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Abstract—As an almost standardized configuration, Diode
Rectifiers (DRs) and Silicon-Controlled Rectifiers (SCRs) are
commonly employed as the front-end topology in three-phase
Adjustable Speed Drive (ASD) systems. Features of this ASD
configuration include: structural and control simplicity, small
volume, low cost, and high reliability during operation. Yet, DRs
and SCRs bring harmonic distortions in the mains and thus
lowering the overall efficiency. Power quality standards/rules
are thus released. For multiple ASD systems, certain harmonics
of the total grid current can be mitigated by phase-shifting
the currents drawn by SCR-fed drives, and thus it is much
flexible to reduce the Total Harmonic Distortion (THD) level
in such applications. However, the effectiveness of this harmonic
mitigation scheme for multiple ASD systems depends on: a) the
number of parallel drives, b) the power levels, and c) the phase-
shifts (i.e., firing angles) for the corresponding SCR-fed drives.
This paper thus adopts a particle swarm optimization algorithm
to optimize the power levels and the firing angles for multi-drive
systems considering a fixed number of drives when practically
implemented. The optimization is done to minimize the THD level
of the total current at the point of common coupling. Simulations
with the optimized results are carried out and laboratory tests on
a two-drive system are provided to demonstrate the phase-shifting
harmonic mitigation scheme. Issues concerning the practical
implementation of the optimal results in multi-drive systems are
also addressed.

Index Terms—Power quality, harmonics, particle swarm
optimization, phase-shifted current control, Diode Rectifiers
(DR), Silicon-Controlled Rectifiers (SCR), three-phase Adjustable
Speed Drives (ASD).

I. INTRODUCTION

Many industrial applications are using one or more Ad-

justable Speed Drives (ASDs), which typically consist of an

ac-dc rectification stage as the front-end, a dc-link (passive or

active), and a dc-ac Variable Frequency Converter (VFC), as

it is illustrated in Fig. 1. Considering the cost of installation

and possible maintenance, “uncontrollable” Diode Rectifiers

(DRs) and “phase-controllable” Silicon-Controlled Rectifiers

(SCRs) are widely employed as the front-end apparatus [1]–

[5]. However, beyond low cost, small volume, super simplicity,

and high reliability during operation, the rectification apparatus

in the form of DRs or SCRs significantly distort the grid,

where the rectifiers are connected to. As a consequence

of a poor harmonic related power quality, efficiency drop,

overheating of cables and transformers, malfunction and aging

Fig. 1. A silicon controlled rectifier (SCR-fed) ASD system with a boost
dc-dc converter in the dc-link (CC - Current Controller; VC - dc-link Voltage
Controller; PLL - Phase Locked Loop).

of the electrical equipment connected to the Point of Common

Coupling (PCC), triggering system resonance, and in extreme

cases a complete power outage, may occur [6], [7]. Thus,

the harmonic emission from such drive systems should be

limited to an acceptable level defined by system operators

(with customers), using:

• Passive filters at the dc-side or ac-side [8]–[10];

• Shunt active power filters [11]–[13];

• Multi-pulse transformer rectifiers [14]–[17]; and

• Hybrid solutions based on the aforementioned (e.g., a

combination of passive and active filters) [13], [18]–[20].

Notwithstanding that the current quality is improved, a sig-

nificant increase in the system volume and/or the control

complexity (thus overall cost) has been observed in most of

the above solutions. Especially for the multi-pulse transformer

rectifiers, the power quality is almost “proportional” to the

number of pulses of the transformers, while the overall volume

also increases with the number of pulses. At the same time,

it is also found that the control flexibility of the harmonics

is enhanced when using the active Power Factor Correction

(PFC) circuits (or more specifically employing active dc-link

circuits) [2], [12], [21]–[24].

Fig. 1 exemplifies a common boost-type PFC three-phase

ASD system, where the rectified current (i.e., ir) can be

“controlled (modulated)” as it is highlighted in Fig. 1 and

also presented in [21]. The PFCs in three-phase ASD systems



employing DRs and/or SCRs as the front-ends can increase

the controllability of the resultant current shapes (and thus the

current quality). However, the performance cannot compete

with that in single-phase PFC applications [12]. This is due to

the inherent behavior of rectifiers in the case of a continuous

conduction mode, where ideally the rectifiers draw currents of

a rectangular shape with a conduction of 120◦ [2], [24], [25].

