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Abstract

Information-theoretic methods are vital in the engineering of wireless commun-
ication systems because they provide approximations for and bounds on the
maximum rate at which reliable communication can happen over noisy chan-
nels. In conventional information-theoretic analyses, the Shannon capacity is
the key quantity used to approximate the maximum coding rate. It is, how-
ever, well-understood that the Shannon capacity can only be approached under
some simplifying assumptions, including long blocklengths and a common un-
derstanding, at the encoder and the decoder, of what is being transmitted and
when the transmission takes place. Motivated by the rising demand for low-
latency communications and machine-type services featuring short packets, a
vast amount of research obtaining refined approximations for the maximum
coding rate, which also hold for shorter blocklengths and fixed error proba-
bilities, have appeared. One of the key results is that the back-off from the
Shannon capacity due to short blocklengths is tightly characterized by a chan-
nel parameter known as the channel dispersion.

In this thesis, we first consider a simple model of a broadcast communica-
tion system with short messages to a set of users. The transmitter encodes the
messages into packets which are sent consecutively in time. Using refined ap-
proximations of the maximum coding rate, we investigate the trade-off between
the total transmission time and the average power consumption at the users.
It turns out that this trade-off is nontrivial when the messages are short. The
key idea is that multiple messages can be jointly encoded to leverage the higher
achievable rates of communication for longer blocklengths. Based on this prin-
ciple, we devise protocols that achieve different points on the trade-off curve
by adjusting the number of messages that are jointly encoded. In addition, we
also provide a lower bound on this trade-off curve that allows us to quantify
the impact of control information.

Next, we investigate the potential of feedback in achieving a higher rate
of communication at low latency in various setups. Although it is well-known
that feedback does not improve the capacity in the point-to-point setup, an
important positive result is that the channel dispersion is zero, provided that
the blocklength is allowed to be of variable length and feedback is available; a
result known as zero-dispersion. This implies that the Shannon capacity can
be approached for much shorter blocklengths than in the no-feedback setup.
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Motivated by this result, we consider one of the simplest multiuser channels,
the common-message broadcast channel, in a feedback setup. We show that
feedback can improve the speed at which the maximum coding rate approaches
the capacity, but that the improvement greatly depends on the amount of
available feedback and whether variable-length codes are used. Specifically, we
consider three different setups for the common-message broadcast channel: 1)
the setup with variable-length coding and a one-bit feedback signal from each
decoder used to indicate end-of-transmission, 2) the setup with variable-length
coding and full feedback, and 3) the setup with fixed-blocklength coding and
full feedback. In the first case, we show that zero-dispersion is not achievable;
this is in contrast to the point-to-point setup where stop-feedback is sufficient
to achieve zero-dispersion. In the second case, when full feedback is available,
it turns out that zero-dispersion is achievable. Finally, in the third case, we
find that the channel dispersion is halved compared to the setup with no feed-
back. In all cases, we provide nonasymptotic upper and lower bounds for the
maximum coding rate that are computable for certain simple channels. Our
results confirm that feedback is beneficial for the common-message broadcast
channel.

Lastly, we consider a block-fading channel in a setup where the receiver
feeds back outdated channel state information. For this setup, we consider a
class of repetition-type protocols that generalizes the hybrid automatic repeat
request protocol by allowing rate adaptation based on outdated channel state
information. In particular, we show that outdated channel state information is
beneficial in achieving a higher throughput under an average latency constraint.
For the setup at hand, we also prove that the protocol is optimal.



Resumé

Informationsteoretiske metoder er afgørende i udviklingen af trådløse kommu-
nikationssystemer, fordi de muliggør approksimation af den højest mulige kod-
ningsrate, som pålidelig kommunikation kan foregå ved. I konventionelle anal-
yser anvendes Shannon-kapaciteten typisk som en sådan approksimation på
trods af velkendte svagheder som inkluderer, at den kun er præcis hvis der
sendes store datamængder, hvis modtageren er perfekt synkroniseret med af-
senderen, og hvis både sender og modtager har en fælles forståelse for hvad der
kommunikeres. Motiveret af den øgede efterspørgsel for kommunikation med
lav latenstid og machine-type tjenester, som kræver kommunikation af mange
små datapakker, er der de seneste år publiceret en række resultater som mulig-
gør estimering af den maksimale kodningsrate for korte bloklængder. Et af de
afgørende resultater viser, at differensen mellem Shannon-kapaciteteten og den
maksimale kodningsrate er proportionel med kvadratroden af en kanalafhængig
parameter kaldet kanaldispersionen.

I denne afhandling undersøges hvilke konsekvenser de forfinede estimater af
den maksimale kodningsrate har i design af visse trådløse kommunikationssys-
temer. Mere specifikt betragter vi et flerbruger-kommunikationssystem, hvor
en sender transmitterer beskeder til en række modtagere. For dette setup op-
står et trade-off mellem den samlede transmissionstid og det gennemsnitlige
energiforbrug ved den enkelte modtager. Der designes protokoller, som opnår
forskellige punkter på denne trade-off kurve, og der bevises en nedre grænse for
trade-off kurven, som gør det muligt at kvantificere betydningen af kontrolin-
formation.

Herefter undersøges potentialet af feedback i søgen efter højere kodningsrater
ved lav latenstid. På trods af Shannons velkendte resultat om at Shannon-
kapaciteten ikke forbedres af feedback i punkt-til-punkt kommunikation, viser
et resultat, at kanaldispersionen er nul hvis feedback er tilgængelig og hvis
bloklængden tillades at være en tilfældig variabel. Motiveret af dette resultat,
undersøger vi kanaldispersionen for en simpel flerbruger-kanalmodel. For denne
kanalmodel bevises at feedback kan forbedre kanaldispersionen for den maksi-
male kodningsrate. Vi undersøger flere forskellige setupper: 1) setuppet hvor vi
tillader variabel-længde kodning og stop-feedback, 2) setuppet hvor vi tillader
variabel-længde kodning og feedback og 3) setuppet med fast bloklængde og
feedback. I det første setup bevises, at kanaldispersionen er strengt positiv;
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et resultat som er i kontrast til nul-dispersionsresultatet for punkt-til-punkt
kanalen. For det andet setup bevises, at kanaldispersionen er nul, mens vi for
det tredje setup viser, at kanaldispersionen er halveret sammenlignet med det
tilsvarende setup uden feedback. I alle tilfælde beviser vi ikke-asymptotiske
øvre og nedre grænser for den maksimale kodningsrate, som kan plottes for
visse kanaler. Overordnet viser resultaterne, at feedback er gavnlig for den
undersøgte flerbruger-kanalmodel, men at mængden af feedback er afgørende.

Endelig undersøger vi en block-fading kanal i et setup, hvor modtageren
sender forsinket kanalinformation tilbage til senderen under transmissionen.
For dette setup introducerer vi en klasse af protokoller, som generaliserer hy-
brid automatic repeat request protokollen. Mere specifikt viser vi, at forsinket
kanalinformation giver betydelig bedre throughput hvis protokollen optimeres
under en begrænsning af gennemsnitslatenstiden. Derudover beviser vi også,
at protokollen er optimal.
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Chapter 1

Introduction

1.1 Motivation

During the past decade, wireless systems have undergone an astounding evo-
lution that has fundamentally changed our expectations to our mobile devices.
Yet, most predictions point towards a continued exponential growth in the de-
mands for higher data rates, higher volumes of mobile traffic, lower latency,
and higher reliability. By 2021 (relative to 2015), Ericsson predicts a tenfold
increase in the volume of mobile data traffic and about 1.5 billion subscriptions
for cellular machine-type (MTC) devices [1]. Mobile video traffic is expected to
constitute 70% of all mobile data traffic and to increase by a factor of about 14
compared to 2015. Similar impressive numbers are given by Nokia Bell Labs,
predicting that the data plane traffic will increase by a factor of between 61
and 115 while the control plane traffic will increase by factor of between 31 and
127 by 2025 (relative to 2015) [2]. The control plane traffic will be significantly
affected by a massive number of MTC devices.

