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a b s t r a c t

Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational
models aimed at scientific understanding are too complex for use in applications such as battery
management. Computationally simple models are vital for exploitation. This paper proposes a non-linear
state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-
S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new
Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li-S exhibits a ‘steep’
open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take
into account OCV changes during current pulses. The prediction-error minimization technique is used.
The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four
temperatures from 10 �C to 50 �C, giving linearized ECN parameters for a range of states-of-charge,
currents and temperatures. These are used to create a nonlinear polynomial-based battery model suit-
able for use in a battery management system. When the model is used to predict the behaviour of a
validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are
judged accurate with a root mean square error of 32 mV.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

To increase an acceptance and a demand of electric vehicles
(EV's) among the public, there is a need to overcome range anxiety
[1]. Since the range of EVs is strongly connected to their energy
storage, there is a request for a low cost and safe operating battery
with high specific energy. Potentially fulfilling these requirements,
the lithium-sulfur (Li-S) chemistry is a prospective replacement of
the current lithium-ion (Li-ion) battery technology [2,3]. However,
Li-S batteries still suffer from fast degradation and high self
discharge [4], which leads the modelling community to be focused

on elucidating the complex inner mechanisms governing the cell
behaviour. Despite being essential for Li-S technology uptake,
operational models and on-line diagnostic tools, capable of pre-
dicting and controlling the batteries performance in operation are
lacking in the literature. Recently, commercial Li-S cells have
become available (e.g. those supplied by OXIS Energy [5], Sion Po-
wer, Polyplus), offering the opportunity for application oriented
research. In the framework of electric mobility this translates into
investigating the cell's performance under the power and tem-
perature demands of an EV [6]. For established battery chemistries,
models have been developed, providing varying levels of insight
into the cells' internal processes, at varying computational cost [7].
Since the computational power of a typical electronic control unit
(ECU) or battery management system (BMS) is limited, simple low-
complexity battery models are often needed for application ori-
ented purposes. Examples of such simplified models are equivalent
electrical circuit networks (ECN), which reproduce the transient
behaviour of a battery with a circuit of electrical components,
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including resistors, capacitors and a voltage source [8]. The struc-
ture of these models is often independent of the cell chemistry, and
as such they are not able to give insight into the cell’s physical,
chemical and electrochemical processes [9]. However, for Li-ion
batteries, they have been successfully used for estimating the in-
ternal states, such as state of charge (SoC) and measures of battery
health such as increase in resistance and decrease in effective ca-
pacity [10] (In this paper, only SoC will be considered in detail).
Usually they have relatively low computational effort and use easily
available measurements like current and terminal voltage. For Li-S
batteries ECN models of varying accuracy and complexity have
been developed in Ref. [11e14]. These models have been developed
for the purpose of analyzing impedance spectroscopy data, such
that they describe the cell at a fixed SoC. Because of this they are
unsuited to describe performance during cycling. For an OXIS Li-S
cell a first operational model including two parallel resistor-
capacitor (RC) pairs, has been developed recently with good pre-
diction of the charging process [15]. Furthermore, a comparison of
ECN topologies for Li-S batteries in terms of accuracy, and a
parameter identification for a three RC model for the same kind of
cell were presented in Ref. [16]. In this paper, we introduce the
complete framework for developing a Li-S battery model with one
RC element, suitable for BMS use, and evaluate its accuracy. Thereby
our approach follows the development of a standard ECNmodel for
Li-ion batteries; parametrizing the circuit by fitting pulse discharge
data. In order to investigate the temperature dependence of the
various circuit parameters for the OXIS Li-S cell, here the parame-
trization is done for four different temperatures. Also, some of the
open questions regarding the suitability of this approach to
parametrize the unique properties of Li-S cells are discussed.
Therefore we, after a brief introduction into the general re-
quirements for a Li-S battery model (Section 2), (i) use a robust
parameter estimation technique developed for Li-S cells, account-
ing for OCV differences before and after a current pulse (Section
3e4), (ii) apply a novel mixed current pulse test procedure to
explore current-dependencies of the model parameters (Section 5),
and (iii) identify the cell parameters at four different temperatures
(Section 6). The validation of a simplifiedmodel is done in Section 7
and Section 8.

2. From Li-ion to Li-S modelling

In the literature, there are many examples of established Li-ion
battery models [9,17]. The purpose of one kind, the ECN models, is
to predict the output voltage, the available capacity and the
degradation at relatively low computational cost [8]. These models
are successful enough to be widely used in applications. The main
reason for their success is that the intercalation-based chemistry of
the Li-ion battery offers a relatively consistent and predictable
performance when operated within its limits of charge, tempera-
ture and current rates [10]. This is not the case for the Li-S batteries,
because they are based on conversion reactions rather than on
intercalation. Sulfur reacts with lithium ions when reduced from
elemental state S8, via the intermediates Li2S8,Li2S4,Li2S2, to lithium
sulfide Li2S [18] (Fig. 1), offering theoretically a capacity of
1672 mAh g-1 [19].

