; Vo – rated voltage; T0 – maximum rated ambient temperature; Tx – actual 
ambient temperature; Ea is the activation energy, KB is Boltzmann’s constant (8.62×10−5 eV/K)

MLC-Caps
Typically Ea = 1.3 to 1.5, and n = 1.5 to 7 (the large discrepancies are attributed to the 
ceramic materials, dielectric layer thickness, etc.)

Al-Caps and MPPF-Caps
A simplified model derived from the above equation (with special case ofEa = 0.94 eV)

a simplified model derived from the above equation (Ea = 0.94 eV)
Typically n = 1 to 5 for Al-Caps and n = 3.5 to 9.4 for MPPF-Caps 
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►Lifetime Models from Manufacturers

…

Manufacturer 1

Manufacturer 2

Manufacturer 3

Manufacturer N

Lx – expected operating lifetime; L0 – expected  lifetime for full rated voltage and temperature; Vx –
actual applied voltage; Vo – rated voltage; Tm – Maximum permitted internal operating temperature; 
T0 – maximum rated ambient temperature; ΔT0 – rated ripple heat generation at T0; Tx – actual 
ambient temperature; ΔTx – actual ripple heat generation from application.

; ,

, ,

;

Observations
■ Limited to electrical and thermal stresses
■ Other critical stressors, like humidity and 

mechanical stress are missed
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►Capacitor Wear Out Testing System

System capability
■ Temp. range  -70 °C to +180 °C
■ Humidity range (for a certain range of temp.): 10 % RH to 95 % RH
■ DC voltage stress up to 2000 V and ripple current stress up to 100 A and 100 kHz
■ Measurement of capacitance, ESR, inductance, insulation  resistance, leakage current and hotspot temperature 

System 
configuration
■ Climatic chamber
■ 2000 V (DC) / 100 A (AC) / 50 Hz   

to 1 kHz ripple current tester
■ 2000 V (DC) / 50 A (AC) / 20 kHz 

to 100 kHz (discrete) ripple 
current tester

■ 500 V (DC) / 30A (AC)  / 100 Hz 
to 1 kHz (discrete) ripple 
current tester

■ LCR meter
■ IR / leakage current meter
■ Computer
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►Testing Results MPPF-Caps Capacitance (normalized)

Testing of 1100 V/40 μF MPPF-Caps 
(Metalized Polypropylene Film)
Sample size: 10 pcs for each group of testing

85°C, 85%RH
2,160 hours

85°C, 70%RH
2,700 hours

85°C, 55%RH
3,850 hours
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►Analysis Method of the Testing Data

(Two parameters)

η - Characteristics life (the time when 63.2% of items fail)
β – Shaping factor
γ – Failure free time

Wallodi Weibull
1887-1979
Wallodi Shown at
Age 88 in 1975
Photo by Sam C. 
Saunders

Weibull Distribution
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►Testing Data Analysis Method
Weibull Distribution

When β = 1, Weibull distribution is the exponential distribution
When β = 3.5, Weibull distribution approximates to normal distribution

Weibull distribution can be used to model a wide range of life distributions 
characteristic of engineered products
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►Weibull Plots of the Testing Data

85°C, 85%RH 85°C, 70%RH

85°C, 55%RH

Testing of 1100 V/40 μF MPPF-Caps 
(Metalized Polypropylene Film)

Sample size: 10 pcs for each group of testing

5% capacitance drop is used as the 
end-of-life criteria of the testing 
samples
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►Humidity-Dependent Lifetime of the MPPF-Caps

B10 lifetime – the time when reliability is 0.9 (i.e., 10% failure)
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►Failure Analysis – Visual Inspection

Photography of the capacitor film at 25m into the capacitor 
roll of Cap 10 in the test Group 1. 