The fifth generation (5G) cellular networks are expected to meet these de-
mands [3]. 5G will be engineered with diverse applications in mind [4, 5] such
that it can simultaneously serve cellular users with demands for low latency
and extremely high data rates, a massive number of MTC devices, and devices
that only require low data rates but ultra-high reliability. These improvements
over 4G will partly be attained by increasing the number of antennas, by using
carrier frequencies in the microwave band, and by increasing the density of
base stations [3]. In order to design such systems, however, it is vital to have a
rich theory that allows engineers to approximate the performance by easy-to-
compute formulas. Among the most important mathematical tools that allow
for this is the Shannon capacity introduced by Claude E. Shannon in 1948 [6].
First and foremost, Shannon defined the fundamental quantities of entropy
and mutual information that were used to define and quantify information.
He demonstrated that the rate at which information can be communicated
over a noisy channel is bounded from above by the Shannon capacity. He also
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Chapter 1. Introduction

showed that it is possible to reliably communicate1 with rates arbitrarily close
to this upper bound. The work of Shannon has had a profound impact on
current communication systems. It has guided coding theorists towards con-
structions of error-correcting codes that achieve coding rates arbitrary close
to the fundamental limits, but it has also allowed communication engineers to
optimize the performance of wireless systems using easy-to-compute formulas
for achievable transmission rates. One of the significant limitations of tradi-
tional information-theoretic analyses based on the Shannon capacity is that
the fundamental limits are only approached for long blocklengths2. This im-
plies that the information-theoretic analyses may provide few or even incorrect
insights for wireless systems with tight latency constraints. This limitation
is important since the success of numerous future applications such as traffic
safety, traffic efficiency, smart grid, e-health, and efficient industrial communi-
cations crucially rely on the ability to serve a massive number of MTC devices
transmitting short packets with high demands to reliability and latency [7].

The limitations of the Shannon capacity have led researchers to investigate
the maximum coding rate, the largest rate at which one can communicate over a
given channel with a fixed blocklength n and an error probability not exceeding
ε. The maximum coding rate is a natural metric for assessing the achievable
rates for short packet communications. Unfortunately, the computation of it is
a combinatorial problem that, in general, has been shown to be NP-hard [8].
Since the computation of the maximum coding rate is difficult, a vast amount
of research has attempted to estimate it by using bounds and approximations
[9–13]. For a large class of channels, it turns out that the maximum coding
rate is closely approximated by the Shannon capacity subtracted a back-off
which is proportional to 1/

√
n. The information-theoretic problem is to find

the coefficient in front of the 1/
√
n term that we shall call the second-order

term. The second-order term usually depends on the error probability and on
a channel-dependent parameter called the channel dispersion. By numerically
evaluating upper and lower bound for the maximum coding rate, it has been
shown in [10], that a second-order approximation of the maximum coding rate
is accurate for many channels of practical interest, including the additive white
Gaussian noise (AWGN) channels and discrete memoryless channels (DMCs).
In this thesis, we shall be concerned with results of this type, the implications
of them, and the potential of feedback to improve the speed at which the
maximum coding rate approaches the Shannon capacity.

1By reliable communication at a rate R, we mean that for any fixed error probability
ε ∈ (0, 1), there exists a blocklength n large enough so that communication can happen at a
rate R with error probability not exceeding ε.

2Throughout this thesis, we only consider discrete-time channels, meaning that the block-
length is an integer representing the number of channel uses that a transmission is carried
out over.
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1.2. Preview of Results

1.2 Preview of Results

With the purpose of showing the consequences of the refined approximation of
the maximum coding rate and of showing the impact of control information, we
first investigate a simple model of a wireless system broadcasting short mes-
sages to several users. To capture the impact of control information, often
neglected in information-theoretic analyses, we allow the sizes of the messages
to be short, random, and possibly empty. We analyze the setup using refined
approximations of the maximum coding rate and identify a trade-off that is
not revealed by analyses based on the Shannon capacity alone. To serve the
users, we need to carefully think about how the control information is commu-
nicated and how the messages are encoded. Specifically, in the broadcast setup,
multiple messages can be encoded jointly to benefit from the higher achievable
coding rate when communicating with longer blocklengths. This implies, how-
ever, that all users need to receive and decode longer packets, which increases
the power spend receiving packets and the decoding complexity. We devise
protocols that achieve different points on the trade-off curve.

We shall next consider the potential of feedback to improve the speed at
which the maximum coding rate converges to the Shannon capacity. Feedback
does not increase the Shannon capacity [14], but recent results have shown that
the second-order term of the maximum coding rate with feedback is zero, pro-
vided that feedback is available and the blocklengths are allowed to be of vari-
able length [15]. A particularly important aspect of this result is that this zero-
dispersion result can be achieved by using only stop-feedback, i.e., the decoder
only feeds back a stop signal to the encoder to indicate end-of-transmission.
Zero-dispersion results are interesting because they imply that the maximum
coding rate converges much faster to the Shannon capacity and, as a result,
that it is often well-approximated by the Shannon capacity. The result thus
indicates that feedback may be highly beneficial in the communication of short
packets. This is not surprising considering the close correspondence between
variable-length codes with stop-feedback and hybrid automatic repeat request
(HARQ) protocols, a type of repetition protocols that are used to improve
throughput in current wireless communication systems [16, Ch. 12]. Indeed, an
HARQ protocol is virtually a variable-length code with stop-feedback, where
the stop-feedback can only be fed back at a few prespecified times. A central
question in this thesis is whether the zero-dispersion result, under feedback
and variable-length coding, continues to hold in a multiuser setup. Specifically,
we investigate one of the simplest multiuser channels, the common-message
broadcast channel, with feedback in order to understand if feedback can im-
prove the fundamental limits compared to the no-feedback setup. In this setup,
we show that full feedback and blocklengths of variable length are sufficient for
the second-order term to disappear, but that the second-order term is strictly
positive when variable-length coding with stop-feedback is employed. Com-
municating a common-message with low-latency over a broadcast channel is a
problem that appears naturally in practical scenarios, e.g., in live streaming of
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Chapter 1. Introduction

video and audio to multiple users.
In the point-to-point setup, it has long been known that HARQ-IR can

significantly improve the throughput of wireless systems in environments with
fading [17]. The conventional HARQ protocol is based on a one-bit feedback
signal in each transmission slot, indicating acknowledgement (ACK) or nega-
tive acknowledgement (NACK), and it does not use channel state information
available at the encoder. In many systems, however, it is viable to assume that
the decoder can feed back channel state information either before or during a
transmission. For that reason, several works have studied possible throughput
gains under various assumptions of fading, availability of channel state infor-
mation, rate adaptation, and power adaptation [18–23]. We investigate a setup
in which the fading realizations remain constant throughout each transmission
slot, but change independently from slot to slot. We assume that the decoder
feeds back the channel state information (CSI) such that the encoder has de-
layed CSI. For this setup, we analyze a simple repetition-type protocol with a
rate adaptation scheme and prove that this protocol is optimal when optimized
under an average latency constraint.