However, the practical capacities currently achieved are signif-
icantly lower [9,19], mainly due to poor sulfur utilisation and fast
degradation [20]. High order polysulfides are highly soluble and
reactive [21] in organic electrolytes, while low order polysulfides
tend to be insoluble and form an electrically insulating precipitate
[4]. The details of the reduction path during discharge are still a
matter of ongoing research and are probably more complex [22].
The discharge curve exhibits two regions [23] (Fig. 2): a high
plateau at about 2.35 V open circuit voltage (OCV), characterized by

the presence of a majority of high order polysulfides in solution
(Li2S8, Li2S6), and a low plateau at around 2.1 V OCV, where lower
order chains have been identified (Li2S4, Li2S3, Li2S2), including Li2S
which can precipitate out [24]. With the growing amount of insu-
lating Li2S2 and Li2S, the practical discharge stops at about
1256 mAh g-1, indicated by the increasing cell resistance [25,26].
While charging, the oxidation of low order polysulfides forms high
order chains. However, they do not all become elemental sulfur.
Highly soluble, high order polysulfides diffuse to the anode and, in
contact with its surface, are reduced to lower order chains. These
can diffuse back to the cathode, where they are oxidised back to
longer chains. This phenomenon, called the polysulfide shuttle [27],
can act as overcharge protection [19], but is also responsible for self
discharge and poor coulombic efficiency, and associated with ca-
pacity fade [27,28].

To identify requirements and challenges towards a fully opera-
tional low order Li-S battery model, some Li-ion approaches are
listed and examined for their suitability for the Li-S chemistry.

2.1. Voltage curve

The OCV of Li-ion batteries can be measured after some rest
time and is sensitive to the SoC [10] and weakly influenced by
temperature [29]. Therefore it is usually represented by a variable
voltage source with a function or lookup table over SoC, which
simplifies the SoC estimation for those batteries [30]. Li-ion has a
known predictable and reproducible temperature dependence on
OCV. However, lithium sulfur due to the presence of multiple
species and multiple reactions between those species has a highly
variable and state dependent temperature dependence on OCV,
where the state dependence can be a function of the history of the
cell going back many cycles. Attempts to model the OCV [31] have
beenmade, but are yet to include the full temperature dependence,
which would be necessary to accurately reproduce this effect.
Furthermore, in the low plateau, the OCV is not an indication for the
SoC since it will always return to about 2.15 V, when given enough

Fig. 1. Work principle of Li-S battery.
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time after current is removed. (The time required will depend on
the final voltage, but is typically no longer than 2 h) Additionally,
the presence of self-discharge and precipitation further complicate
the dependence of the rest voltage on the SoC, meaning that it is
unclear how one would reliably obtain experimental data for the
OCV as a function of the SoC [31]. The transient voltage behaviour of
Li-ion batteries are represented by RC circuits, supplemented by
parameter-functions for SoC, temperature, current and cycle
number. Since the variations of the model parameters for cycle
number and currents are usually small [32], they tend to be
neglected or simplified [33]. For Li-S batteries the opportunities for
these simplifications are unknown for practical BMS applications.

2.2. Capacity

To handle variations of the usable capacity in Li-ion cells, a rate
factor can be applied [29]. But since the variations of the usable
capacity are usually small, they are also handled with the internal
resistance, causing the voltage drops to increase with higher rates
and therefore cause different SoC's for the same end-of-discharge
voltage [33]. For the Li-S batteries however, the amount of sulfur
that can be reversibly utilised during a discharge is strongly
affected by the current profile, cycling and temperature [34].
Generally high discharge capacity is only obtained at very low rates.
High currents can produce a resistive layer on the cathode, hin-
dering the utilisation of the underlying sulfur [23], leading to strong
changes in the usable capacity. Cell operation for optimal utilisation
of sulfur remains a challenge and is still a matter of ongoing
research [11,19,35].

