Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian; Blaabjerg, Frede; Munk-Nielsen, Stig

Published in:
IEEE Transactions on Industry Applications

DOI (link to publication from Publisher):
10.1109/TIA.2017.2702594

Publication date:
2017

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

Amir Sajjad Bahman, Member, IEEE, Francesco Iannuzzo, Senior Member, IEEE, Christian Uhrenfeldt, Frede Blaabjerg, Fellow, IEEE, Stig Munk-Nielsen, Member, IEEE

Abstract—In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely fabricated. The temperature distribution produced by such abnormal conditions has been modelled first by means of FEM simulations and then experimentally validated by means of a non-destructive testing technique including an ultra-fast infrared camera. Results demonstrate a significant imbalance in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stress on bond wires.

Index Terms—electro-thermal models; insulated gate bipolar transistor (IGBT); reliability; short-circuit; solder fatigue.

I. INTRODUCTION

IGBT modules are widely used in many high-power applications, e.g. wind turbines, ships and trains [1]-[3]. Due to the high fabrication costs of IGBT modules as well as maintenance costs in the application, higher lifetime is required and stringent reliability constraints are assigned to meet the trend in the sustainability of power electronic systems. Besides, the current trend in the IGBT module fabrication is to achieve greater power density, higher switching frequency and smaller volume. This trend induces more dynamic loading and higher operating temperatures, thus faster fatigue degradation and a higher failure rate if not designed properly [4].

Power semiconductor devices account for 20% of total failures occurring in power converter systems [5], [6]. It has been proven that ageing of bond wires and solder fatigue caused by power cycling are the dominant failure mechanisms in IGBT modules [7]. Indeed, IGBT failures are not only caused by solder fatigue, but also by bond wire lift-off, which has a wear-out nature developing gradually during operation [8]. Therefore, both mechanisms are coupled, since the solder joint degradation under the chip produces a local temperature increase that can accelerate the bond wire lift-off. On top of that, due to the harsh environmental conditions IGBT modules operate in, abnormal situations happen frequently, causing random and severe thermal and mechanical stresses. The corresponding stresses significantly affect the reliability of the IGBT module, ending up in a large uncertainty in the lifetime estimation. Therefore, understanding and prediction of the current, temperature and strain distributions in such cases is important for a reliable design [9].

In the past research works, thermal stresses on IGBT modules have been mostly investigated under normal operating conditions such as thermal cycling and power cycling [10]-[14]. However, abnormal operations like short-circuit or overloads are critical and should be considered if a confident lifetime prediction is targeted. The problem becomes more severe in presence of an aged part such as delaminated solder in an IGBT module [15]. The well-known techniques such as de-rating or redundancy of devices are not a solution as they considerably increase the product cost, but a Design-For-Reliability (DFR) approach can increase the confidence level on the expected lifetime and therefore reduce the design margin by taking into account the effects of abnormal operations [7]. One condition to adopt correctly such an approach, though, is to take into account the mixed failure mechanisms from the very beginning of the design process [16].

To this aim, this paper investigates the thermal stress generated in short-circuit condition on bond wires of aged IGBT modules. Finite-Element Method (FEM) simulations are applied to extract the temperature profiles at the surface of the IGBT chip for different solder joint delamination levels. The thermal stressed bond wires are identified and the thermal stresses on them are estimated, which are caused by thermal expansion mismatch in the silicon/aluminum interface. Mixed ageing and short-circuit experiments are hard to be done, especially because the given ageing levels are hardly achievable in a systematic way. Consequently, an ad-hoc set of DBC (direct bond copper) samples at different delamination levels has been purposely developed and experiments have been carried out on them to validate the predicted phenomenon.

Manuscript received October 20, 2016; revised January 18, 2017; accepted March 31, 2017.

Amir Sajjad Bahman, Francesco Iannuzzo, Christian Uhrenfeldt, Frede Blaabjerg and Stig Munk-Nielsen are with the Department of Energy Technology, Aalborg University, Aalborg DK-9220, Denmark (Email: asb@et.aau.dk, fia@et.aau.dk, chu@et.aau.dk, fbl@et.aau.dk, smn@et.aau.dk).
II. MODELLING THE AGEING OF THE IGBT MODULE IN SHORT-CIRCUIT CONDITION