The more transparent sections indicate 
corrosion of the metallization layer
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►Failure Analysis – Optical Microscopy Investigation

Cap 10 in Group 1 after the degradation 
testing (at 1 m into the roll)

A new capacitor sample (at 1 m into 
the roll)

Small metal islands left, the rest of the 
metallization layer has corroded

The metallization layer is fairly intact

Microscopy images of the metallization film from a new capacitor and from a tested capacitor 
(the scale bars represent a distance of 200 μm).
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► Classification of Capacitor Condition Monitoring Methods
H. Soliman, H. Wang (IEEE, 2016)
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►Key Indicators for Condition Monitoring
H. Soliman, H. Wang (IEEE, 2016)
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►Condition Monitoring of DC-Link Capacitors (Example)
M. A. Vogelsberger (IEEE, 2011)

Photo of prototype for online ESR 
estimation of DC-link capacitors.

The principle of ESR estimation.

Based on capacitor’s power loss
Temperature effect compensation
Criterion: ESR increases to double

Model and impedance characteristics of capacitors.

47



|  HUAI  WANG |  24.10.2016 |  SLIDECENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY

►Remaining Lifetime Prediction of Capacitors (Example)
K. Abdennadher (IEEE, 2010)

Algorithm for online remaining lifetime prediction of DC-link capacitors.  
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3 Design of Capacitive DC-links
 Considerations in capacitor bank configuration and design
 DC-link capacitor sizing criteria in power electronics
 Active capacitive DC-links
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►Function of DC-Link Capacitors 

Converter 1 AC or 
DC
load

DC-link

Converter 2
AC or 
DC

source

Capacitive DC-link 
function 
■ balance power
■ limit voltage ripple (both for  

steady-state and transient)
■ energy storage

Energy storage and instantaneous power of a capacitive dc-
link in a single-phase AC-DC or DC-AC system (typical). 

Typical power electronics conversion system. 

t

E p

E1

Released 
power

Absorbed 
power

Energy stored in the dc-link capacitor w/o compensator
Instantaneous power absorbed by the dc-link

0
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►Low-Inductance Capacitor Bank Design
(Source: CREE application note) 

Capacitor series connection magnetic field cancellation schemePrinted circuit board layers 

Schematic of a 3-phase inverter with a DC-link bank
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►Low-Inductance Capacitor Bank Design
(Source: CREE application note) 

Prototype photo of a 3-phase inverter with a DC-link bank

Impedance vs. frequency for each set of DC link connections and ESL differences 
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►Low-Inductance Capacitor Bank Design
(Source: Juergen Konrad, TDK-EPCOS)
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►Voltage Balancing of Series-Connected Capacitors

Simplified circuit model of two series 
connected capacitors
(Rp is the voltage balance resistor, RIR1 and RIR2 are 
insulation resistances, IL1 and IL2 are leakage currents) 

Typical variation of leakage current with time 
(Source: Vishay)

Typical variation of leakage current with temperature
(Source: Vishay)

 The Rp should be selected for the lowest insulation resistances
 Trade-off between the power losses of Rp and voltage balancing
 Active voltage balancing solutions are available, but with increased complexity.
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►DC-link Capacitor Sizing Criteria

Criteria (Application-Specific)
 Voltage ripple (steady-state)
 Voltage ripple (transients and abnormal operation)
 Energy storage requirement (e.g., hold-up time)
 Stability (related to control performance)
 …

Considerations
 Temperature range
 Capacitance stability
 Frequency characteristics
 Lifetime
 End-of-life parameters and tolerances
 …
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►Sizing Criteria - Stability

Characteristics of a PV generator

An example of three-phase inverters in PV applications (Source: T. Messo, IEEE TPEL, 2014)

CC- Constant current region, when the dynamic resistance 
is higher than the static resistance 
CV – Constant voltage region, when the dynamic resistance 
is higher than the static resistance 

56



|  HUAI  WANG |  24.10.2016 |  SLIDECENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY

►Sizing Criteria - Stability

RHP pole in the dc-link voltage control loop

When in the constant current (CC)
region: dynamic resistance is
higher than the static resistance
RHP – Right half-plane

Minimum required capacitance
to ensure stability:

Single-stage three-phase PV inverter (Source: T. Messo, IEEE TPEL, 2014)