2.3. Power capability

For Li-ion batteries the power limitations are governed by the
diffusion of ions into the electrodes, which is mainly defined by the
battery design [36] and therefore not considered to vary rapidly
with normal usage. For Li-S batteries, the specific factors limiting
rate capability during operation are unknown. Slow diffusion of
species through the electrolyte, bottlenecks in the electrochemical
reaction pathway, and reduced availability of active surfaces are
some of the possible reasons for power limitation. Generally, the
polysulfide kinetics in the high plateau region are fast, leading to
good rate capabilities and low cell resistance. However, the high
plateau usually accounts for merely 10%e30% of a cycled cell's ca-
pacity [37]. At the boundary between the two plateaus a peak in cell
resistance is observed, possibly caused by an increase in electrolyte

viscosity, due to a high concentration of dissolved polysulfides. A
further increase in the resistance at the end of the discharge is
associated with precipitation of lower order polysulfides, leading to
a decrease in the availability of both active species and active sur-
face area. The operating temperature does impact power capability,
for Li-S as well as for Li-ion cells, as lower temperatures lead to
slower diffusion and lower reaction rates. However the potential
for Li-S batteries to work in cold environments is seen as greater
[37]

2.4. Degradation

For Li-ion the major degradation modes in ECN models are the
decreasing rate capability and capacity fade, caused by parasitic
reactions at the anode, leading to a growth of the solid-electrolyte
interphase (SEI) [38], and the consumption of active material [39].
For Li-S batteries, the degradation modes are not well known [22],
and it is unclear which lead to reversible and which to irreversible
degradation. Probable causes include the irreversible growth of
insulating layers on the anode [40] and possibly cathode, and the
associated loss in active material [41]. Much of the degradation is
believed to be related to the polysulfide shuttle. In order to prevent
it, overcharging is generally avoided, despite not being a safety
issue in comparison to Li-ion chemistries.

The comparison shows that the Li-S chemistry is more complex
in its reactions as well as the electrical behaviour than current Li-
ion batteries. The unique Li-S features, (i) two regions with
different properties, (ii) a flat voltage profile, (iii) self discharge
mechanism during charging, (vi) high sensitivity of the usable ca-
pacity and power to cycling parameters such as current profile or
temperatures, indicate a higher effort towards an application ori-
entedmodel. It is not clear yet, how accurately these effects have to
be represented for future Li-S BMS systems.

3. Parameter identification

There are many techniques for system identification, but a good
‘industry standard’ is prediction-error minimization (PEM), a full
description of which can be found in Ljung's seminal work on
system identification [42]. The key concept behind PEM is that of
the ‘prediction error’, which is estimated based on recorded ob-
servations, describing the model

yðtÞ ¼ Gðq; qÞuðtÞ þ Hðq; qÞeðtÞ (1)

as a predictor of the next output. Where G represents the transfer
function, q the forward shift operator, H(q,q)e(t) the disturbance of
the system and q is a parameter vector. The parameter vector
consists of the unknown model parameters: for an ECN model, for
example, it might be electrical component values. In system iden-
tification, a metric is defined, usually as a mathematical norm, such
as the ’prediction error’ εðt; qÞ between the measured data y(t) and
the model prediction byðtÞ is used; an identification algorithm seeks
to minimize this norm, and the minimizing parameter vector,
denoted qN, gives the best fit.

εðt; qÞ ¼ yðtÞ � byðtjqÞ (2)

The prediction error minimization algorithm uses numerical
optimization to minimize the cost function VN(q), a weighted norm
of the prediction error, e.g.

qN ¼ arg min VN qð Þ ¼ arg min
������εðt; qÞ������2

2
(3)

Usually the cost function includes the number of the dataFig. 2. Basic voltage behaviour Li-S battery.
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samples and becomes more accurate for larger values. PEM system
identification is applied to each current pulse individually. To get an
accurate result, the estimation window was set to 300 s before and
after each pulse.

4. Battery model set

The quality of the identification strongly depends on the model
set. In this section, a new linearized version of a nonlinear SoC-
dependent ECN model is presented. First, a Thevenin model
[43,44] (Fig. 3) is expressed in terms of its parameter dependence
on SoC. The model is then reparameterized in terms of ‘behaviour’,
rather than component values. The model is then linearized in a
way that captures the dependence of the model behaviour on
changing state of charge. This parameterization provides a number
of benefits over a standard ECN model:

(i) The application of constraints to behaviours is possible,
which makes it possible to relate constraints to observed
behaviours; without a behavioural parameterization, such
parameterizations are less straightforward. (Dynamic band-
width, for example, is a function of two equivalent circuit
parameters in an RC pair; in the new parameterization, it is a
single behavioural parameter.)

(ii) The linearized form of the model explicitly captures terms
relating to short-term changes in dynamic behaviour due to
changes in ECN parameters caused by changing SoC. (In
conventional ECN models, parameters are usually assumed
constant over a short time period, but this can cause prob-
lems when the SoC has a significant short-term effect, e.g. a
noticeable change in OCV during a system identification
experiment.

These benefits make the model suitable for system identifica-
tion tests such as those conducted in this study.