A. Ageing mechanisms in the IGBT module

The IGBT module is characterized by semiconductor chips bonded to metal conductors with thick parallel aluminum bond wires. The bond-wires in turn are soldered to an insulating dielectric layer called Direct Bonded Copper (DBC). The IGBT module as shown in Fig. 1 has a multi-layer structure consisting of different materials with different Coefficients of Thermal Expansion (CTEs). The thermal properties of the materials are temperature dependent and can be found in [17]. The prominent aging mechanisms in the IGBT power modules are solder fatigue, bond wires fatigue, and reconstruction of Al metallization [13]. Bond wires fatigue as shown in Fig. 2 is mainly caused by thermo-mechanical shear stress induced at the interfacing contacts due to temperature swings and the mismatched CTEs. When the temperature swings of the chip and bond wires are ΔT, the total strain \(\varepsilon_{tot} \) of the interface can be described as [18]

\[
\varepsilon_{tot} = L(\alpha_{Al} - \alpha_{Si})\Delta T
\]

where \(\alpha_{Al} \) and \(\alpha_{Si} \) are the CTEs of aluminum and silicon respectively, and \(L \) is the wire contact length. With the large difference between CTEs of Si and Al (Si: 3 ppm/°C and Al: 22 ppm/°C), and sufficiently high temperature swing \(\Delta T \), encountered during power cycling, the total strain \(\varepsilon_{tot} \) of the interface will be large enough to propagate the strain into a nonreversible plastic region [19]. The IGBT module would withstand the impact of temperature swings, which continually accumulates the plastic strain. Cracks start to be initiated at the edge of the interface, and then propagate to the center along the small grain boundaries of the bond wires. When the crack reaches the center, the bond wire would lift off.

Similarly, solder cracks propagate due to visco-plastic deformation amplitude per cycle at the interfacing between the silicon chip and solder due to CTE mismatch that constitute of the heat flow path causing cracking [11]. The solder layer tends to accumulate plastic strains on the edges; hence, the delamination starts from these areas as shown in Fig. 3. The correlation between solder fatigue and the degradation of the power semiconductor packages has been studied in the past literature [20], [21]. According to the previous studies, in the crack regions the heat dissipation through the package is endangered by the disruption in interconnection originated from the solder fatigue. Consequently, the thermal resistance of the package is increased particularly in the disrupted regions, which leads to higher temperature swings in the chip and bond wires. This coupling mechanism intensifies the degradation of the IGBT module.

B. FEM model of aged IGBT module

According to the solder delamination mechanism discussed above, the corresponding physical model is built in the ANSYS FEM software. The target IGBT module is designed based on a discrete Silicon Punch Through Trench IGBT chip, VS-GC200A060LAL [22], that is used for the high current inverter applications. The detailed specifications of the IGBT module are shown in Table I.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{BR}(CES))</td>
<td>600 V</td>
</tr>
<tr>
<td>(V_{CE})</td>
<td>1.36 V</td>
</tr>
<tr>
<td>(I_c)</td>
<td>200 A</td>
</tr>
<tr>
<td>Die size</td>
<td>12.6 x 10.3 mm</td>
</tr>
<tr>
<td>Emitter pad size (incl. gate pad)</td>
<td>(2.9 mm x 9.5 mm) x 4</td>
</tr>
<tr>
<td>Gate pad size</td>
<td>1.7 x 1.0 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>205 μm</td>
</tr>
<tr>
<td>Chip material</td>
<td>Silicon</td>
</tr>
<tr>
<td>Passivation frontside</td>
<td>Silicon Nitride</td>
</tr>
<tr>
<td>Contact metal</td>
<td>4 μm AlCu</td>
</tr>
</tbody>
</table>
The IGBT module consists of the IGBT chip mounted on Direct Bonded Coppers (DBC), which is divided into collector, emitter and gate copper pads. The structure of the designed IGBT module is shown in Fig. 4. As it can be seen, the IGBT chip is connected to the collector terminal through the collector pad on which it is soldered. In addition, the IGBT chip is connected to the emitter pad by aluminum bond wires. In the considered geometry, in order to have low inductance and good reliability, eight wires are bonded on the chip. Finally, the IGBT gate is connected to the gate pad by another bond wire. For simplification of the model and due to low importance in the short time scales, the module is designed without terminal leads and baseplate.

As proven in the previous studies, e.g. [23] and [24], the ageing of the solder initiates from the edges inward until the whole solder area delaminates. Of course, the device fails by the time that all solder area is gone. As observed in the literature the shape of the solder delamination with cycling of the devices is similar to an octagon-shaped area of solder that shrinks from sides, e.g. in the microscopic images of delaminated solder in [23]. To understand the ageing effect of the solder on the bond wires, solder delamination is modelled as an octagon region with 75 µm thickness. The delamination area propagates by the number of thermal cycles from the edges inwards until a significant part of the solder material vanishes (end of life). So, four delamination levels have been used in this paper with steps of 1 mm as shown in Fig. 5.