1.3 Thesis Outline

This thesis is written in two parts. The first part contains introductory chap-
ters, which expose the reader to relevant previous work and describe some of
the information-theoretic tools that we shall apply in the thesis. It also con-
tains a summary of the scientific contributions of the thesis and an outlook on
future work. The second part is composed of four separate scientific papers,
which either appear in or are submitted to scientific journals. The layout of
these papers has been revised to improve readability.

1.4 Notation

This section describes the notation used in Part I. Uppercase, lowercase, and
calligraphic letters denote random variables, deterministic quantities, and sets,
respectively. Boldface letters indicate vectors and T denotes the transpose. For
a tuple (X1, . . . , Xn), we shall use the short-hand notation Xn. The set of real
numbers is denoted by R and the set of positive real numbers by R+. We let
Q(·) be the complementary cumulative distribution function of the standard
Gaussian random variable and let Q−1(·) be its inverse function. For two
functions f(·) and g(·), we mean by f(x) = O(g(x)) and f(x) = o(g(x)), as
x → ∞, that limx→∞ |f(x)/g(x)| ≤ ∞ and that limx→∞ |f(x)/g(x)| = 0,
respectively.

For random variables (X,Y ) ∈ X × Y with finite support, defined by the
distribution PX and the conditional distribution PY |X , we let PX×PY |X be the
joint distribution of (X,Y ), and PXPY |X be the distribution of Y induced by
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1.4. Notation

PX , i.e., the marginal distribution of Y . We let P[·], E[·], and Var[·] denote the
probability of a statement, expectation, and variance. Sometimes it is desirable
to specify the distribution that the expectation or the variance is with respect
to; this is specified by writing the distribution as a subscript of the operator,
e.g., EPX

[·] and VarPX
[·]. We use the standard information-theoretic notations

for relative entropy and mutual information from [24]. Specifically, for two
distributions P and Q on a finite-cardinality set X , we let

D(P ‖ Q) ,
∑
x∈X

P (z) log2
P (x)

Q(x)
(1.1)

be the relative entropy between P and Q. For conditional distributions PY |X
and QY |X , and a distribution PX on X , we define the conditional relative
entropy by

D(PY |X ‖ QY |X |PX) ,
∑
x∈X

PX(x)D(PY |X=x ‖ QY |X=x). (1.2)

Finally, the mutual information is defined by

I(PX , PY |X) , D(PY |X ‖ PXPY |X |PX). (1.3)

7
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Chapter 2

Information-Theoretic Limits
of Communication

The results obtained in this thesis rely on fundamental information-theoretic
methods and results. In this chapter, we provide relevant background know-
ledge for the appended papers. We shall first summarize the purpose of codes,
achievability bounds, converse bounds, and asymptotic expansions for the point-
to-point setup. In the passing, we shall introduce the meta-converse theorem,
which is used to prove converse bounds in [Paper B] and [Paper C]. Then, we
shall introduce feedback communications, variable-length coding, the common-
message broadcast channel, and the HARQ-IR protocol. Throughout the chap-
ter, we adopt notation similar to [10].

2.1 Channel Codes, Capacity, and Bounds

In his 1948 paper, Shannon [6] investigated an abstraction of a noisy point-
to-point communication channel and proved that the maximum rate at which
one can reliably communicate is given by the so-called Shannon capacity. In
his setup, depicted in Fig. 2.1, the message is modeled by a random variable
J that is uniformly distributed on the set {1, . . . , 2nR}, where R represents
the rate of communication. The transmitter encodes the message J into an
n-dimensional vector Xn, which takes on values from an input alphabet X ,
using an encoding function f : {1, . . . , 2nR} 7→ Xn. The receiver obtains a
noisy version Y n ∈ Yn of Xn after being fed through a memoryless channel1
PY |X and the objective of the decoder g : Yn 7→ {1, . . . , 2nR} is to make a best
estimate Ĵ of J given only the observed channel outputs Y n. The encoding and
decoding functions collectively define a fixed-blocklength code, which is called

1By a memoryless channel, we mean that PY n|Xn (yn|xn) factorizes as
∏n

i=1 PY |X(yi|xi).

9



Chapter 2. Information-Theoretic Limits of Communication

ENC DEC

Fig. 2.1: The point-to-point setup. The message is denoted by J , the encoding function f
by ENC, the memoryless channel by PY |X , and the decoding function g by DEC.

an (n,R, ε)avg fixed-blocklength code if the average error probability constraint

P[J 6= g(Y n)] ≤ ε (2.1)

holds. Here, the subscript avg denotes that the error probability does not
exceed ε when averaged over the message J . We shall term a code satisfying
the more stringent maximum error probability constraint

max
j∈{1,...,M}

P[J 6= g(Y n)|J = j] ≤ ε (2.2)

as an (n,R, ε) fixed-blocklength code. The encoding and decoding functions are
usually deterministic functions, but can in certain cases be randomized map-
pings. If both the encoding and decoding functions are functions of a common
random variable, the code is called a randomized code (e.g., for variable-length
codes with feedback described in Section 2.3) [25].

For the AWGN channel, we have that X = Y = R. In this case, one needs
a power constraint on Xn in order to prevent transmission at infinite power
leading to infinite capacity. Typically, one uses the following short-term power
constraint [26, Eq. (3.7.14)]

n∑
i=1

X2
i ≤ nP (2.3)

where P is the signal power. In the remainder of this chapter, unless other-
wise noted, we only discuss DMCs for which X and Y are finite-cardinality
alphabets.

The maximum coding rate using a fixed-blocklength code with blocklength
n and maximum error probability not exceeding ε is given by

R∗(n, ε) , max
{
R : there exists an (n,R, ε) fixed-blocklength code

}
.(2.4)

Under the average error probability formalism, we shall use the similar notation
R∗avg(n, ε) and observe that R∗avg(n, ε) ≤ R∗(n, ε) because an (n,R, ε) fixed-
blocklength code is also an (n,R, ε)avg fixed-blocklength code. By analyzing
R∗(n, ε) in its asymptotic limits, Shannon [6] and Feinstein [27] demonstrated
that

C , lim
ε→0

lim
n→∞

R∗(n, ε) = sup
P∈P(X )

I(P, PY |X). (2.5)

Here, I(P, PY |X) denotes the mutual information of the channel PY |X with
input distribution P and P(X ) denotes the set of all distributions on X . The
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2.1. Channel Codes, Capacity, and Bounds

distribution P ∗ maximizing (2.5) is called the capacity-achieving input dis-
tribution (CAID), and it is assumed to be unique to simplify the treatment.
We shall also use the capacity-achieving output distribution (CAOD), which is
the output distribution P ∗Y induced by P ∗, i.e., we have that P ∗Y , P ∗PY |X .
A proof of (2.5) consists of an achievability part and a converse part. In the
achievability part, one needs to show that, for every ε > 0 and for every R < C,
there exists a sequence of (n,R, ε) fixed-blocklength codes for all sufficiently
large n. For the converse part, one needs to show that every sequence of fixed-
blocklength codes with error probabilities converging to zero must have a rate
smaller than or equal C.

Information-theoretic proofs of the achievability part conventionally rely
on typical sequences and the so-called random-coding argument [24, p. 132],
a specific instance of the probabilistic method [28]. In recent years, how-
ever, there has been a trend towards separating the asymptotic analysis from
upper and lower bounds on R∗(n, ε) [10, 29]. More precisely, achievability
and converse bounds can be viewed as functions R(n, ε) and R(n, ε) satisfying
R(n, ε) ≤ R∗(n, ε) ≤ R(n, ε) for all n ∈ N and ε ∈ (0, 1). The asymptotic analy-
ses of R(n, ε) and R(n, ε) aim at analyzing the behavior of these functions in the
limit n→∞. There are some significant advantages of this separation [10, 29]:

• Information-theoretic techniques are mostly used in the derivation of up-
per and lower bounds on R∗(n, ε), while the asymptotic analysis of the
bounds mostly rely on asymptotic results from probability theory, such
as the laws of large numbers, central limit theorems, and tools from large
deviations theory.