This work differs from the ‘cyclic resistometry’ analytical
parameter technique [45] in that where cyclic resistometry at-
tempts to measure a single physical parameter e the electrode
resistance e with a series of high-frequency pulses, the techniques
of this paper simultaneously identifies all ECN parameters with a
‘behavioural’ rather than physical interpretation.

4.1. State-of-chargeedependent ‘Thevenin’ model

4.1.1. Basic model equations
Consider a generic Thevenin model with ECN parameter

dependence on SoC Xdthis is a capital ‘c’ not a capital ‘x’. Following
common practice, the current IL is treated as the input and the load
voltage is taken as the output. Using the symbolic notation of Fig. 3,
the output equation is

UL ¼ hUL

�
X;Up; IL

�
(4)

where

hUL

�
X;Up; IL

� ¼ UocðXÞ � Up � RoðXÞIL: (5)

The system has two dynamic states: state-of-charge, X, and
‘capacitor’ voltage Up. The state derivatives are given by

_X ¼ fXðILÞ ¼ � 1
Qcap

IL (6)

where Qcap is the capacity (in coulombs) of the battery or cell under
consideration, and

_Up ¼ f _Up

�
X;Up; IL

�
(7)

where

f _Up

�
X;Up; IL

� ¼ � 1
RpðXÞCpðXÞUp þ 1

CpðXÞIL (8)

4.1.2. Behavioural reparameterization
The ECNmodel expressed above is perhaps a little cumbersome.

During system identification, it is often desirable to constrain
parameter searches to sensible ranges. In battery identification, the
operator will be particularly concerned to see how well steady-
state model behaviour matches reality, what the bandwidth (or
time constant) of the model is, and howmuch of the response is (as
far as can be observed) instantaneous and how much lags. It is
important not to lose sight of the fact that ECNmodels were chosen
because their behaviour represents observed cell behaviour, not
because there is a particular physical significance to the circuit el-
ements employed.

Our circuit can be made more intuitive by working in terms of
some new ‘behavioural’ variables:

UpðXÞ ¼ 1
RpðXÞCpðXÞ (9)

RintðXÞ ¼ RoðXÞ þ RpðXÞ (10)

rpðXÞ ¼
RpðXÞ
RintðXÞ

(11)

Here,Up represents the dynamic bandwidth described by Rp and
Cp. Rint is the total steady-state resistance, and effectively governs
the ‘settled’ voltage drop due to a constant current. rp represents
the ‘dynamic fraction’ of the response: when rp is zero, the voltage
response is wholly instantaneous, and when rp is one, the response
is wholly dynamic. Using this parameterization, it is relatively easy
to write down behavioural constraints, e.g.

Fig. 3. Response of the Thevenin and behavioural battery model to a current pulse.
(Details of the pulses used are given in Section 5).
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UpðXÞ2½Umin;Umax�
RintðXÞ>0
rpðXÞ2½0;1�

(12)

The output function and state derivative functions can be re-
written in terms of the new parameterization:

hUL
¼ UocðXÞ � Up �

�
1� rpðXÞ

�
RintðXÞIL (13)

fX ¼ � 1
Qcap

IL (14)

f _Up
¼ �UpðXÞUp þ rpðXÞRintðXÞUpðXÞIL (15)

This parameterization of the model is numerically identical to
the original ECN model, but there are no longer any ‘reciprocal’
parameters and the application of parameter constraints is
straightforward and intuitive. Giving a set behavioural parameters
it is of course straightforward to map these back to ‘conventional’
ECN parameters noting that

RpðXÞ ¼ rpðXÞRintðXÞ; (16)

RoðXÞ ¼ RintðXÞ � RpðXÞ (17)

and

Cp Xð Þ ¼ 1
Rp Xð ÞUp Xð Þ: (18)

4.2. Linearized cell model

4.2.1. Motivations for linearization
For system identification, it is common to use linearized models.

In many practical approaches, it is assumed that state-dependent
parameters vary sufficiently slowly to be treated as constants, and
the nonlinear ECN model is effectively used as a linear model with
‘frozen’ SoC. Unfortunately, this does not always work. When a
battery or cell is subject to a high-current discharge pulse, the
change in SoC can be sufficient to cause a drop in the OCV between
the start and the end of the pulse (as depicted in Figs. 3 and 4). This
does not fit well with the linear model. Oneway to get round this in
practice is subtract a voltage term representing the drop on UOC
caused by a change in SoC. More formally, a full linearization of the
nonlinear model can be performed. When this is done, it will be
seen that the nonlinear model contains all the expected ‘ECN terms’
but also two additional terms that we might perhaps not have
expected. This is shown in the following sections.

