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Apparent stiffening of a graphene nanomembrane
with initial curvature

A. D. Drozdova and J. deClaville Christiansen
Department of Materials and Production, Aalborg University, Fibigerstraede 16,
Aalborg 9220, Denmark

(Received 8 December 2016; accepted 18 April 2017; published online 27 April 2017)

A model is developed for bending of a suspended nanomembrane with account for
interaction between in-plane and out-of-plane deformation modes. It is shown that
the maximum deflection of an initially flat nanomembrane exceeds strongly that of
the nanomembrane with an initial curvature. The effect of defects in the crystalline
structure of a graphene monolayer on deflection of an initially curved nanomem-
brane is studied numerically. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4982797]

I. INTRODUCTION

Experimental investigation of mechanical properties of nanomembranes formed by a crystalline
monolayer or a few layers bridged by adhesion forces has attracted substantial attention in the past
decade, see observations on graphene,1–3 graphene oxide,4,5 reduced graphene oxide,6 molybdenum
disulfide,7 bismuth telluride,8 bismuth selenide,8 and tungsten selenide,9 to mention a few. The
importance of accurate measurements of elastic moduli is explained by the ability of in-plane strains
to modulate electronic band gaps of heterostructures formed by stacks of nanosheets.10,11

In mechanical tests, a membrane with thickness h (of order of 1 nm) is suspended over a cylindrical
cavity with radius a (of order of several µm). Afterwards, a uniform pressure q (or a concentrated
force P in the center) is applied. Deformation of the membrane under load is characterized by its
maximum deflection W (of order of tens to hundreds of nm). Presuming bending to be described
within the Foppl–von Karman model in the membrane regime, the effective deflection δ =W −W0,
where W0 denotes the maximum deflection before loading, is expressed in terms of the external force
(q or P) by means of the approximate equations12

q= 4
σ0

a

( δ
a

)
+

8E
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( δ
a

)3

, P= πσ0a
( δ
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)
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(
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(1)

where σ0 stands for the prestress in the membrane (in-plane tension with the dimension N/m), E is
the 2D elastic modulus (with the dimension N/m), and the coefficient f is a dimensionless function
of Poisson’s ratio ν with the conventional approximation f = (1.049 − 0.146ν − 0.158ν2)

−1
.

Eqs. (1) are asymptotically correct when two conditions are satisfied:13 (i) the energy of
out-of-plane bending is small compared with the energy of in-plane stretching, and (ii) the pre-
stress is small compared with the external load. For a circular membrane under uniform pressure
these conditions read Eh3� qa4 and σ3

0�E(qa)2. Although the above inequalities are fulfilled
in bending tests on nanomembranes, treatment of experimental data reveals a counter-intuitive
stiffening (an apparent increase in the elastic modulus) of a monolayer membrane induced by
the growth of concentration of point and linear defects under ion bombardment,14 which contra-
dicts the conventional viewpoint that defects in a crystalline lattice induce softening of its elastic
response.15–18
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The defect-induced stiffening of a suspended membrane may be attributed to the fact that the
membrane is not flat before loading, but contains a number of wrinkles and ripples.19 The presence
of wrinkles and ripples in 2D nanomembranes is confirmed by observations reported in Refs. 4,
20, 21, to mention a few. According to, Ref. 22 an increase in concentration of point defects under
irradiation results in (i) a reduction of the in-plane elastic modulus and (ii) an increase in the initial
out-of-plane deflection of a defective lattice. It can also lead to development of in-plane strains in a
nanomembrane.23 The account for initial deflection contradicts, however, Eqs. (1) that are grounded
on the assumption that the out-of-plane bending energy of a nanomembrane is negligible compared
with the energy of in-plane stretching. The objective of this study is to demonstrate that (i) the force–
deflection diagram of a nanomembrane is strongly affected by its initial curvature even under the
classical assumption that the bending rigidity is negligible compared with a properly normalized
Young’s modulus, and (ii) the growth of the initial curvature of a monolayer membrane may explain
its apparent stiffening reported in Ref. 14.