• The upper and lower bounds on R∗(n, ε) are useful on their own and are
useful to assess the accuracy of approximations of R∗(n, ε).

Most achievability bounds in literature are proved using either Shannons
random-coding argument or Feinsteins maximal-coding argument [27]. The for-
mer approach provides a lower bound on R∗avg(n, ε) while the latter approach
gives a lower bound on R∗(n, ε). To show the existence of an (n,R, ε)avg code
using the random-coding argument, one constructs a set of codes, say C, with
blocklength n and with 2nR codewords and defines a distribution PC on C.
Now, suppose that it can be shown that the average error probability of the
codes in C, when also averaged with respect to PC , is smaller than ε. Then, the
random-coding argument states that there must exist at least one code in C
with average error probability smaller than ε. The key point is that C and PC
can be chosen to exhibit certain symmetries that simplifies analysis. Feinsteins
argument [27] is fundamentally different. Here, the codebook is constructed in
an iterative manner. More specifically, the arguments start with a codebook
including only a single codeword. Codewords are then added to the codebook
progressively until the maximum error probability of the codebook exceeds ε.
The key advantage of Feinsteins argument is that one proves the existence of
a code under the maximal error probability constraint in (2.2), whereas Shan-
nons random-coding argument only shows the existence of a code with respect
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Chapter 2. Information-Theoretic Limits of Communication

to the average error probability in (2.1). As discussed in Section 2.4, Feinsteins
maximal-coding argument is also important in the analysis of common-message
broadcast channel.

Recently, Polyanskiy et al. [10] established multiple novel achievability
bounds, including the random-coding union (RCU) bound, the dependency-
testing (DT) bound, and the κβ-bound. The RCU and DT bounds are both
based on random-coding argument while the κβ-bound can be considered a
strengthened version of Feinsteins argument. The bounds can be evaluated
numerically for fixed values of n and ε for different classes of channels and are
among the strongest nonasymptotic achievability bounds.

To prove upper bounds on R∗(n, ε), the simplest approach is based on Fano’s
inequality [24, Lem. 3.8]. This approach is sufficient to prove so-called weak
converse bounds, meaning that any sequence of fixed-blocklength codes with
fixed rate R and with average error probability converging to zero as n → ∞
must satisfy R ≤ C. Wolfowitz managed to strengthen this result for DMCs
by proving a strong converse result stating that [30]

lim
n→∞

R∗(n, ε) ≤ C (2.6)

for every ε ∈ (0, 1). The strongest known converse bound is the meta-converse
theorem [10, Th. 27], which is closely related to binary hypothesis testing.
Before stating the meta-converse theorem, following [10], we shall introduce
the Neyman-Pearson function, which characterizes the optimal performance of
a binary hypothesis test. More specifically, given a space W and distributions
P and Q on the space W, a binary hypothesis test is represented by a random
transformation PZ|W : W 7→ {0, 1} that outputs Z = 0 if the test chooses Q,
and outputs Z = 1 if the test chooses P . The optimal performance of a binary
hypothesis test is characterized by the function [10, Eq. (100)]

βα(P,Q) , min
PZ|W :

EP [PZ|W (1|W )]≥α

EQ
[
PZ|W (1|W )

]
(2.7)

Here, the minimum is with respect to all random transformations PZ|W :W 7→
{0, 1} satisfying the constraint. The Neyman-Pearson function represents the
smallest type-II error probability subject to a constraint on the type-I error
probability. If the distributions P and Q are equal, we have that βα(P,Q) = α
while, if P and Q are well-separated distributions, βα(P,Q) is close to zero.

Theorem 1 (meta-converse theorem, Th. 27 in [10]). Every (n,R, ε)avg
fixed-blocklength code satisfies

2nR ≤ sup
PXn

inf
QY n

1

β1−ε(PXnY n , PXn ×QY n)
. (2.8)

Here, the supremum with respect to PXn is over all distributions on Xn and
the infimum with respect to QY n is over all distributions on Yn.
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2.2. Asymptotic Expansions

The meta-converse theorem can be loosened to virtually all other known con-
verse bounds [10, Sec. III.G]. For example, an application of the following
inequality [10, Eq. (106)], which follows from the Neyman-Pearson lemma,

β1−ε(P,Q) ≥ sup
γ>0

1

γ

(
P

[
dP

dQ
< γ

]
− ε
)

(2.9)

yields the converse bound

R∗avg(n, ε) ≤
1

n
sup
PXn

{
λ− log

(
P

[
log

dPY n|Xn

dQY n

< λ

]
− ε
)}

(2.10)

which holds for every distribution QYn on Yn and for every λ > 0. The term
dPY n|Xn

dQY n
is the Radon-Nykodym derivative [31, p. 449] and is for DMCs equal

to PY n|Xn (Y n|Xn)

QY n (Y n) . If QY n is set to (P ∗Y )
n, (2.10) reduces to the Verdú-Han

converse bound [32, Th. 4]. We shall use variations of this approach to prove
and analyze nonasymptotic converse bounds in [Paper B] and [Paper C]. The
ability to set QY n arbitrarily in (2.10) turns out to be important in many
information-theoretic problems, including the converse result in [Paper B]. In
order to analyze (2.10), we often set QY n to a product distribution

∏n
i=1QY

for some QY and define the information density

ı(xn; yn) , log
PY n|Xn(yn|xn)

QY n(yn)
=

n∑
i=1

log
PY |X(yi|xi)
QY (yi)

. (2.11)

Hence, because the channel is memoryless, it follows that ı(xn;Y n) is a sum
of independent random variables under the distribution PY n|Xn=xn . This fact
implies that the probability term in (2.10) can be analyzed using tools from
probability theory for studying sums of independent random variables including
Chebyshev’s inequality [33, Eq. (3.1.1)], central limit theorems, and results
from large deviations theory. As an example, the converse bound in (2.10)
is sufficient to establish the strong converse stated in (2.6) [34, Sec. 22.1].
Specifically, by using that D(PY |X ‖ P ∗Y |P ) ≤ C for all P ∈ P(X ) and by
applying Chebyshev’s inequality, one can show that R∗(n, ε) ≤ C + O(1/

√
n)

for every ε ∈ (0, 1). Combining this result with (2.5) shows that

R∗(n, ε) = C + o(1) (2.12)

for every ε ∈ (0, 1).

2.2 Asymptotic Expansions

The most elementary example of an asymptotic expansion of R∗(n, ε) is given
in (2.12). This expansion characterizes the limit of R∗(n, ε) as n → ∞, but
does not reveal anything about the speed at which this convergence happens.
The purpose of refined asymptotic expansions of R∗(n, ε) is to characterize the
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Chapter 2. Information-Theoretic Limits of Communication

speed at which R∗(n, ε) converges to its asymptotic limit and the behavior in
this limit. Results of this type yield approximations of R∗(n, ε) in the finite-n
regime, which turn out to be accurate in many cases. Much work in information
theory has aimed at refining the asymptotic expansion of R∗(n, ε) in the limit
n→∞. In particular, it was shown in [9] that

R∗avg(n, ε) = C −
√
V

n
Q−1(ε) + o

(
1√
n

)
(2.13)

holds, as n→∞, for every DMC satisfying certain technical conditions. Here,
V is the channel dispersion [10, Def. 1] given by

V = VarP∗×PY |X

[
log2

PY |X(Y |X)

P ∗Y (Y )

]
. (2.14)

The expression on the RHS of (2.14) is also known as the unconditional infor-
mation variance [10, p. 2329] evaluated at P ∗. A result similar to (2.13) was
shown for the AWGN channel by [35]. Finally, [10] demonstrated the following
improvement of (2.13)

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
(2.15)

as n→∞, for many DMCs of interest. The important observation in (2.15) is
that the back-off from capacity at finite blocklength is of the order 1/

√
n.

