Exercise and Cardiac Function by Tissue Doppler Imaging. The Copenhagen City Heart Study

Joseph, Gowsini; Sogaard, Peter; Nielsen, Gitte; Biering-Sørensen, Tor; Schnohr, Peter; Skov Jensen, Jan; Møgelvang, Rasmus

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Exercise and cardiac function by Tissue Doppler Echocardiography: The Copenhagen City Heart Study

Gowsini Joseph*(1,2), Peter Søgaard(2,3,5), Gitte Nielsen(1), Tor Biering-Sørensen(4, 5), Peter Schnohr(5), Jan Skov Jensen(4,5), Rasmus Møgelvang(5,6)

(1)Department of Cardiology, North Denmark Regional Hospital, Hjoerring, Denmark, (2)Aalborg University, Denmark, (3)Department of Cardiology, Aalborg University Hospital, Denmark, (4)Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, (5)Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen, Denmark, (6)Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark

*Corresponding author. Email: g.joseph@rn.dk

Background
TDI (Tissue Doppler Imaging) is a sensitive marker of myocardial dysfunction and mortality in heart disease and in the general population. Regular physical activity is associated with risk reduction in coronary heart disease and mortality. There is a need for studies to clarify whether exercise has beneficial effects on cardiac function.

Hypothesis
The aim of this study was to test the hypothesis that regular physical exercise is associated with better cardiac function measured by TDI in the general population.

Methods
Within a large prospective community-based population study, 2,053 persons were examined by conventional echocardiography and TDI. Peak systolic (s’), early diastolic (e’) and late diastolic (a’) velocities were measured by colour TDI. Longitudinal displacement (LD) was calculated from the velocity curve during ejection. Statistical tests were performed by linear univariate and multivariable regression analyses, in relation to age groups (<50 years, 50-65 years, >65 years) and physical activity level: I (inactivity), II (light activity), III (moderate activity) and IV (high-level activity). These levels were graded from the physical activity questionnaire, which contained information about activity level at work and in leisure time.

Results
Participants aged <50 years had a significantly higher level of e’ and LD in the most active group: e’ = 11.0 (± standard deviation, SD=2.0), p<0.001; LD=12.8 (SD=2.1), p<0.003. This pattern remained significant after adjusting for sex, hypertension, diabetes, and ischaemic heart disease and after Bonferroni correction. Both e’ and LD were strongly correlated to age, thus being significantly different in the three age groups regardless of the activity level. This correlation remained highly significant after adjustments for potential confounders (p<0.001). For e’, there was a significant interaction between age and activity level (p<0.001), which supports the findings of better cardiac function with increasing activity in the young age group.

Conclusion
In the general population, the association between increasing level of exercise and better cardiac function was found only in the youngest age group (<50 years old). Among the elder age groups, higher level of activity was not correlated to better cardiac function.

Disclosures:
G. Joseph: None; P. Søgaard: Modest Research Support from GE Healthcare; G. Nielsen: None; T. Biering-Sørensen: None; P. Schnohr: None; J. Skov Jensen: None; R. Møgelvang: Modest Research Support from GE Healthcare.