Nevertheless, the configuration in Fig. 1 enables the possibility

to shape the currents drawn from the grid with a focus on

reducing the distortion level (or mitigating the harmonics of

interest, e.g., the 5th- and 7th-order harmonics).

Additionally, in the case of multiple ASDs that are con-

nected to the PCC as shown in Fig. 2, the power quality can

be further maximized, since summing up the input currents

(i.e., ip1, ip2, ip3, · · · ipn) will result in a mitigation of certain

harmonics [6], [7], [21], [26], according to the superposition

principle. In that case, the total grid current (i.e., igp in Fig. 2)

will become multilevel, and giving a low THD. Clearly, the

number of levels of the resultant grid current depends on the

number of drives n, the phase-shift angles to the SCR drives,

and the power levels (more specifically, the rectified current

levels). As a consequence, the three determining factors should

be designed appropriately in such a way that the total grid

current (i.e., igp) can be shaped as close as possible to

sinusoidal, leading to a high power quality (i.e., low current

THD level).

Accordingly, this paper adopts a Particle Swarm Optimiza-

tion (PSO) [27] algorithm to seek the optimal solution for

multiple ASD (n-drive) systems in terms of optimal power

levels and firing angles in § III, where the practical implemen-

tation issues for the optimized results in multi-drive systems

have been addressed as well. The principle of harmonic

cancellation by the phase-shifted current control is presented

in § II, and it is experimentally demonstrated in § IV on a

two-drive system. Simulations on multi-drive systems with

the optimization results are also presented, which verifies the

discussions - the harmonic mitigation in multi-drive systems

has been maximized, leading to an improved current quality.

Finally, § V gives concluding remarks on this solution.

II. PHASE-SHIFTED CURRENT CONTROL

The phase-shifted current control method [21], [22], [26]

is illustrated in the following on an n-drive system shown in

Fig. 2 (n = 2). In practice, the boost PFC is able to regulate

the rectified current (e.g., ir1) as a purely dc current (denoted

as Ir1) [21], [28], where the boost inductor (i.e., L in Fig. 1)

will act like an ideal infinite inductor. In that case, the input

currents will be rectangular with a conduction angle of 120◦,

as previously mentioned and also in [25], [28]. For instance,

the phase-a input current of the drive #1 can be given as

ia1 =
2
√
3

π
Ir1

∞
∑

h

{

(−1)k

h
sin [h(ωt− αf]

}

(1)

and thus the magnitude of the hth-order harmonic component

is obtained as

Iha1 =
2
√
3

πh
Ir1 (2)

M M M M

PCC

Grid

Drives

Motors#1 #2 #3 #n

Represents a boost dc-link as shown in Fig. 1

Fig. 2. Layout example of multiple SCR-fed drive systems, where p = a, b,
or c indicates the corresponding phase and n is the total drive number.

in which h = 6k±1 with h > 0 being the harmonic order and

k = 0, 1, 2, · · · , αf is the firing angle, and Iha1 is the magnitude

of the hth-order harmonic of the input current ia1. According

to (1) and (2), a THD level of 31% of the input current ia1

is obtained, as it is plotted in Fig. 3(a). When connected to

the grid, such a high harmonic distortion level may induce a

penalty on the drive system owners.

For multiple SCR-fed drive systems as shown in Fig. 2,

certain harmonics can be fully eliminated in theory, as long as

the firing angles are properly assigned to specific drive units.