4.2.2. Definition of operating point
The first step in the linearization process is to define an oper-

ating point. In this case, the dynamic state pair X;UL will be
assumed. The nominal input is current, chosen such that _UL ¼ 0:

IL ¼ Up
�
X (19)

and the nominal output is

UL ¼ Uoc
�
X
�� Up �

�
1� rp

�
X
��

Rint
�
X
�
IL: (20)

(Usually, operating points are chosen to represent equilibria. The
operating point that has been chosen here is not strictly-speaking
an equilibrium unless IL ¼ 0 since in general _Xs0. But that does

not matter: the mathematics holds regardless.)
As a next step, variables describing perturbations from nominal

values are defined:

buL ¼ UL � UL;biL ¼ IL � IL;bc ¼ X � X;bup ¼ Up � Up:

(21)

This allows us to express what is essentially a ‘small-signal’
model, though such terms are rarely used in the formal language of
control theory.

4.2.3. Linear state-space representation
We can define a state vector

bx ¼ � bc bup
	T (22)

and form a linearized model:

buLz



vhUL

vX
vhUL

vUp

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

cT

bx þ vhUp

vIL|ffl{zffl}
D

bıL (23)

bx_z
266664

vfX
vX

vfX
vUp

vfUp

vX
vfUp

vUp

377775
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

bx þ

26664
vfX
vIL
vfUp

vIL

37775
|fflfflfflfflffl{zfflfflfflfflffl}

b

bıL (24)

The terms of cT are

vhUL

vX
¼ vUoc

vX
þ RintIL

vrp
vX

�
�
1� rp

�
IL
vRint
vX

(25)

Fig. 4. Mixed pulse discharge and test installation.
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vhUL

vUp
¼ �1; (26)

the term of D is

vhUL

vIL
¼ �

�
1� rp

�
Rint; (27)

the terms of A are

vfX
vX

¼ 0; (28)

vfX
vUp

¼ 0; (29)

vfUp

vX
¼
�
rpRintIL � Up

� vUp

vX
þ RintUpIL

vrp
vX

þrpUpIL
vRint
vX

;

(30)

vfUp

vUp
¼ �Up; (31)

and the terms of bT are

vfX
vIp

¼ � 1
Qcap

; (32)

vUp

vIp
¼ rpRintUp: (33)

We can therefore write:

buLz ½ c11 �1 �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
cT

bx þ
�
1� rp

�
Rint|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

D

bıL (34)

bx_z 

0 0
a21 �Up

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

bx þ

264 � 1
Qcap

rpRintUp

375
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

b

bıL: (35)

An important thing to note here is that there are two terms in
these matrices that we might not intuitively expect if we were
simply writing down the equations for an ECN circuit: c11 which
relates changes in SoC to the open circuit voltage, and a21 which
relates changes in SoC to the capacitor voltage.

As a final step, we can apply a state transformation:

bx ¼
"
Q�1
cap 0

0 1

#
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T�1

bz i:e: bz ¼
"
Qcapbcbup

#

This yields

buL ¼
�
c
0
11 �1

	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cTz¼cTT�1

bz þ
�
1� rp

�
Rint|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

D

bıL (36)

bz_z"
0 0

a
0
21 �Up

#
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Az¼TAT�1

bz þ
" �1

rpRintUp

#
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

bz¼Tb

bıL: (37)

In this form, the model lends itself well to system identification.
As well as the core behavioural equivalent circuit parameters Uoc,
Rint, rp and Updwhich also give Ro, Rp and Cpdthere are two ‘free’
parameters c11

' and a
0
21 that can accommodate parameter changes

within a system identification data set caused by c
0
11. For the pur-

poses of this study, it has been assumed that the effect of SoC on
OCV is the dominant distorting effect, as it can be seen from the
data that Uoc changes between the start and end of a pulse (Fig. 4).
Accordingly, a

0
21 has been assumed small, but c

0
11 has been

accommodated in system identification.

5. Experimental design

The battery model parameters are identified through discharge
tests within temperatures from 10 �C to 50 �C. To identify the
current dependencies of the model parameters without potential
ageing effects, the cells were tested with current pulses of 290 mA,
1450 mA and 2900 mA with a 10 min resting time in between
(Fig. 4). The measurement procedure contained pre-cycled (C/10
charge, C/5 discharge, 30 �C) 3.4 Ah long-life chemistry pouch cells
from OXIS Energy, following their recommended voltage range
between 2.45 V, when the battery is fully charged (SoC¼ 100%), and
1.5 V, when the battery is fully discharged (SoC ¼ 0%). We have
taken a practical definition of state-of-charge, essentially ‘remain-
ing capacity’, and we have defined the end point of the test as the
first instant at which the terminal voltage reaches 1.5 V, in linewith
the manufacturer's recommondation.

The test hardware included a Maccor 4000 battery tester with
cells constantly held at temperature in sealed aluminium boxes
with a Binder KB53 thermal chamber, also shown in Fig. 4.