Fig. 5. Geometry of IGBT chip and solder developed in ANSYS: (a) fresh solder, (b) beginning of solder delamination, (c) hard solder delamination, (d) end life of the solder.

C. Short-circuit switching of the IGBT module

Typically, the reliability testing procedure of the IGBT modules contains power cycling and thermal cycling to represent accelerated lifetime operation of the device. However, single-event failures such as short-circuit can cause a high thermal stress in the package and reduce the IGBT module lifetime even if they do not destroy it. The situation can be worsened when the device is degraded with solder delamination and the package experiences higher thermal stress with temperature swings. This means that those bond wires, which are bonded closer to the edges and corners of the chip surface, will experience higher thermal stress due to solder delamination.

In a circuit that consists of several IGBT modules, the most critical short-circuit is caused when one IGBT is conducting and the opposite is switched on. In the short-circuit switching, a high voltage is present on the device together with a current up to 10 times higher than the nominal one that produces larger switching losses, which are several hundred times higher than in a normal switching cycle [27]. However, the device can be protected by monitoring the collector-emitter voltage (de-saturation protection).

The focus of the present work is on the first type of short-circuits that most likely occurs in practice. For this reason, a Non-Destructive Tester (NDT) is used to investigate the short-circuit behavior of the IGBT modules. The basic principle of the NDT is to perform repetitive tests up to the physical limits of the IGBT module to enable studying common instabilities of the device while avoiding the device explosion. This feature is specifically desirable as it permits post failure analysis in the case of device damage. The NDT setup that is developed at the Center of Reliable Power Electronics (CORPE) of Aalborg University is shown in Fig. 6. The principles of the NDT operation are explained in [26]. The NDT is rated at 6 kA/1.1 kV to test MW-scale IGBT modules. Nevertheless, in the device under study 850 A/300 V in 5 µs has been applied which gives a peak power loss of 250 kW. Fig. 7 presents the short-circuit current, voltage and calculated power losses of the IGBT module.

III. FEM THERMAL SIMULATION

A thermal analysis by applying FEM using ANSYS Icepak was made on the IGBT module shown in Fig. 4. In order to investigate the influence of stresses on the bond wire connections, the ends of the bond wires can be modeled as cuboids. The following boundary conditions were used: a constant temperature of 25°C at the bottom of the DBC, adiabatic boundary conditions in the lateral sides and the short-circuit power loss that is obtained by the NDT (see Fig. 7) and is given to the chip. The heat source in the chip is defined as volumetric heating block with 30 µm thickness and 10 µm below the chip top surface, whose dimensions have been taken from the internal electric field curve during the short-circuit condition at the considered voltage.
The FEM simulations are carried out for 1 second with varying time steps that start with smaller time steps and end in longer steps to reduce the simulation time. The short-circuit power loss is injected to the heat source for 5 μs. Two cases with fresh solder and hard solder delamination have been compared and it is shown in Fig. 8. As assumed, in the model with solder delamination the outmost corners of the IGBT chip are the most stressed ones. The delamination area propagates by the number of thermal cycles from the edges inwards until a significant part of the solder material vanishes (end of life) [12]. Solder delamination induces an inhomogeneous temperature field, which causes an increased stress in the regions above the delaminated area (including the chip surface).

For a better explanation, three bond wire foot positions have been selected (highlighted in Fig. 8) and their temperature profiles are extracted. As it is observed in Fig. 9, the peak temperature is identical for all cases, since the heating is almost adiabatic due to the time frame of the power loss. However, after 1 ms, the generated heat propagates to the solder layer. In the delaminated solder condition, both bond wire foot positions at the edge and center show higher temperature response due to higher thermal resistance of the IGBT module. The reason originates from the delamination propagating from corners, hence the last remaining solder material is under the center of the IGBT chip. So, unlike the fresh solder, in the delaminated solder, edge bond wire is stressed considerably higher than the center bond wire.
Moreover, in the time intervals after 1 ms, all bond wires in the aged module (delaminated) are stressed up to 70% higher than the case of a fresh device. Therefore, at large short-circuit currents they may lift off immediately. On the other hand, the cooling system is not effective in short time scales due to the thermal capacitance of several layers underneath the IGBT chip. This analysis for the case of short circuit can be generalized for the cases of normal thermal cycling with large dynamic loading in real applications.