Asymptotic expansions of R∗(n, ε) such as (2.13) and (2.15) are important
for several reasons:

1. In the proof of the achievability part of an asymptotic expansion, one care-
fully needs to find a communication scheme that maximizes the rate. A
more refined asymptotic expansion often requires a more refined commun-
ication scheme. For example, in order to show that limn→∞R∗avg(n, ε) =
C for the AWGN channel, it is sufficient to use an i.i.d. Gaussian code-
book, while one needs to use so-called shell codes to achieve the correct
second-order term in (2.13)–(2.15).

2. In designing good codes for short blocklengths, knowledge about funda-
mental limits of communications are vital for comparison. An asymptotic
expansion provides theoretically justified approximations of R∗(n, ε).

3. In system level optimization and protocol engineering, one can use the
first two terms of asymptotic expansions to approximate the performance
of optimal codes and thereby neglect the specifics of code selection in the
optimization over protocol parameters. Due to the simplicity of the first
two terms in the asymptotic expansions, this may significantly simplify
the optimization of systems and protocols.
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2.2. Asymptotic Expansions

In [Paper A], we shall use the asymptotic expansion in (2.15) and investigate
the implications of the square-root term in a wireless broadcast system. In
[Paper B] and [Paper C], on the other hand, we shall focus on proofs of asymp-
totic expansions for the common-message broadcast channels with feedback.

As in the proof of the statement (2.12), one needs to analyze achievabil-
ity and converse bounds in the limit n → ∞ in order to obtain asymptotic
expansions of the type (2.15). The key difference is that, instead of utilizing
Chebyshev’s inequality, one needs a central limit theorem to analyze the prob-
ability term in (2.10). Below, we briefly describe how the converse part of a
second-order expansion of the maximum coding rate can be proved under the
simplifying assumption that

VarP∗×PY |X

[
log2

PY |X(Y |X)

P ∗Y (Y )

∣∣∣∣X = x

]
= V (2.16)

for all x ∈ X . The condition (2.16) holds for weakly symmetric channels2 and
greatly simplifies analysis. Specifically, to establish a converse bound for (2.15),
we need to estimate the probability term in (2.10). This is done by using the
Berry-Esseen central limit theorem, a refined version of the standard central
limit theorem.3 Following steps similar to those in [38, Th. 2], we lower-bound
the probability term in (2.10) for QY n = (P ∗Y )

n under the condition (2.16) as
follows

P

[
n∑
i=1

log2
PY |X(Yi|Xi)

P ∗Y (Yi)
< λ

]

= EPXn

[
P

[
n∑
i=1

log2
PY |X(Yi|Xi)

P ∗Y (Yi)
< λ

∣∣∣∣Xn

]]
(2.18)

≥ EPXn

[
Q

(∑n
i=1D(PY |X=Xi

‖ P ∗Y )− λ√
nV

)
− c√

n

]
(2.19)

≥ Q
(
nC − λ√

nV

)
− c√

n
. (2.20)

Here, (2.18) follows by the law of total expectation; (2.19) follows for some con-
stant c by the Berry-Esseen central limit theorem because the channel outputs
Y n are independent given Xn, because

E

[
log2

PY |X(Yi|Xi)

P ∗Y (Yi)

∣∣∣∣Xi

]
= D(PY |X=Xi

‖ P ∗Y ) (2.21)

2A DMC defined by a channel transition matrix W is weakly symmetric if the rows are
permutations of each other and all column sums are equal. Moreover, the CAID and CAOD
of a weakly symmetric channel are given by the uniform distribution [36, pp. 189–190].

3Given independent random variables {Zi}ni=1 with means {µi}ni=1 and equal variance σ2

satisfying E
[
|Zi − µi|3

]
≤ ζ <∞ for all i ∈ {1, . . . , n}, a version of the Berry-Esseen central

limit theorem states that [37, Th. V.3]

sup
z∈R

∣∣∣∣P[∑n
i=1(Zi − µi)√

nσ2
≥ z
]
−Q(z)

∣∣∣∣ ≤ 6ζ
√
nσ3

(2.17)
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Chapter 2. Information-Theoretic Limits of Communication

and because of (2.16); and (2.20) follows because D(PY |X=x ‖ P ∗Y ) ≤ C for
x ∈ X . By substituting (2.20) into the converse bound in (2.10) with QY n =
(P ∗Y )

n, we obtain

R∗(n, ε) ≤ 1

n

(
λ− log

(
Q

(
nC − λ√

nV

)
+

c√
n
− ε
))

. (2.22)

Now, the desired result is established by choosing λ = nC −
√
nV Q−1(ε):

R∗(n, ε) ≤ C −
√
V

n
Q−1(ε) +

1

2
log(n)− log c. (2.23)

Roughly speaking, the first two terms of the asymptotic expansion in (2.23)
can be interpreted as the ε-quantile of the normalized information density
1
n ı(X

n;Y n) with QY n = (P ∗Y )
n. This interpretation continues to hold in proofs

of the achievability part. Although the asymptotic analysis above was per-
formed under the condition (2.16), the above approach has the advantage that
it also works with full feedback (see [38]). We apply a similar argument in
[Paper C, Th. 4]. For DMCs not satisfying the condition (2.16), one needs the
method of types and a different choice of QY n to obtain a result similar to
(2.23) [13].

Asymptotic expansions like (2.15) are based on analyses of R∗(n, ε) in the
limit n→∞ for fixed ε. An alternative to such asymptotic expansions, can be
obtained by analyzing the function

ε∗(n,R) , min{ε ∈ (0, 1) : ∃(n,R, ε) code} (2.24)

in the limit n→∞ for fixed rate R. Specifically, the function

E(R) = lim
n→∞

− 1

n
log ε∗(n,R) (2.25)

is called the error exponent or reliability function and characterizes the speed
at which the error probability converges to zero as n → ∞ when the rate
is fixed [24, p. 152]. For very small error probabilities, the error exponent
sometimes provide better characterizations of the maximum coding rate.

2.3 Feedback and Variable-Length Coding

Feedback was introduced in information theory by Shannon in 1956 in a paper
that surprisingly proved that the capacity of DMCs with and without feed-
back is the same [14]. Although feedback does not improve the capacity,
it was shown that same year that feedback may simplify capacity-achieving
transmission schemes. In particular, [39] presented a simple feedback scheme
that approaches the capacity. The scheme, however, only works for certain
specific channels. In the 1960’s, simple iterative feedback schemes were put
forth by Horstein, Schalkwijk, and Kailath in [40–42]. These feedback schemes
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2.3. Feedback and Variable-Length Coding

showed that feedback may significantly simplify capacity-achieving communica-
tion schemes for the binary symmetric channel (BSC) and the AWGN channel.
The feedback schemes by Horstein, Schalkwijk, and Kailath were recently gen-
eralized to a large class of DMCs in [43].