6. Identification results

Since the tested cells are not mass produced, deviations in their
discharge capacity or parameters are possible (see Table 1).

Therefore the identification has been done with two cells
respectively. But since the identified parameters follow the same
pattern, only the results for cell one are presented.

The identification results for the model parameters are repeated
over the whole discharge range for each current pulse individually,
by calculating the SoC from the integrated current, the discharge
capacity of the cycle, and the assumption of an initially fully
charged battery (Fig. 5). (In this work SoC is a dimensionless vari-
able, with 0 representing fully discharged and 1 representing fully
charged, following the pattern in Ref. [10].)

X ¼ Xð0Þ �
1

3600Qcap

Zt
0

iðtÞdt: (38)

The average SoC is assigned for each pulse respectively by using
its the start- and end-value of the SoC estimation

Xpulse ¼ 0:5ðXstart þ XendÞ: (39)

Fig. 6 shows the identification results for each pulse over SoC,
emphasising the current dependencies of the parameters. Gener-
ally the results corresponds well with previous studies. The peak of
R0 between both voltage plateaus, also reported in Ref. [22], is
associated with the increased viscosity and therefore resistance of
the electrolyte, due to themaximum of dissolved polysulfides in the
electrolyte at this point [46]. Also due to the electrolytes conduc-
tivity, a slight increase of the internal resistance with lower tem-
peratures is reported for a fully charged cell [12]. Additionally
shown here is the less pronounced peak for the internal resistance
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with higher temperatures, presumable caused by the lower elec-
trolyte viscosity. While the internal resistance and double layer
capacitance vary only weakly with different rates, the charge
transfer resistance Rp differs noticeably. Rp with its similar
appearance than R0 for low currents, is mostly assigned to the
thickness of the Li2S film on the anode, which depends, since high
order lithium polysulfides are involved into the re-dissolution of
the film, on the amount of dissolved polysulfides. Furthermore the
films conductivity, depending on its surface morphology and the
viscosity of electrolyte, matters [47]. The latter is likely due to the
also occurring less pronounced peak with higher temperatures.
With lower temperatures the usable capacity decreases (see
Table 1), even when the high plateau can deliver slightly more
energy due to a less pronounced shuttle effect. When the temper-
ature gets too low, the increased internal resistance of the cell
causes a deeper voltage drop. In our case, by applying discharge
currents as 2900 mA, the discharging cut-off voltage of 1.5 V is
reached before the beginning of the low voltage plateau. Therefore
the usable capacity drops more significantly than reported in
Refs. [37,48], which is mainly due to our test pattern and the higher
current pulses we use.

7. Model derivation

The derived Li-S cell model excludes the identified parameters
for 10 �C due to their large differences to the values of higher
temperatures. Therefore, it was skipped for now and is going to be
explored more in detail in the future research. It should be noted
that temperature is to be used as a constant parameter in this
model. Using it as a dynamic fast-varying input may produce un-
expected results. (A full electrochemical model would be needed to
address this.) The model from 20 �C to 50 �C uses the general state-
space representation

Table 1
Capacities of test cells.

Temperature Test cell 1 Test cell 2

10 �C 0.67 Ah 0.68 Ah
20 �C 2.72 Ah 2.79 Ah
30 �C 2.83 Ah 2.79 Ah
50 �C 3.02 Ah 3.03 Ah

Fig. 5. Identification results for UOC over Pulse and SoC.

Fig. 6. Identification results for R0, Rp and Cp for each current pulse respectively.
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_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ
yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ (40)

with added functions for the parameter-variations over the SoC.
The usage of functions instead of lookup tables is due to one
intended model purpose, the state estimation. The first state in x¼
[x1x2]T represents the SoC (X), while the second state represents the
transient voltage over the RC circuit (Up).

A ¼

2664
0 0

0
�1

fRp
ðXÞ�fCp

ðXÞ

3775 B ¼

2666664
�1

3600Qcap

1
fCp

ðXÞ

3777775
C ¼ � fUOC

ðXÞ �1
	
D ¼ � fR0

ðXÞ 	
(41)

The relationships between the model parameters and the SoC
are handled with fitted polynomials,

fparameterðXÞ ¼ p10x
9
1 þ p9x

8
1 þ p8x

7
1 þ p7x

6
1 þ p6x

5
1

þp5x
4
1 þ p4x

3
1 þ p3x

2
1 þ p2x1 þ p1

(42)

shown in the matrices A to D, with parameters p1 to p10. The
parameter values are identified by minimizing the squared error
between function and identification results with MATLAB [49] for
each temperature respectivelyand summarized inTable 2. As shown
in Section 2 and 6, the parameters of Li-S chemistry vary in their
patterns between the high and low plateau. While it is theoretically
possible to represent this behaviour with a single polynomial
function, the needed degree for a good quality fit would be high. To
avoid thiswithoutneglecting accuracy, polynomial functions forUOC
and R0 are determined for each plateau separately and combined
smoothly and differentiable via a partial sinusoidal function g.