This will give an improved power quality, and power-quality

related penalties are possible to be avoided as well. Here, the

hth-order harmonic phasors (denoted as I
h
a1 and I

h
a2) of the

considered two-drive system are given as
{

I
h
a1 = Iha1e

jϕh
a1

I
h
a2 = Iha2e

jϕh
a2

(3)

where Iha1 and Iha2 are the magnitudes, and ϕh
a1 and ϕh

a2 are the

phases of the drive #1 and #2, respectively. The magnitude and

phase of the corresponding phasor can be obtained through

the Fourier analysis [25] or (1). Then, the hth-order harmonic

phasor (denoted as I
h
ga) of the total grid current iga can be

derived as

I
h
ga = I

h
a1 + I

h
a2 = Iha1e

jϕh
a1 + Iha2e

jϕh
a2 (4)

According to the Cosine Rule, the magnitude of the hth-order

harmonic of the grid current can be obtained as

Ihga =
[

(Iha1)
2 + (Iha2)

2 − 2Iha1I
h
a1 cos δ

]1/2
(5)

with

δ = π − |ϕh
a1 − ϕh

a2| (6)

in which |ϕh
a1 − ϕh

a2| is the phase difference between the two

harmonics. Thus, if the hth-order harmonic component of the

grid current should be canceled (i.e., Ihga = 0), the two drives

have to: a) draw the same level of the harmonic currents from

the grid (i.e., Iha1 = Iha2) and b) have a phase difference of

180◦ between the two harmonic currents (i.e., δ = 0). Fig. 3

compares the performance of the phase-shifted current control

with that in a single drive. It can be seen that the phase-shifted

control reduces the distortion level from 31% to 16.4%.



Fig. 3. Harmonic characteristics of the grid current in SCR-fed ASD systems
with boost converters in the dc-links (left: ideal waveforms; right: harmonic
distribution): (a) a single-drive system with αf1 = 0 and (b) a two-drive system
with αf1 = 0 and αf2 = 36◦ , leading to a cancellation of the harmonics of
fivefold the grid fundamental frequency.

III. POWER-QUALITY-ORIENTED OPTIMIZATION

A. Linear Phase-Shifts for n-Drive Systems

When even more SCR-fed drives are connected to the PCC

as shown in Fig. 2, the harmonic mitigation enabled by the

phase-shifted current control can be maximized. In that case,

the total grid current will have even more levels. This is

beneficial to the power quality, when the phase-shifted current

control is enabled. Fig. 4 gives numerical simulation results

of an n-drive system (up to 24 drives, i.e., 1 ≤ n ≤ 24)

under random loading conditions, where eight cases have been

simulated for the n-drive system. The firing angle for the #k

drive is linearly given by

αk
f = (k − 1)

αfmax

n− 1
(7)

with αfmax being the maximum firing angle. Notably, for Case

- 1 and Case - 8, the powers of the SCR-fed drive units are

at the same level, and the phase-shifted current control is not

activated in Case - 8. In contrast, for the residual tests (Case -

2 to Case - 7), the loading is random with the linearly assigned

firing angles according to (7).

It can be observed in Fig. 4 that the THD level of the

resultant grid current is around 14-18% and a power factor of

around 0.94-0.97 has been achieved, where 0 ≤ αf ≤ 30◦.

Furthermore, Fig. 4 shows that, when the total number of

drives is above eight (n ≥ 8), both the THD level and the

power factor become almost independent of the loading with

the linearly designed firing angles [7]. In other words, the

Fig. 4. Performance of a multi-drive system considering parallel drives (1 ≤
n ≤ 24) with the same rated power under random loading conditions: (a)
THD level of the total current at PCC and (b) power factor, where the firing
angles are linearly assigned (increase) within a range of 0◦ ≤ αf ≤ 30◦.
For Case - 1 and Case - 8, the power levels are at the same level among the
drives; for Case - 8, the phase-shifting control was not applied.

THD level and the power factor are bounded within a minor

range (around 16%±2% and 0.95±0.02, respectively). Thus,

a harmonic mitigation scheme is initiated for multiple ASD

systems, where the firing angles can be linearly assigned

according to (7).