ISC – short-circuit current of the PV generator
kRHP – ratio between the crossover frequency of
the dc-link voltage control loop and the RHP.
ki – a constant to take into account the cloud
enhancement

57



|  HUAI  WANG |  24.10.2016 |  SLIDECENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY

►Sizing Criteria - Stability
Two-stage three-phase PV inverter (Source: T. Messo, IEEE TPEL, 2014)

DC-DC stage for the inverter

RHP pole :

Minimum required capacitance
to ensure stability:

Pmpp – Maximum power of the PV generator
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►DC-Link Design Solutions 
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Hybrid DC-link bank design 
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rC2

iC2

C2

LC2

rC
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DC-link 
capacitor
bank
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C

Energy buffer 
with high 

buffering ratio

Direct replacement of active circuit

iC
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Active capacitive DC-links
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►Hybrid DC-Link Bank Design
M. A. Brubaker (SBE, PCIM 2013)

Low pass filter response created by parallel addition of film capacitor 
to electrolytic bank. 

Illustration of ripple current harmonic reduction by adding a parallel 
2mF Power Ring Film Capacitor to an existing 40mF electrolytic bank.

Photo of the DC-link bank.

250 kW inverter
Ripple current on the order of 400 Arms 
DC bus voltage of 1000 Vdc
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►Active DC-link Design – Parallel Circuit
R. Wang (2011, IEEE): 15kW single-phase PWM rectifier with active dc-link design

Topology

Photo of prototype

Converter level (main components) comparison of conventional 
passive dc-link design and active dc-link design.
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►Active DC-link Design – Series Circuit (1/5)
H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

Series compensator
Voltage ripple reduction
Reactive power only
Low voltage components
Simple circuit and control 

DC-link module for 1 kW AC-DC-DC 
application with a 110μF film capacitor 
(Max: 1.6kW).

DC-link module with DC-link capacitors and 
series-connected voltage compensator.

S1 DS1

S3 DS3
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Lf CfvDC
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vabia

iC

id

C
+

CDC

+

Power 
Converter I

PI 

+

Power Stage

 DC-Link Module

voltage 
sense

vcon 

vos 

PWM 
controller

driving 
signals 

for S1-S4

+

Control Stage

voltage 
sense

+
-

VDC,ref 

Power 
Converter II

or direct loads 
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62



|  HUAI  WANG |  24.10.2016 |  SLIDECENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY

►Active DC-link Design – Series Circuit (2/5)
H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

a b

vC vd 

voltage 
compensator

t

vd

VD

vab

t

vC

VC

vC,max

vC,min

1/frip

t

vab

1/frip

DC-link capacitor 

ia

iC

id

C
+

Pab ideally equal to 0 except for the case when                   and

Sab – apparent power of the voltage compensator
Sm – apparent power of the main power conversion system
ΔVC,rms – root-mean-square value of the voltage ripple across the capacitor

Low Sab can be achieved and compromised with the capacitance value
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►Active DC-link Design – Series Circuit (3/5)
H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

AC 
power 
supply
220V

Power factor 
correction (PFC)

Phase-shifted full-
bridge dc-dc 

converter

Electronic
 Load

Proposed 
DC-link 
module 

Cvs

iout

20μH

1μF 0.47μF

Input filter of the 
full-bridge dc-dc 

converter 

id

12 V

vd

vC

Test bed composed of PFC, DC-link and 
full-bridge DC-DC converter 

S1 S3

S2 S4

Lf
Cf

CDC

β 

Ra Ca
-

+5V
 DA

-

Cb Rb

-

S1, S4

S2, S3

Differential 
amplifier

MOSFET
Driver

PWM 
modulator

PI 
controller

Lf

C

vC vd

vab Parameter Value / part no. Parameter Value / part no.

Vd 400V PL 600W
VDC 50V C 120µF, 450V
CDC 1000µF, 63V Lf 120µH
Cf 3.3µF, 100V Ra 100kΩ
Ca 10µF, 35V Rb 33kΩ
Cb 0.1µF, 50V α 0.06

S1 – S4 FDD86102 β 0.1

Implementation of the proposed DC-link module.