gm;cðXÞ :¼

8>>><>>>:
0; if a

1
2
þ 1
2
sinð2mðX � cÞÞ; if b

1; if c

(43)

Where the conditions a,b,c stands for the different ranges of the
function,

a : 2mðX � cÞ< � 1
2
p;

b : �1
2
p � 2mðX � cÞ<1

2
p;

c : 2mðX � cÞ>1
2
p;

(44)

andm is a scaling factor, determining the transition range between
both polynomials. The transition point between both functions is

Table 2
Parameter functions.

Function T p10 p9 p8 p7 p6 p5 p4 p3 p2 p1

fUOC�high 20 108.1 �361.13 444.73 �238.18 47.03 1.88
30 100.81 �351.59 452.99 �254.35 52.66 1.92
50 19.53 �47.78 43.08 �15.5 1 2.1

fUOC�low 20 �752.62 2085.66 �2392.87 1466.98 �517.42 105.21 �11.69 0.62 2.1
30 �705.23 1997.24 �2329.9 1445.3 �513.3 104.5 �11.55 0.614 2.1
50 50.49 �170.36 226.3 �147.74 46.17 �3.8 �1.34 0.32 2.11

fR0�high 20 �1300.2 6470.07 �13362.95 14656.94 �9000.23 2931.67 �395.24
30 1408.02 �7176.99 15213.74 �17168.84 10880.87 �3673.08 516.32
50 29.22 �98.6 122.81 �67.96 15.53 �1.06 0.07

fR0�low 20 12.96 �28.54 25.46 �11.65 3.09 �0.42 0.11
30 14.05 �32.34 28.45 �11.77 2.5 �0.38 0.123
50 3.597 �9.988 10.631 �5.419 1.393 �0.216 0.063

fRp 20 140.636 �613.186 1088.525 �1005.911 512.386 �139.174 16.887 �0.011 �0.223 0.074
30 102.35 �489.63 968.695 �1024.135 624.963 �222.05 43.585 �3.75 �0.11 0.08
50 270.48 �1110.38 1837.41 �1538.71 643.71 �80.4 �34.99 14.73 �2.02 0.16

fCp 20 89414.28 �113090.73 25401.28 15392.5 �3017.3 306.23
30 237957.9 �384453.35 193837.3 �27322.65 2574.15 216.5
50 373976.04 �799532.2 605077.98 �193678.92 27646.74 �617.5

Fig. 7. Parameter functions for UOC, R0, Rp and Cp over SoC.

K. Propp et al. / Journal of Power Sources 328 (2016) 289e299296



determined by c, which leads to the combined function for both
polynomials:

fUOC
ðXÞ ¼

�
1� gm;cðXÞ

�
fUOC�low

ðXÞ
þgm;cðXÞfUOC�high

ðXÞ (45)

Equally the combined function for R0 is determined, also using
the same g and c values.

fR0ðXÞ ¼
�
1� gm;cðXÞ

�
fR0�lowðXÞ

þgm;cðXÞ fR0�highðXÞ:
(46)

Since the variations between both plateaus are less pronounced
for Cp and less consistent for Rp, the functions for these parameters
are only determined with a single polynomial respectively. This
decision also simplifies the estimation of the Jacobian matrix of A
with foresight to a Kalman filter type state estimation. A further
simplification is fitting the polynomial to all pulses, ignoring the
discharge current induced fluctuations of Rp. Therefore the effects
of different discharge currents have not been properly represented
yet. Fig. 7 shows the resulting model parameters calculated from
the polynomial functions, together with the transition points
(c20¼0.68,c30¼0.73,c50¼0.92) for 20 �C, 30 �C and 50 �C. It is easy to
spot that the variations between the temperatures changes the

battery behaviour significantly. The data suggest that for an inter-
polation between different temperatures not only the cell capacity
QCap and the transition points c must be accounted for, but also the
shape of the polynomial functions itself. Instead of using a two
dimensional lookup table to cover for these variations, here the
polynomial factors themselves are the subject of interpolation.

Each factor is interpolated linearly between 20 �C, 30 �C and
50 �C, leading to a 3�3 one dimensional lookup table for each factor
of the polynomial. The values of the lookup tables are given in
Table 2.