Additionally, the results imply that considering n drives,

there is an optimal operating point in terms of firing angles and

power levels, which should ensure a lower THD. For instance,

for Case - 7 in Fig. 4, in the case of six parallel drives, a THD

of 15% and a power factor of 0.97 have been observed, where

the power quality can be further improved by optimizing the

firing angles and power levels. This is also demonstrated in

a four-SCR-fed system (i.e., n = 4 in Fig. 2) with different

firing angle strategies but fixed power levels (P1 = 0.5 kW,

P2 = 2 kW, P3 = 4 kW, and P4 = 6 kW). It can be found

from the simulation results given in Table I that a THD of

14.1% with the power factor being 0.97 is achieved, when

αf1 = 45◦, αf2 = 30◦, αf3 = 15◦, and αf4 = 0◦.

B. Particle Swarm Optimization in n-Drive Systems

Following the above discussions, a Particle Swarm Opti-

mization (PSO) algorithm [27] is adopted to optimize the



TABLE I
CURRENT THD (%) AND POWER FACTOR (PF) FOR THE FOUR-DRIVE SYSTEM WITH DIFFERENT FIRING ANGLES αF .

Firing angle range (◦) αf ∈ [0 15] αf ∈ [0 30] αf ∈ [0 45] αf ∈ [0 60]

THDig PF THDig PF THDig PF THDig PF

αf = linspace(αfmax , 0, 4) 24.2 0.97 18.6 0.97 14.1 0.97 12.4 0.95

αf = linspace(0, αfmax, 4) 24.3 0.95 19.3 0.91 16.4 0.81 16.9 0.64

αf = [0.5 2 4 6]×αfmax/12.5 28.1 0.96 25.4 0.97 22.8 0.97 20.6 0.97

Notes: 1. linspace(x1 , x2, N ) generates N linearly spaced points within [x1, x2]; 2. P1,2,3,4 = [0.5 2 4 6] kW.

TABLE II
OPTIMIZED RESULTS FOR THE FOUR-DRIVE SYSTEM.

Firing angle range (◦) αf ∈ [0 15] αf ∈ [0 30] αf ∈ [0 45] αf ∈ [0 60]

Optimized firing angle αf (◦)

αf1 6.4 12.3 38.4 52.4

αf2 15 18.3 45 60

αf3 15 30 26.1 39.5

αf4 0 0 2.1 18

THDig (%) 20.6 13.3 11.2 10.5

Power factor (PF) 0.97 0.96 0.94 0.80

multi-drive system with an orientation to seek the optimal op-

eration condition with a high power quality. The optimization

objective function is then given as

Obj (αfj , Pj) = min
{αfj ,Pj}

(

THDig

)

(8)

with
[

THDig , PF
]

= f (αfj , Pj , n) (9)

where f(αfj , Pj , n) is the numerical harmonic model that is

derived from (1) by considering the superposition principle in

n-drive systems, Pj is the power for the jth drive with j = 1,

2, 3, ... n, and n is the total drive number. As shown in (9), the

numerical harmonic model f(αfj , Pj , n) is a function of the

firing angles, power levels and total drive number, which is in

agreement with the previous discussion, and it gives THDig

and the Power Factor (PF). The optimization outputs are the

firing angles αf and/or power levels P of the n-drive system.

Firstly, it is assumed that communication is available in

the multi-drive system and the power loading is known and

remains unchanged during operation. This means that the

optimization variables are only the firing angles, and thus:

Obj (αfj) = min
αfj

(

THDig

)

(10)

which gives the optimal firing angles that can be dispatched

to the multi-drive system in order to minimize the harmonic

distortions at the PCC. Again, the previously designed four-

SCR-fed drive system is taken into consideration (i.e., the

power ratings are P1 = 0.5 kW, P2 = 2 kW, P3 = 4 kW,

and P4 = 6 kW). Applying the PSO algorithm with the

objective function in (10) gives the optimization results that are

summarized in Table II. Observations in Table II verify that

there is an optimal operation point for a multi-drive system

with fixed power levels. Specifically, a THD level of 13.3%

with a power factor of 0.96 has been achieved for the four-

drive system, when the optimization range for the firing angles

is αf ∈ [0 30]◦. At the same time, if the optimization ranges

for the firing angles are larger, the THD level can be further

reduced at the cost of a lower power factor, as shown in

Table II. Therefore, a trade-off between the current quality

and PF has to be made in the optimization as well as the

design and planning phases of an n-drive system.