Motivated by the fact that feedback can simplify capacity-achieving com-
munications schemes, it would be natural if the second-order term of the asymp-
totic expansion of the maximum coding rate would also be improved by feed-
back. However, some notable works indicate that this is not the case in general.
In particular, for the class of DMCs satisfying the condition (2.16), [38] shows
that the second-order term is not improved (see also [15, Th. 15] for a slightly
stronger result for a smaller class of DMCs). In addition, for a large class of
DMCs, the error exponent [44] is not improved either. We note that [38] shows
that the second-order term can be improved for some DMCs with non-unique
CAIDs.

It turns out that full feedback can improve both the error exponent and
the second-order coding rates if one allows the use of variable-length coding,
i.e., codes where the blocklength is a random variable that depends on the
channel outputs. Before proceeding the discussion, following [15], we introduce
the class of variable-length codes with full feedback (VLF) for DMCs.

Definition 1 (Def. 1 in [15]). An (n, R, ε) VLF code consists of

1. A random variable U ∈ U that is known at both the encoder and the
decoder before the transmission begins.

2. A sequence of encoding functions fn : U × {1, . . . , 2nR} × Yn−1 7→ X ,
each one mapping the message J , drawn uniformly at random from the
set {1, . . . , 2nR}, to the channel input Xn = fn(U, J, Y

n−1).

3. A nonnegative integer-valued random variable τ that is a stopping time
with respect to the filtration Fn = σ{U, Y n} and satisfies4

E[τ ] ≤ n. (2.26)

4. A sequence of decoding function gn : U × Yn 7→ {1, . . . , 2nR} satisfying

P[J 6= gτ (U, Y
τ )] ≤ ε. (2.27)

In an (n, R, ε) VLF code, n represents the allowed average blocklength, R repre-
sents the rate of the code, and ε represents the allowed average error probability.
VLF codes generalize fixed-blocklength codes by allowing the decoding time,
designated by τ , to be a random variable defined in such a way that the event
{τ ≤ n} can be determined based only on Yn and U . The decoding time τ can
thus be computed at the decoder. There are two important variations of VLF
codes introduced by [15]:

4A filtration is a sequence of σ-algebras {Fi}∞i=0 satisfying Fi ⊂ Fi+1. A stopping time
with respect to the filtration {Fi} is a random variable for which the event {τ ≤ i} is in Fi

for every i [31, p. 488].
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Chapter 2. Information-Theoretic Limits of Communication

• If the encoding functions {fn} do not depend on past channel outputs,
the code is a variable-length code with stop-feedback (VLSF). For this
class of codes, the decoder does not feed back all channel outputs but
only a stop signal at time τ , indicating that the encoder should stop the
transmission.

• If the stopping time is defined with respect to the larger filtration
{σ{U,Xn, Y n}}∞n=0, the code is a variable-length code with termination
(VLFT); hence, since only the encoder knows Xn and Y n, it is the en-
coder and not the decoder that terminates the transmission.

VLSF codes can be considered more practical than VLF codes since they only
require a single bit of feedback. On the other hand, VLFT codes require full
feedback and a separate noiseless channel from the encoder to the decoder that
can be used to indicate end of the transmission. In this thesis, we shall only
be concerned with VLF and VLSF codes.

For VLF codes, we are interested in analyzing the maximum coding rate
over a certain DMC:

R∗f (n, ε) , max{R : there exists an (n, R, ε) VLF code} (2.28)

and similarly for VLSF codes:

R∗sf(n, ε) , max{R : there exists an (n, R, ε) VLSF code}. (2.29)

Polyanskiy et al. proves nonasymptotic achievability and converse bounds for
VLF codes [15]. There is a subtle aspect in their achievability result: While
the codebook in the achievability bound is generated at random, it does not
rely on the random-coding argument. To prove the existence of an (n, R, ε)
VLF code, it is proven that the average blocklength E[τ ] and error probability
P[J 6= gτ (Y

τ )] when averaged over a set of VLF codes (represented by the
common randomness U) satisfy

EU [P[J 6= gτ (Y
τ )|U ]] ≤ ε (2.30)

and

EU [E[τ |U ]] ≤ n. (2.31)

It is important to realize that one cannot conclude from (2.30)–(2.31)
that there exists a specific realization u ∈ U satisfying simultaneously
P[J 6= gτ (Y

τ )|U = u] ≤ ε and E[n|U = u] ≤ n. As a result, the random-coding
argument cannot be invoked. This is the reason why U appears in the defini-
tion of the VLF code. VLF codes can thus be considered a type of randomized
codes [25], where U is the common randomness needed for the randomization
of the codebooks at the encoder and decoder. Polyanskiy et al. [15] invoked

18



2.3. Feedback and Variable-Length Coding

Caratheodory’s theorem [36, Th. 15.3.5] to show that any VLF code can be re-
duced to an equivalent VLF code for which |U| ≤ 3, meaning that it is sufficient
to time-share between at most three deterministic5 VLF codes.

With the definition of the VLF code, Burnashev [45] showed that the error
exponent of VLF codes over a DMC is given by

Ef(R) =
C1

C
(C −R), R ∈ (0, C). (2.32)

Here, C1 denotes the maximum relative entropy between conditional output
distributions; max(x1,x2)∈X 2 D(PY |X=x1

‖ PY |X=x2
). This result is important

because it shows that the error exponent is improved in the presence of feed-
back, and because Burnashev obtained the exact error exponent, which is not
yet known for DMCs without feedback. Later in [15], it was shown that

R∗sf(n, ε) =
C

1− ε
+O

(
log n

n

)
. (2.33)

Hence, in the regime of fixed error probabilities, the first-order term is im-
proved by a factor of 1/(1−ε) and the second-order term is zero. The speed-up
in the convergence to the asymptotic limit C/(1 − ε) was numerically verified
in [15] by using the nonasymptotic achievability and converse bounds. In-
terestingly, (2.33) is achieved using only VLSF codes, i.e., by codes with the
encoding functions fi depending on U and J , but not on Y i−1. We remark
that [46] found a two-phase feedback scheme that simultaneously achieve the
optimal error exponent in (2.32) and the asymptotic expansion in (2.33).

The asymptotic expansion in (2.33) has a simple intuitive explanation. The
decoder defines a Bernoulli random variable B with parameter roughly ε. If
B = 1, the decoder sends a stop signal at time 0; if B = 0, it sends a stop
signal when the information density exceeds a certain threshold related to nR,
i.e., at time

τ̃ , inf{n : ı(Xn;Y n) ≥ nR− c} (2.34)

for a positive constant c. Hence, the average blocklength of the VLSF code is
approximately (1−ε)E[τ̃ ]. Using Doob’s optional stopping theorem, the expec-
tated value of τ̃ can be shown to be well-approximated by nR/C. The average
blocklength n is thus roughly equal to (1−ε)nR/C. The second-order term thus
disappears because the decoder can send a stop signal as soon as the informa-
tion density exceeds a threshold. In contrast, in the fixed-blocklength-setup,
the blocklength needs to be chosen conservatively such that the information
density is above the threshold with probability roughly 1− ε.

There have been attempts to take the variable-length-setup towards a more
practical direction. Firstly, [47] considered VLFT codes, where τ is only allowed
to have finite support, meaning that the decoder can decode only at a fixed
number of prespecified times. They found numerically that, if the decoding

5A deterministic VLF code is a VLF code with |U| = 1.
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attempts are spaced apart by O(log(nR)) channel uses, then the maximum
coding rates are almost as good as if the decoder is given the opportunity
to decode at every channel use. Secondly, [48] considered a practical class of
VLSF codes based on punctured convolutional codes, and they showed that
the achievable rates for this class of codes were comparable to those of the
achievability bound reported by [15, Th. 3]. Finally, [49] studied variable-
length coding over an AWGN channel, which required the authors to introduce
new techniques from renewal theory to cope with the power constraint.