The intended outcome of this method is to change the shape of
the parameter functions without influencing their derivability and
avoiding the complexity of a two dimensional surface function.
Therefore the presented model can be used for Kalman filter types
of estimation [50]. The dotted lines in Fig. 7 represent these inter-
polated functions in 5 �C intervals, only using the linear interpo-
lation of p1 to p10 and the transition points c. For the sake of
completeness however, it must bementioned that due to the lack of
experimental data for 40 �C the polynomials and transition points
between 30 �C and 50 �C had been manually tweaked.

8. Model validation

To test the model for real life applications another OXIS pouch

Fig. 8. Battery model and measured terminal voltage for 23 �C. Subplots A1 and A2 show ’zoomed’ sections for additional detail.
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cell is discharged under different conditions. As main changes to
the previous measurements used for the model identification (i) a
more realistic current profile is applied, based on the NEDC drive-
cycle, (ii) the temperature controlled environment is neglected,
allowing the cell to vary slightly around room temperature (23 �C)
and (iii) different discharge hardware (a Kepco BOP 100-10 MG) is
used. The NEDC drive-cycle is selected because it represents a
realistic user scenario but also contains some level of abstraction
[51,52]. The results of the Simulink model [53], together with the
measured battery terminal voltage is shown in Fig. 8. There is no
energy recovery while braking and the chosen currents are rela-
tively small. Nevertheless the average discharge power is
with 0.467 W an order of magnitude larger than the mixed pulse
discharge test (0.147 W).

The model accuracy was quantified in terms of the root mean
square error (RMSE):

RMSE ¼ 1ffiffiffi
n

p
 Xn

i¼1

�
Vt;i � bV t;i

�2!0:5

(47)

Where n is the number of data points, Vt,i is the measured voltage
and bV t;i is the model prediction for the voltage at that point. The
model was found to give an RMSE of 32 mV. This is small compared
to the overall voltage range. Despite the simplifications of only one
RC circuit with neglected current dependencies of Rp, the transient
voltage is represented well during the entire discharge range
(Fig. 8). However, some specific properties of Li-S batteries, as
mentioned in Section 2, enhance themodel error in certain regions.
While the origins of the increasing deviation towards the end of the
high plateau, likely due to the self discharge caused the polysulfide
shuttle effect, are relatively well understood, the reasons the for the
deviations in the low plateau are more unclear. There, mostly the
decreasing voltage and the increased cell resistance are noticeable
(Fig. 8, insets A1 and A2). The explanation for the first is difficult
due to the difficult-to-define value of the open circuit potential.
One observation, noticeable for the tested OXIS cells, is that the
voltage in the low plateau, given enough time, always returns to
approximately 2.1 V when left in open circuit condition. The
behaviour with infinitesimally small (but non-zero) currents
should be close or similar but differs towards the voltage profile of
Fig. 2. Since these small discharge currents can cause the voltage to
decrease towards the end of discharge, the increased error is pre-
sumably caused by the discharge current profile, leaving signifi-
cantly less relaxation time, and the discharge hardware, allowing a
flow of small and unmeasured leakage currents. Since these are also
likely when an electric vehicle is not moving but in the switched on
state, a more practical definition of the OCV, considering these
small currents, might be a solution. The reason for the increased
cell resistance towards the end is likely due to the different current
profile as well but also can be in relation with cell variations.
Nevertheless, the proposed batterymodel, representing the current
understanding of Li-S batteries, shows good quality fit with small
errors for the simplifying assumptions made and can be potentially
used for a Li-S based BMS system.

9. Conclusion

After showing the differences of Li-S batteries to the current Li-
ion ones, the challenges towards an operational model, capable of
predicting the voltage response, capacity and power capability, but
also the degradation are presented. As an initial step to address
some of them, this study proposes a new robust and easy to tune
battery model structure, capable of accounting for differences be-
tween the start and end of a discharge pulse. This ’behavioural’

model, in combination with the PEM identification method, is used
to identify the parameters of a Thevenin equivalent circuit model
for different temperatures. Due to a mixed pulse discharge profile,
the current dependencies of the parameters could also be revealed.
Subsequently, the data is used to create a simplified battery model
with polynomial functions for its parameters, which are interpo-
lated for different temperatures. Despite the rather complex nature
of the Li-S battery, the validation of the simplified model with a
more realistic current profile displays a low estimation error, sug-
gesting that some simplifications in favour for computational- or
modelling-effort are possible. Nevertheless, it is also shown that for
a precise estimation of the terminal voltage Li-S specific properties
like self discharge in the high plateau, the OCV definition in the low
plateau and the current profile dependency of the model parame-
ters should be further investigated. Therefore, our further goals
towards a usable Li-S compatible BMS system are improvements of
the model itself, through implementing self discharge and current
effects, and the application of the model as an observer for state of
charge and state of health estimation. For a usage of these in a
highly demanding environment of an electric vehicle, also the
charge behaviour needs to be investigated.
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