However, the drive units of an n-drive (ASD) system are

rarely operating at the same power level in practice, and it is

also difficult to do online optimization even when the loading

information is available. Hence, it is necessary to consider

all the determining factors as aforementioned (i.e., number of

drives, power levels, and firing angles) in the PSO process (i.e.,

as variables included in the optimization objective function).

In that case, the optimized results will have more degrees of

freedom in implementation, which will be elaborated in the

next section. Nevertheless, when considering both power levels

and firing angles of an n-drive system into the optimization,

the objective function in (8) is employed, where the objective

is to minimize the THD level. The results are shown in Fig. 5,

where it can be observed that the firing angle range and power

levels affect the optimization results compared to those in

Fig. 4 and Table II. Specifically, a wide range of firing angles

(e.g., 0 ≤ αf ≤ 45◦) can contribute to an even lower THD

level, which can approach to 6%, and the optimal THD level

tends to be constant. Furthermore, observations from Fig. 5(b)

indicate that a wide range of firing angles may lead to a poor

PF after the optimization (e.g., PF = 0.92 in the case of four

drives). Considering the PF shown in Fig. 5(b), the firing angle

range can be selected as 0 ≤ αf ≤ 30◦, where in most cases

the power factor is yet around 0.95.

In fact, the PF can be also included into the optimization

objective in order to avoid poor power factors when a wide



Fig. 5. Optimized results of multi-drive systems considering the firing angles
and power levels: (a) THD and (b) power factor.

range of firing angles (e.g., 0 ≤ αf ≤ 45◦) is employed. One

optimization objective function can be expressed as

Obj (αfj , Pj) = min
{αfj ,Pj}

[

THDig · (0.95− PF)2 · γ
]

(11)

which should ensure a PF around 0.95 and also a low THD. In

(11), γ is a factor that is used to adjust the optimization con-

vergence speed. A smaller γ may accelerate the optimization,

but possibly leading to a poor PF and/or a high THD. Fig. 6

shows an optimized four-drive system in terms of power levels

and firing angles, where the objective function shown in (11)

is adopted with γ = 1000 and αf ∈ [0 45]◦. Compared to the

optimization in Fig. 5, it can be seen that the PF has been

brought back to around 0.95, since the PF is also included

in the optimization objective function of (11). However, it is

also observed that the resultant THD level has been slightly

increased by 1%. This can be alleviated by further redesigning

the objective function as well as the optimization algorithm.

Nevertheless, the power quality has been improved in contrast

to the results shown in Figs. 3 and 4.

C. Implementation Schemes

As mentioned previously, when a number of drives are con-

sidered, online optimization will consume large memory space

and computational efforts in the controllers. Furthermore, it

Fig. 6. Example of an optimized 4-drive system in terms of power levels
(Pj = [52.9% 56.8% 100% 54.1%] of the rated - 7.5 kW) and firing angles
(αfj = [41.28 12.78 0 27.47]◦): (a) ideal voltage vaN and the optimized current
shape iga and (b) harmonic distribution of the resultant grid current.

will also take much time to update according to instantaneous

power loading. Thus, it is more feasible to offline implement

the optimal results by means of look-up tables.

When the total number of drives is above a certain value

(e.g., n ≥ 4), optimizing the firing angles and power levels

for all drives is of less meaningfulness, since the power levels

will insignificantly affect the optimization results. Hence, an

optimization is done first only by considering a limited number

of drives (i.e., n = 4), which gives the optimal firing angles and

power levels. Following, considering a multi-drive system that

has more than four SCR-fed ASDs, the drives can be grouped

according to the optimal power levels. Finally, applying the

optimal firing angles the corresponding groups leads to the

desired optimal current quality at the PCC. Clearly, the more

drives the system consists of, the more flexible the grouping

can be (i.e., more easier to reach the optimal point).