2.4 Common-Message Broadcast Channels

With the zero-dispersion result for point-to-point channels in (2.33) in mind, it
is an interesting question to ask whether variable-length coding and feedback
yield a similar speed-up in the convergence to capacity for multiuser channels.
This thesis provides an answer to this question for one of the simplest multiuser
channels: The common-message broadcast channel. Specifically, we shall con-
sider the maximum coding rate of fixed-blocklength codes, VLF codes, and
VLSF codes over common-message discrete-time memoryless broadcast chan-
nels (CM-DMBCs) with feedback. This section summarizes some results related
to the CM-DMBCs and to [Paper B] and [Paper C].

A CM-DMBC withK decoders is defined by conditional distributions PYk|X :
X 7→ Yk, which serve as component channels from the encoder to each of the
decoders. As previously, we consider only finite-cardinality input and out-
put alphabets X ,Y1, . . . ,YK . We assume that the component channels are
memoryless and that the channel outputs at the decoders are conditionally
independent given a channel input:

PY n
1 ,...,Y

n
K |Xn(yn1 , . . . , y

n
K |xn) =

n∏
i=1

K∏
k=1

PYk|X(yk,i|xi). (2.35)

An (n,R, ε) fixed-blocklength code (without feedback) for the CM-DMBC is
defined by an encoding function f : {1, . . . , 2nR} 7→ Xn and decoding functions
gk : Ynk 7→ {1, . . . , 2nR} satisfying

max
k∈{1,...,K}

P[gk(Y
n
k ) 6= J ] ≤ ε. (2.36)

The CM-DMBC without feedback is equivalent to a compound channel with
finite-cardinality channel state known at the decoder. The compound channel
has been investigated in detail in [50–53]. Specifically, the capacity of the
CM-DMBC has been shown to be

CCM = sup
P∈P(X )

min
k
I(P, PYk|X). (2.37)

We assume that the maximizer of (2.37), the CAID P ∗, is unique. The second-
order asymptotic expansion for the compound channel was established by [53],
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who found that

R∗CM(n, ε) = CCM −
√
VCM

n
Q−1(ε) + o

(
1√
n

)
. (2.38)

Here, √
VCM , min

v∈R|X|0

max
k

{
dIk(v) +

√
Vk

}
(2.39)

where Vk = EP∗
[
VarPYk|X

[
log

PYk|X(Yk|X)

P∗Yk
(Yk)

∣∣∣X]] is the conditional information

variance [10, p. 2329] of the component channel PYk|X and dIk(v) denotes the
differential of the mutual information, both evaluated at P ∗. The fact that
(2.39) contains the differential of the mutual information is quite surprising
and reveals that the common-message broadcast channel is not as trivial as it
may seem. Moreover, we note that Vk is the conditional information variance
(because of the conditioning on X in the variance operator) whereas, for the
point-to-point DMC, (2.14) is the unconditional information variance. Because
of the law of total variance, the conditional information variance is in general
smaller than or equal to the unconditional information variance. For the point-
to-point DMC, the unconditional and conditional information variances are
equal though.

We remark that the random-coding argument is not sufficient to achieve
the asymptotic expansion in (2.38). Specifically, for the compound channel,
if one shows that the average error probability averaged over a certain set of
codebooks does not exceed ε for all states s ∈ S, one cannot conclude that
there exists a code that also has average error probability not exceeding ε for
all states s ∈ S simultaneously. The maximal-coding argument of Feinstein
can, however, be applied to the compound channel [52, 53].

When feedback is present, the capacity of the compound channel with a
finite-cardinality state is improved to [54]

Cf , sup
P∈P(X )

max
k

I(P, PYk|X). (2.40)

The reason is that the encoder can send a short training sequence, which is
known by the decoder, before the transmission starts and the decoder can
thereby learn the channel state. This approach does not work for CM-DMBCs
with feedback because both decoders need to decode the message. As a result,
the feedback capacity of CM-DMBCs is the same as in the no-feedback case.
In [Paper B] and [Paper C], we show that the second-order coding rates in
the presence of feedback are improved compared to (2.38). We also show that
the second-order asymptotic expansion differs depending on whether one uses
1) variable-length coding with stop-feedback, 2) variable-length coding with
full feedback, or 3) fixed-blocklength coding with full feedback. It turns out
that the second-order term for the setup with variable-length coding and stop-
feedback also depends on the directional derivative of the mutual information,
but in a different way than (2.39).
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Chapter 2. Information-Theoretic Limits of Communication

While the results concerning VLSF codes in [Paper B] hold under mild tech-
nical conditions, the results concerning fixed-blocklength codes with feedback
and VLF codes in [Paper C] rely on the condition

min
k

max
P∈P(X )

I(P,Wk) > max
P∈P(X )

min
k
I(P,Wk) = CCM. (2.41)

This condition implies that the input distribution maximizing (2.37) does not
maximize I(P,Wk) for any k. The property is important in the presence of
full feedback, because the encoder can adjust the input distribution based on
past channel outputs. In particular, the property in (2.41) allows the encoder to
favor the decoder with the smallest amount of accumulated information density
during the transmission.

Following the works [55] and [Paper B], there has been some attempts to
analyze other multiuser setups with variable-length coding and feedback. Speci-
fically, in addition to studying VLF codes for the AWGN channel, [49] also
considered the maximum coding rates of VLF codes over a Gaussian multiple-
access channel. The authors found the exact first-order term in the asymp-
totic expansion of the maximum coding rate, but were not able to settle if the
asymptotic expansion contains a square-root term. Moreover, the CM-DMBC
with finite-length coding and full feedback was analyzed in the error exponent
regime in [56], where upper and lower bounds on the error exponent were pro-
vided using techniques similar to those in [45]. In contrast to [Paper C], where
we show that the availability of full feedback improves the second-order term
of the asymptotic expansion, there is no indication in [56] that a similar coding
scheme can be used to improve the error exponents with full feedback.

2.5 HARQ-IR Protocols

We end this chapter by introducing the HARQ-IR protocol, a repetition pro-
tocol used in current communication systems including the fourth generation
(4G) cellular networks [16, Ch. 12]. The introduction here is presented from an
information-theoretic perspective, which is further generalized in [Paper D].

We consider a Gaussian block-fading channel, where the time is divided
into slots of n channel uses. The channel powers {Ht ∈ R+}∞t=1 are assumed
to be constant within each slot, but to vary independently with an identical
distribution from slot to slot. Specifically, the received signal vector is given
by

Yt =
√
HtXt +Wt (2.42)

where Xt ∈ Rn denotes the transmitted signal satisfying the power constraint
XT
t Xt ≤ nP with T denoting the transpose, where Yt ∈ Rn denotes the re-

ceived signal in the tth slot, and where Wt ∈ Rn denotes an n-dimensional
Gaussian random variable with zero mean and unit covariance matrix. Here,
P is the allowed average power consumption per channel use in each slot.
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An HARQ-IR protocol with rate R is defined by encoding functions ft :
{1, . . . , 2nR} 7→ Rn mapping a message J , drawn uniformly at random from
the set {1, . . . , 2nR}, to the channel inputs Xt = ft(J), decoding functions
gt : Ctn 7→ {1, . . . , 2nR}, and an integer-valued decoding time τ that is stop-
ping time with respect to the filtration {σ{Ht}}∞t=1 [17]. The error probability
of an HARQ-IR protocol is given by

P[J 6= gτ (Y1, . . . ,Yτ )] . (2.43)

The decoding time τ represents the slot index at which the decoder feeds back
an ACK signal, indicating that the encoder should stop the transmission. On
the other hand, in the slots {1, . . . , τ−1}, the decoder feeds back NACK signals,
indicating that the encoder should continue the transmission. The decoding
time in the definition of an HARQ-IR protocol has a role similar to that of the
decoding time of a VLSF code:

1. For a VLSF code, the decoding time represents the time index in channel
uses at which the encoder should stop the transmission, while for an
HARQ-IR protocol, it indicates the slot index at which the decoder should
stop transmitting.