IV. EXPERIMENTAL VALIDATION AND ANALYSIS

A. IGBT module assembly

In order to validate the simulation results, some IGBT test samples have been fabricated with the layout shown in Fig. 4. To model the solder delamination, IGBT chips have been soldered on the DBC with reduced solder areas. In order to hinder the surface-tension-driven spreading of the solder during reflow, a solder mask has been used [29] and in the layouts with delaminated solder, octagon footprints with different sizes smaller than the chip have been designed as shown in Fig. 10. The solder alloy used for the module is a commercially available Sn96.5Ag3.0Cu0.5 with a thickness of 75 µm. The soldering process used to prepare the samples consists of many phases, where the pressure and temperature are controlled in a vapor phase soldering machine to obtain the designed joint quality in respect to voids content and surface adhesion particularly with less solder amount [28].

Wire bonding is an important step in the present work. First, if some parts of the IGBT chips are not completely soldered to the DBC, there will be a significant crack risk if high force and time are used in the bonding process. However, the solder mask supports the chips in the regions without solder material. On the other hand, the samples will be tested in the short-circuit condition and the IGBTs are switched with high current, so heavy aluminum bond wires – 500 µm – have been used. In order to verify the soldering patterns, Scanning Acoustic Microscope (SAM) images of the samples have been taken a KSI V8 SAM system from IP holding which are shown in Fig. 11. In order to avoid any influence of inhomogeneous bond wire structure on the results, SAM images have been made from the backside of the IGBT modules. Compared with the typical solder delamination process occurring in thermal cycling, e.g. in [12], the fabricated IGBT modules can represent realistic cases with different delamination sizes. The fabricated IGBT module is shown in the Fig. 12.

B. Short-circuit testing

In order to prevent the device catastrophic failure in the short-circuit condition, Non-Destructive Tester (NDT) is used. Fig. 13 shows the laboratory setup used for the test. To measure the temperature of the IGBT module, an infrared camera FLIR X8400sc is used to obtain the temperature distribution on the chip surface. The test samples are black painted to reduce the error in the thermal imaging originated from radiation. A monitoring unit, based on the Altera Cyclone IV FPGA is used to command the driving signals for the IGBTs and NDT. The infrared camera is triggered with the gate driver signal, and a
In this paper, two samples have been tested in the NDT setup: one with full solder pattern (i.e., as fresh) and one with 30% solder pattern (i.e., as in case of hard solder delamination) as shown in Fig. 11 (a) and 11 (c). The IGBTs are switched with short-circuit (300 V/850 A with a time duration of 5 µs). The thermal images in different time intervals for both samples are shown in Fig. 14. It is observed that in the first microseconds of the switching, the temperature is homogenously distributed on the surface of both IGBT modules. The reason originates from the thermal capacitance and the finite heat conduction of the silicon. During the operation of the IGBT, the heat is generated in the junction region of the chip and spreads down through different layers to the heatsink. However, due to the finite heat conductivity and the thermal capacitance of the materials, heatsink is not effective in the short-circuit time scale. Moreover, as the generated heat which cannot propagate to the solder layer in few microseconds, the solder delamination does not initially affect the thermal stresses on the chip surface [29].

After 0.5 ms, the temperature profile on both samples becomes inhomogeneous. On the chip with fresh solder, the temperature at the center of the chip becomes higher rather than at the edges. However, in the chip with the delaminated solder, the heat is concentrated in the edges and the temperature in the bond wire foot positions close to the edges become even higher rather than the temperature in the center of the sample with fresh solder. This phenomenon was also proven in the FEM simulations that aging of the solder layer leads to an increase in the thermal resistance of the IGBT module due to the less heat spreading. So, with higher thermal resistance at the edges of the aged module, the wires bonded closer to the edges will be highly stressed. This indirect
thermal stress on the corner bond wires can lead to an unexpected high thermo-mechanical stress and faster lift-off particularly in the short-circuit event with a large ΔT in a short time.

V. CONCLUSIONS

The thermal stress on bond wires of the IGBT module during short-circuit operation has been investigated on experimental basis. The effect of solder delamination for the temperature distribution on the chip surface has been studied and the thermal profiles have been simulated by FEM for different bond-wire foot positions. It was concluded that higher thermal stresses are induced to the bond wires in higher solder delamination levels, especially the wires bonded closer to the edges of the chip. As a key result, the hypothesis that short-circuits events produce significantly uneven stress on bond wires has been confirmed. The simulation results have been validated by the fabricated IGBT DBC samples that were operated in a non-destructive short-circuit tester including ultra-fast infrared camera. The proposed method provides more precise insight of the short-circuit effects in power modules and based on these results, more accurate lifetime models can be generated including both wear out and abnormal events.