Furthermore, the optimal grid current shape, which is the

summation of the optimized rectangular currents can be pro-

grammed into controllers with less computational efforts. In

that case, a linear interpolation concept can be adopted to

implement the optimized firing angles according to the op-

timized power levels. Taking an n-drive system as an example

and also considering a balanced grid voltage, the optimized

current levels (i.e., the rectified currents) can be obtained as

Iorj =
πP o

j

3
√
2VLL cosαo

fj

(12)

where VLL is the line-to-line voltage and P o
j is the optimized

power levels with j = 1, 2, 3, . . . , n. It is indicated in

(12) that the optimized power levels can be mapped to the

optimized firing angles (i.e., P o
j → αo

fj). Let P o
j < Pk ≤ P o

j+1

and P o
n = Pr with Pk being the power of the kth motor

drive and Pr being the maximum rated power, and then the

corresponding firing angle αfk can be obtained by means of a

bilinear interpolation as

αfk =
P o
j+1 − Pk

P o
j+1 − P o

j

· αo
fj +

Pk − P o
j

P o
j+1 − P o

j

· αo
f(j+1) (13)

in which j = 1, 2, 3, . . . , n − 1. If Pk < P o
1 , αfk = αo

f1.

Similarly, the more the drives are considered, the closer the

firing angle gets to its optimum.



TABLE III
PARAMETERS OF THE SIMULATED AND TESTED MULTI-DRIVE SYSTEMS.

Parameter Symbol Value

DC-link inductor L 2 mH

DC-link capacitor Cdc 470 µF

Grid frequency fg 50 Hz

Grid phase voltage (RMS) vabcN 230 V

Grid impedance Zg (Lg , Rg) 0.18 mH, 0.1 Ω

PI controller kp, ki 0.01, 0.1

IV. RESULTS

In order to verify the above analysis, simulations have been

conducted referring to Figs. 1 and 2, while the phase-shifted

current control has also been tested experimentally on a two-

drive system. The two-drive system consists of a DR-fed unit

(#1) driving an induction motor through a VFC and a SCR-

fed unit (#2) adopting resistors as the load. In both systems,

Proportional Integral (PI) controllers have been adopted to

control the output voltage vo as v∗o = 700 V and the rectified

current ir has been controlled through hysteresis controllers

(hysteresis band: 2 A for experiments, 1 A for simulations).

The PI controller transfer function is given as

GPI(s) = kp + ki ·
1

s

with kp and ki being the proportional and integral control

gains. System parameters of the multi-drive system as well as

the controllers are provided in Table III.

Experiments are carried out, and the results are shown in

Fig. 7. It can be observed in Fig. 7 that, when the phase-shifted

current control is enabled for the two-drive system (i.e., a firing

angle of αf = 36◦ is introduced to the SCR-fed system), the

THD level of the total grid current has been reduced to 16.8%

compared to the theoretical THD in the case of a single-drive

system (e.g., Fig. 3(a)) while a PF of 0.93 is also achieved.

The reason for setting a firing angle of αf = 36◦ is that the

harmonics of fivefold the fundamental grid frequency will be

minimized in that case. However, due to the line impedance,

the 5th-order harmonic is not completely eliminated, as shown

in Fig. 7(b). Nevertheless, the effectiveness of the phase-

shifted current control to improve the power quality is verified

by the experiments.

Furthermore, with an increase of the drive numbers and

the availability of communication, the THD level can be

further reduced, where the optimization algorithms can be

employed as introduced in § III. This is firstly demonstrated

by simulations, where a case of random firing angles for

the specific four-drive system is simulated. The results are

presented in Fig. 8, where αf1 = 3.8◦, αf2 = 27.3◦, αf3 = 12.4◦,

and αf4 = 27.2◦. Although compared to a single-drive system

the distortion level is reduced, the THD of the resultant current

is relatively high (i.e., 20.7%) under the random firing angles.

Then, the optimal firing angles (see Table II with αf ∈ [0 30]◦)

Fig. 7. Experimental results (phase-a) of a two-drive system (a DR-fed and a
SCR-fed unit) with the phase-shifted current control (αf = 36◦): (a) phase-a
currents and voltage (grid voltage vaN [200 V/div], grid current iga [10 A/div],
DR input current ia1 [10 A/div], SCR input current ia2 [10 A/div]) and (b) Fast
Fourier Transform (FFT) analysis of the grid current iga [% of fundamental],
where the total power is 5.92 kW and the PF is 0.93.

are applied to the four-drive system, where a low THD level

of 14% and a PF being 0.95 have been achieved, as shown in

Fig. 9. The above simulations indicate that, by operating some

drives of an n-drive system in partial loading conditions, the

current quality can be improved.