II. MODEL

For definiteness, we focus on cylindrical bending of a nanomembrane with clamped edges sus-
pended over a trench with width l under the action of uniform pressure q (this setup was studied
experimentally in Refs. 5 and 24). To simplify the analysis, we disregard prestress in the membrane
and presume its deformation to depend on longitudinal coordinate x only. The mechanical energy per
unit width of a rectangular membrane reads25

U =
∫ l

2

− l
2

1
2

Eε2dx +
∫ l

2

− l
2

1
2

D(κ − κ0)2dx, (2)

where D is the bending rigidity with the dimension N·m,

ε =
du
dx

+
1
2

(dw
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)2

(3)

denotes tensile strain, κ = d2w/dx2 stands for the curvature of the membrane, and u, w are the in-plane
and out-of plane displacements that satisfy the boundary conditions

u
(
±

l
2

)
= 0, w

(
±

l
2

)
= 0. (4)

The novelty of our approach consists in the explicit account for the initial curvature κ0 in Eq. (2).
This quantity is treated as a constant, and it serves as a measure of initial deflection of a nanomem-
brane suspended on a substrate. The influence of ripples and wrinkles in a suspended membrane
is disregarded as the maximum initial deflection exceeds their amplitude by at least an order of
magnitude.4

As it is commonly accepted for nanomembranes,26 E and D are treated as independent parameters
that obey the condition

ε =
( D

ql3

) 1
2 (ql

E

) 1
6

� 1. (5)

Equating the rate of changes in the mechanical energy U to the work produced by pressure q per
unit time and unit width, we arrive at (i) the stress–strain relation

σ =Eε , (6)

where σ stands for the in-plane stress (tensile force) in the membrane, (ii) the equilibrium equations

dσ
dx
= 0, D

d4w

dx4
− σ

d2w

dx2
= q, (7)

and (iii) the boundary condition
d2w

dx2
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±

l
2

)
=−K (8)
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with K =−κ0. Eqs. (7) and (8) imply that for a positive κ0, the initial shape of the membrane is
concave, in accord with AFM images reported in Refs. 4,12,14,20,21,24.

It follows from the first equation in Eq. (7) that the stress σ is independent of x. The solution of
the other equation in Eq. (7) with boundary conditions (4) and (8) is given by

w =
K

µ2
+

ql2

σ

(1
8
−

x2

2l2
−

1

(µl)2

)
+

( q
σ
− K

) cosh(µx)

µ2 cosh(µl
2 )

(9)

with

µ=

√
σ

D
. (10)

According to Eq. (9), the maximum deflection of the membrane W = w(0) reads

W =
l2

8
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)2}
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where z= µl. It follows from Eqs. (3) and (6) that
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2
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)2

=
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E
.

Integration of this equation with the boundary condition (4) results in
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E
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∫ l
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2
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Combination of Eqs. (9) and (12) yields
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Using Eqs. (5), (10), we present this equation as follows:
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We search for a solution of Eq. (13) in the form

z=
1
ε

(
b0 + b1ε + b2ε

2 + . . .
)
, (14)

where bm are coefficients to be found. Substitution of expression (14) into Eq. (13) implies that b0 is
a solution of the nonlinear equation

b6
0 =

1
24

+
D

ql3
(Kl) +

1
4

( D

ql3

) 3
2 ( E

ql

) 1
6

(Kl)2b0. (15)

The other coefficients in Eq. (14) are determined in a similar manner by using the Maclaurin
expansions of the functions Fm(z) at z=∞.
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Eqs. (10) and (11) imply that the maximum deflection of the membrane reads

W =
ql4

8Dz2

{ [
1 −

( sinh( z
4 )

z
4

)2
1

cosh( z
2 )

]
+ 8

D

ql3
(Kl)

[
1 −

1
cosh( z

2 )

]}
.

Inserting expression (14) into this equality and taking the limit as ε→ 0, we find that

W
l
=

1

8b2
0

(ql
E

) 1
3 [

1 + 8
D

ql3
(Kl)

]
. (16)

When K = 0, Eqs. (15) and (16) result in the conventional formula

W̃ = q̃
1
3 , (17)

where W̃ =W/W∗, q̃= q/q∗, and the characteristic deflection W∗ is connected with the characteristic
pressure q∗ by the formula

W∗
l
=

1
4

(3q∗l
E

) 1
3

. (18)

In the general case K > 0, Eqs. (15) and (16) yield

W̃ =
1

2b2
0

( q̃
3

) 1
3 (

1 +
8Z
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)
, b6
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1

24
+
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3

1
6 AZ

3
2

8q̃
5
3

b0 (19)

with

A= 2
( E
3q∗l

) 1
6

(Kl)
1
2 , Z =

D

q∗l3
(Kl). (20)

