WBS06 workshop: Basic science

Gliopathy in pain: role in neural sensitization

Neto, Fani Lourenca Moreira; Gazerani, Parisa; Ceruti, Stefania

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Session details

Workshop: Basic Science

GLIOPATHY IN PAIN: ROLE IN NEURAL SENSITIZATION

Hall H Date: Friday, September 8, 2017 From: 16:30 To: 18:00

Chair: Stefania Ceruti, Italy

Chair: Parisa Gazerani, Denmark

16:30 - 18:00 SUMMARY: Our symposium is aimed at providing an updated overview of the role of satellite glial cells modulating neuronal sensitization in peripheral ganglia under painful conditions, and to propose this cell population as a new target for the development of innovative pharmacological approaches. In fact, SGCs around the somata of sensory neurons, altogether constituting a morphological and functional unit, SGCs continually monitor the extracellular milieu and exchange information with one another and with neighboring neurons. Like other glial cells, SGCs respond to nerve injury or to inflammatory stimuli by undergoing parallel to increased expression and release of pro-inflammatory mediators and neurotransmitters, whether autocrinally or paracrinally. Altogether, these changes lead to increased excitability of both primary afferents and central nervous system neurons, and the development of hyperalgesia and allodynia. Thus, targeting SGCs represents a novel opportunity to tackle various pathological conditions where the activation has been demonstrated, spanning from chronic and neuropathic pain to visceral pain, post-herpetic neuralgia, and other CNS disorders. In order to understand the complex network of signaling molecule pathways that are involved in SGC-to-SGC and in SGC-to-neuron communication within sensory ganglia, Dr. Gazerani will focus on signaling transmitters for cross talk in sensory ganglia (Glutamate, NO, Fractalkine), and Dr. Ceruti will current knowledge on the role of the purinergic system in modulating peripheral trigeminal nociceptor association with migraine.

16:30 - 17:00 SATELLITE GLIAL CELLS IN DORSAL ROOT GANGLIA: MUCH MORE THAN JUST "GLUE"

Fani Lourenca Moreira Neto, Portugal
17:00 - 17:30 **SIGNALING TRANSMITTERS FOR SATELLITE GLIA-NEURON CROSS TALK WITHIN SENSORY GANGLI**
Parisa Gazerani, Denmark

17:30 - 18:00 **GLIOPATHY IN PAIN: ROLE IN NEURAL SENSITIZATION**
Stefania Ceruti, Italy