However, in practice, it is difficult or even impossible to

change the drive loading. Alternatively, the presented opti-

mization results can be programmed according to the imple-

mentation schemes in § III.C. By doing so, the firing angles

should be optimally dispatched according to the instantaneous

loading among the multi-drive system. A dynamic case-study

has been conducted on a six-drive system by simulations to

demonstrate the implementation scheme, where an optimized

four-drive system is adopted, e.g., P o
j = [71.5% 77.7% 83.7%

100%] of the rated 7.5-kW and αo
fj = [45 13.4 27.2 0]◦,

with j = 1, 2, 3, 4. Initially, the power for the six drives

are Pk = [6.28 5.48 6.35 7.28 5.94 5.58] kW, and according

to the interpolation scheme, the firing angles can be obtained

as αfk = [27.2 36.8 25.5 4.8 16.8 30.1]◦, with j = 1, 2, 3, 4, 5,

6. The operating point gives a THD level of 16.2% and a PF

of 0.9. At a time instant, the loading is changed to Pk = [7.11

5.49 7.33 7.32 6.94 5.77] kW, and then αfk = [8.7 36.5 3.8

3.9 12.5 17.2]◦, which results in a poorer current quality (i.e.,

THD: 18.3%) but a PF of 0.95. The high current THD could be

reduced to some extent when considering an optimized multi-

drive system with more levels. Nevertheless, the simulation

results shown in Fig. 10 imply that the optimization results

could be implemented based on the bilinear interpolation



Fig. 8. Simulation results (steady-state) of the four-SCR-fed drive system
(P1 = 0.5 kW, P2 = 2 kW, P3 = 4 kW, and P4 = 6 kW) with random firing
angles (i.e., αf1 = 3.8◦, αf2 = 27.3◦, αf3 = 12.4◦ , and αf4 = 27.2◦): (a)
grid voltages, (b) total grid currents, and (c) FFT analysis of the phase-a grid
current iga.

method, and the multi-drive system can operate smoothly

during loading changes. However, how close the resultant

power quality is to the optimum depends on the optimized

current shape levels as well as the number of drives.

V. CONCLUSION

In this paper, the harmonic cancellation enabled by mix-

ing multiple ASD systems has been investigated, where the

currents drawn by the SCR-fed drives are phase-shifted. This

harmonic mitigation scheme has been experimentally demon-

strated, where the total grid current (i.e., the current at the

PCC) drawn by the rectification apparatus becomes multilevel,

leading to an improved power quality. Furthermore, when

more drives are connected in parallel, the shape of the total

current at the PCC will be much close to sinusoidal, if the

firing angles are specifically assigned to the drive systems. It

means that there are optimal operation points in terms of power

levels and firing angles for these ASD systems, so the THD

level can be minimized. Accordingly, an algorithm based on

Fig. 9. Simulation results (steady-state) of the four-SCR-fed drive system
(P1 = 0.5 kW, P2 = 2 kW, P3 = 4 kW, and P4 = 6 kW) with optimally
dispatched firing angles (i.e., αf1 = 12.3◦ , αf2 = 18.3◦ , αf3 = 30◦ , and
αf4 = 0◦): (a) grid voltages, (b) total grid currents, and (c) FFT analysis
of the phase-a grid current iga.

the particle swarm optimization has been adopted with focus

to improve the power quality. Simulations performed on three-

phase multiple ASD systems with the optimized results have

verified the discussions. Considering the practical applications,

the implementation of the optimization results involves the

knowledge of the power loading among the drives, which

requires that communication is available in the system. Look-

up table based solutions have also been briefly discussed in

this paper, which simplifies the implementation of the optimal

results in practical multi-drive systems.
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