III. NUMERICAL SIMULATION

Given A and Z, Eq. (19) is solved by the Newton-Raphson method. Results of simulation are
depicted in Figures 1 and 2, where the dimensionless maximum deflection δ̃ = W̃ − W̃0 (W̃0 stands
for W̃ at q̃= 0) is plotted versus dimensionless pressure q̃. These figures show that for a fixed q̃, δ̃
decreases monotonically with Z (which means that the growth of initial curvature K results in an
apparent stiffening of a membrane). For a given Z, the reduction in δ̃ is weakened with an increase
in A, that is with the growth of elastic modulus E. In simulation, parameter Z is changed in a rather
wide interval because the bending rigidities of a graphene monolayer D determined by means of

FIG. 1. Maximum deflection δ̃ versus pressure q̃. Solid line: solution of Eq. (17). Symbols: results of simulation with A = 2
and various Z.
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FIG. 2. Maximum deflection δ̃ versus pressure q̃. Solid line: solution of Eq. (17). Symbols: results of simulation with A = 10
and various Z.

the density functional theory (0.83 to 1.62 eV) and calculated within the Kirchhoff model (22.3 eV)
differ by more than an order of magnitude.25

Figures 1 and 2 reveal the effect of initial curvature K =−κ0 on the maximum deflection of a
nanomembrane when the quantities E and D are treated as independent parameters.26

To assess how the maximum deflection evolves with elastic modulus when D and E are connected
by the conventional relation D= 1

12 Eh2 (we disregard Poisson’s ratio and recall that E stands for the
2D elastic modulus), Eqs. (19), (20) are solved for a monolayer membrane made of reduced graphene
oxide with the Young’s modulus 0.82 TPa16 and thickness h = 1.2 nm27 suspended over a trench
with width l = 1 µm (this value equals the diameter of a circular membrane used in experiments16).
We set q∗ = 0.02 MPa and determine the initial curvature from the formula for a circular segment
K = 8W0/(l2 +4W2

0 ), where the maximum deflection before application of pressure reads W0 = 20 nm
in accord with Ref. 4.

Evolution of the maximum deflection δ̃ with pressure q̃ is illustrated in Figure 3, where results of
simulation are depicted for a non-damaged membrane with K = 0, a non-damaged membrane with the
non-zero initial curvature K, and damaged membranes with the non-zero K (to account for creation of

FIG. 3. Maximum deflection δ̃ versus pressure q̃. Unfilled circles: undamaged membrane with the zero initial curvature. Filled
circles: undamaged membrane with the non-zero initial curvature. Other symbols: damaged membrane with the non-zero initial
curvature and various degrees of damage β.
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FIG. 4. Maximum deflection δ versus pressure q̃. Symbols: results of simulation for a damaged membrane with β = 0.9 and
various maximum initial deflections W0 nm.

defects, the Young’s modulus E is replaced with βE, where β = 0.1, 0.2, and 0.5). It is worth noting
the coincidence of our results with those reported in Ref. 14: the maximum deflection of the damaged
membrane with β = 0.5 equals 0.82 of that of the non-damaged membrane with the zero initial cur-
vature. Figure 3 demonstrates that for each pressure q̃ under consideration, the maximum deflection
δ̃ is reduced substantially due to the presence of initial curvature (the latter is observed as an apparent
stiffening). Damage induced by irradiation results in weakening of the membrane (an increase in
its maximum deflection δ̃). However, even when the membrane with a non-zero K is severely dam-
aged (β = 0.1), its maximum deflection remains lower than that of a non-damaged membrane with
K = 0.

To assess the effect of initial curvature on the maximum deflection of a nanomembrane, Eqs. (19)
and (20) are solved numerically with the above parameters for a weakly damaged membrane (β = 0.9)
with various initial deflections W0 ranging from 1 to 30 nm. Results of simulation are depicted in
Figure 4 which demonstrates that an increase in the initial curvature K leads to a reduction in the
maximum deflection δ̃ for all dimensionless pressures q̃.

IV. CONCLUSIONS

A simple model is developed for the analysis of cylindrical bending of a nanomembrane that
takes into account interaction between in-plane and out-of-plane deformation modes. The in-plane
elastic modulus E and bending rigidity D are treated as independent parameters that obey condition
(5). An advantage of the proposed approach is that it allows bending of a nanomembrane with an
initial curvature to be evaluated by means of semi-analytical Eq. (19) with only two parameters A
and Z.

The effect of initial curvature on the maximum deflection of a membrane is studied numerically.
It is demonstrated that an increase in initial deflection (within the range observed in experiments)
induces a pronounced decay in the maximum deflection of a nanomembrane under pressure. Results
of simulation show that the maximum deflection of an initially flat monolayer membrane with the 2D
elastic modulus E exceeds that of an initially curved membrane with a smaller modulus βE, where
β < 1 accounts for damage in the crystalline structure of a graphene monolayer caused by formation
of defects.
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