ACKNOWLEDGMENT

The authors express their special thanks to Vishay Semiconductor Italiana for providing the newest generation of IGBT die that has been used for the purpose.

REFERENCES

Amir Sajjad Bahman (S’08–M’15) received the B.Sc. from Iran University of Science and Technology, in 2008, the M.Sc. from Chalmers University of Technology, Sweden in 2011 and the Ph.D. from Aalborg University, Denmark, in 2015 all in electrical engineering. He was a Visiting Scholar with the Department of Electrical Engineering, University of Arkansas, USA, in 2014. Moreover, he was with Danfoss Silicon Power, Germany in 2014 as the Thermal Design Engineer and with Aryacell Telecommunication Company, Iran from 2011 to 2012 as the Electrical Design Engineer. Currently, he is with the Center of Reliable Power Electronics, CORPE, at Aalborg University as a Postdoctoral Fellow. His research interests include electro-thermo-mechanical modeling, packaging and reliability of power electronic systems and components.

Francesco Iannuzzo (M ’04, SM ’12) received the M.Sc. degree in Electronic Engineering and the Ph.D. degree in Electronic and Information Engineering from the University of Naples, Italy, in 1997 and 2001, respectively. He is primarily specialized in power device modelling. From 2000 to 2006, he has been a Researcher with the University of Cassino, Italy, where he became Aggregate Professor in 2006 and he is currently Associate Professor since 2012. In 2014 he got a contract as professor in Reliable Power Electronics at the Aalborg University, Denmark, where he is also part of CORPE (Center of Reliable Power Electronics). His research interests are in the field of reliability of power devices, including mission-profile based lifetime estimation, failure modelling and testing up to MW-scale modules under extreme conditions, like overvoltage, overcurrent, over-temperature and short circuit. He is author or co-author of more than 130 publications on journals and international conferences and one patent. Besides publication activity, over the past years he has been invited for several technical seminars about reliability in first conferences as EPE, ECCE, PCIM, ISPSD and APEC.

Prof. Iannuzzo was the Technical Programme Committee co-Chair in two editions of ESREF, the European Symposium on Reliability of Electron devices, Failure physics and analysis. He is a senior member of the IEEE (Reliability Society, Electron Device Society, Industrial Electronic Society and Industry Application Society) and of European Power Electronics and Drives Association. He has been guest editor for Microelectronics Reliability and permanently serves as peer reviewer for several conferences and journals in the field, like: APEC, ECCE, EPE, ESREF, IECON, ISIE, Elsevier Microelectronics Reliability, IEEE Transactions on Industrial Electronics, Power Electronics and Electronic Devices

Christian Uhrenfeldt received his M.Sc. in Physics from Aalborg University in 2004. In 2008 he received the Ph.D. degree in the field of semiconductor material science from Aarhus University. He is currently working as associate professor at the Department of Energy Technology at Aalborg University. His research interests include packaging for high voltage power electronic converters and semiconductor diagnostics in power electronics.

Frede Blaabjerg (S’86–M’88–SM’97–F’03) was with ABB-Scandia, Randers, Denmark, from 1987 to 1988. From 1988 to 1992, he was a Ph.D. Student at Aalborg University, Aalborg, Denmark and received the PhD in Electrical Engineering in 1995. He became an Assistant Professor in 1992, Associate Professor in 1996, and Full Professor of power electronics and drives in 1998 at the same place. His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability engineering, power quality and adjustable speed drives. He has received 18 IEEE Prize Paper Awards, the IEEE PELS Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award 2014 as well as the Villum Kann Rasmussen Research Award 2014. He was an Editor-in-Chief of the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012. He is nominated in 2014, 2015 and 2016 by Thomson Reuters to be between the most 250 cited researchers in Engineering in the world. In 2017 he became Doctor Honoris Causa at University of Politehnica in Timisoara, Romania.

Stig Munk-Nielsen (S’92–M’97) received the M.Sc. and Ph.D. degrees from Aalborg University, Aalborg, Denmark, in 1991 and 1997, respectively. He is currently Professor WSR at the Department of Energy Technology, Aalborg University. His research interests include LV and MV converters, packaging of power electronic devices, electrical monitoring apparatus for devices, failure modes and device test systems. In the last ten years, he has been involved or has managed 10 research projects, including national and European Commission projects.

Stig Munk-Nielsen