20% energy storage in the DC-link module with 
respect to E-Cap solution.

1.1W increase of power loss.
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►Active DC-link Design – Series Circuit (4/5)
H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

45V

100ms

vC

iout

37.7V

150ms

vC

iout

10% load to full load (with DC-link module) (vd:
100V/div,vC:100V/div, vab:40V/div, id: 2A/div, Timebase:
50ms/div).

10% load to full load (with 660μF E-Caps) (vC:100V/div,
vab:40V/div, iout: 50A/div, Timebase: 50ms/div).

Full load to 10% load (with DC-link module) (vd:
100V/div,vC:100V/div, vab:40V/div, id: 2A/div, Timebase:
50ms/div).

Full load to 10% load (with 660μF E-Caps) (vC:100V/div,
vab:40V/div, iout: 50A/div, Timebase: 50ms/div).
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►Active DC-link Design – Series Circuit (5/5)
H. Wang (2011, 2014 IEEE): DC-link module for capacitor-supported systems

Waveforms after a sudden supply outage under 600 W loading condition.

(vC:100V/div, vS: 300V/div,  iout: 20A/div, Timebase: 
10ms/div).
(100% energy storage with capacitor only)

(vd:100V/div, vS: 300V/div, vab: 20V/div, iout: 50A/div, 
Timebase: 10ms/div).

(72% energy storage with the DC-link module)

To fulfill the hold-up time requirement in PFC application
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►Active DC-link Design

Which DC-link design solution is 
the best? In terms of what? 

There are many other active DC-link solutions in literature
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►General Structures of Active DC-link Circuits
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►Synthesis from the General Structures
Take DC-Parallel as an example
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►Topology Derivation of Active DC-Links (Partly)
Full-bridge Half-bridge Buck

A B C
1A 1B 1C

A-Caux 2 swtich short circuit cap short circuit swtich short circuit
A-Daux 3 swtich short circuit swtich short circuit 1C
B-Caux 4 swtich short circuit cap short circuit swtich short circuit
B-Daux 5 swtich short circuit swtich short circuit 1C

6A 6B 6C

7B

D-Caux 8 6A 6B 6C
D-Daux 9 6A 7B 1C

Float
mode

Auxiliary circuit topology (red)

Hang
mode 1

C-Caux 6

C-Daux 7 6A 1C
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►Capacitor Energy Storage

Total energy storage is the sum of the energy storage in all the capacitors
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►Cost Evaluation of Power Semiconductor

Infineon: High-speed 3 (600 V, 1200 V)
Infineon: IGBT Bare Die (600 V, 1200 V)
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►Cost Evaluation of Power Semiconductor

Electrical Model

Chip Area 
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−

Chip Area

Junction Termperature
Cost Model

Infineon: High-speed 3 (600 V, 1200 V)
Infineon: IGBT Bare Die (600 V, 1200 V)

Source: Digikeyhttp://www.digikey.dk/
Infineonhttps://www.infineon.com/
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►Cost Evaluation of Power Semiconductor

Cost model by curve fitting

Electrical Model
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►Cost Evaluation of Capacitor

Cost model by curve fitting (Source: Digikeyhttp://www.digikey.dk/)
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►Cost Evaluation of Inductor

Inductor 
SelectionTHD Target +

−

Cost Model

Harmonics in 
switching period

Harmonics in 
fundamental period

Electrical Model

Inductor THD

Considerations
 Current ripple ratio
 Winding factor (35-40 %)
 Core structure and material (high flux ferrite core and solid round winding)
 Data from Magnetics and Digikey
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►Cost Comparison with Different Designed Lifetime
10 years

35 years
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►Cost Scalability of Designed Power Ratings

3 Study Cases

Cost v.s. Designed Power Ratings (1kW to 12kW) 

(a) with 10 years lifetime target (b) with 35 years lifetime target
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Summary of the Tutorial
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