2. For a VLSF code, the decoding time depends on the channel outputs,
while for an HARQ-IR protocol, it depends only on the channel powers.

The second difference between HARQ-IR protocols and VLSF codes allows
the use of the random-coding argument to prove achievability results and thus
implies that the common randomness U in the VLSF codes is not necessary in
the definition of the HARQ-IR protocol.

The first information-theoretic analysis of HARQ-IR was presented in [17],
where achievability and converse results were proved for the HARQ-IR protocol.
Specifically, provided that τ is upper-bounded by a positive integer τmax, it
was shown that, in the limit n→∞, one can communicate with a throughput
arbitrarily close to (

1− P
[
1
2

∑τ
t=1 log(1 +Ht) < R

])
R

E[τ ]
(2.44)

and with an error probability arbitrarily close to P
[
1
2

∑τ
t=1 log(1 +Ht) < R

]
.

Here, the term P
[
1
2

∑τ
t=1 log(1 +Ht) < R

]
is called the outage probability. In

most information-theoretic analyses of HARQ-IR, the decoding time τ is chosen
as

τ , min

{
t :

1

2

t∑
i=1

log(1 +Hi) > R or n = τmax

}
(2.45)

where τmax denotes an upper bound on the number of transmission attempts.
In this case, the outage probability is simplified to P

[
1
2

∑τmax
t=1 log(1 +Ht) < R

]
.
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In systems with a tight latency constraint, stating that the transmission has
to be completed within a maximum of τmax slots, most works maximize the
throughput in (2.44) with τ given by (2.45). In scenarios with demand for high
reliability, the outage probability needs to be small. In such scenarios, it is
not necessarily the maximum decoding time, but rather the average decoding
time that is important. In [Paper D], we shall be concerned with a class of
HARQ-type protocols with zero outage probability, meaning that the decoding
time is given by

τ , inf

{
t :

1

2

t∑
i=1

log(1 +Hi) > R

}
. (2.46)

In wireless communication systems, the maximum or average number of re-
transmission attempts is often kept small for multiple reasons [16, Ch. 12]:

1. Channel resources are allocated in slots of the same size as the physical
resource blocks in the wireless system. These resource blocks are usually
reasonable large to avoid excessive exchange of control information.

2. The feedback channel introduces delays, is noisy, and is often costly in
terms of control information.

3. Slots are usually not allocated consecutively in time but interleaved with
other HARQ-IR instances. This allows the encoder to receive the feed-
back from the decoder before the next transmission slot occurs.

If the difference between the amount of accumulated mutual information at
the decoder and R, after observing the channel outputs in slot t, is small
compared to E

[
1
2 log(1 +Ht+1)

]
, the (t + 1)th slot can be considered under-

utilized. Under-utilization of slots in HARQ-IR is the main reason for the gap
between the throughput in (2.44) and the ergodic capacity, E

[
1
2 log2(1 +H1)

]
.

It can to some extent be mitigated by using power adaptation and/or rate
adaptation as we discuss in [Paper D].
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Chapter 3

Contributions and Future
Work

This chapter summarizes each of the appended papers. In the first paper, re-
sults from finite blocklength information theory are applied to analyze a trade-
off between the total transmission time and the average power consumption at
the users in a broadcast setup where the encoder has a message to all users.
The next two papers investigate the common-message discrete-time memory-
less broadcast channel with feedback in either the fixed-blocklength-setup or
variable-length setup. The fourth paper investigates a point-to-point channel
with block-fading and analyze an HARQ-type protocol with rate adaptation.

3.1 Contributions

3.1.1 Paper A: “Downlink Transmission of Short Packets:
Frame Design and Control Information Revisited”

In this paper, we consider a wireless communication system broadcasting to K
users through AWGN channels with no fading and with equal channel gains.
There are distinct messages to each of the users, whose sizes are allowed to be
short, random, and possibly empty. We assume that the transmitter divides a
transmission into a number of packets, which are transmitted consecutively in
time and which are encoded using channel codes achieving the rates predicted
by the second-order approximation of the maximum coding rate for the AWGN
channel. The randomness in the message sizes requires the transmitter to
communicate control information to the users informing them about the sizes
of the messages and the structure of the transmission. The objective of this
paper is to analyze the trade-off between the total transmission time from a
transmitter perspective and the average power consumption at each user. Here,
the power consumption at a user is assumed to be proportional to the amount of
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time its receiver is active. When using the second-order approximations for the
AWGN channel to analyze this setup, it turns out that there is a trade-off with
two extreme cases. The transmitter can either encode all messages jointly in
one large packet, or it can encode each of the messages in separate packets. In
the former case, the transmitter can use channel codes that achieve rates closer
to the Shannon capacity and thereby minimize the total transmission time.
On the other hand, each of the users needs to receive for the whole period
of transmission in order to receive its message. In the latter case, the total
transmission time is larger since the transmitter uses channel codes achieving
rates farther from the Shannon capacity, but the receiver at each user needs
to be active for a shorter amount of time. The desired trade-off between total
transmission time and the average amount of time each user has to be active
depends on the scenario. We prove a lower bound on the trade-off curve and
propose two protocols, serving as an upper bound for the trade-off curve. We
show numerically that the trade-off is nontrivial when the message sizes are
short.

3.1.2 Paper B: “Common-Message Broadcast Channels
with Feedback in the Nonasymptotic Regime: Stop-
Feedback”

Motivated by the zero-dispersion result for DMCs with variable-length coding
and stop-feedback discussed in Section 2.3, this paper takes a first step to-
wards analyzing VLSF codes for a simple multiuser channel. We consider the
maximum coding rate over a CM-DMBC with K users and stop-feedback. In
particular, each decoder feeds back a stop signal, indicating that the encoder
can stop the transmission. The encoder continues to transmit until stop signals
are received from all decoders. The central question answered by this paper is if
zero-dispersion can be achieved for this setup. Considering that zero-dispersion
is achievable in the point-to-point setup with VLSF codes, because the decoder
can terminate transmissions early for favorable noise realizations, this question
is nontrivial because the encoder in the CM-DMBC has to wait for multiple
stop signals.

First, we prove nonasymptotic achievability and converse bounds, which
can be plotted numerically for certain simple CM-DMBCs. The nonasymp-
totic achievability bound follows straightforwardly from [15, Th. 3], while our
nonasymptotic converse bound is based on the meta-converse theorem and
the solution of an auxiliary optimal stopping problem. These nonasymptotic
bounds are analyzed in the large-n limit to obtain asymptotic upper and lower
bounds on the maximum coding rate. Our asymptotic analysis reveals that the
second-order term of the asymptotic expansion of the maximum coding rate is
nonzero under certain mild technical conditions. Hence, VLSF codes are not
sufficient to achieve zero-dispersion for this setup. We also identify necessary
and sufficient conditions for the asymptotic expansions to match up to the
second-order; hence, giving the exact second-order term. Finally, our bounds
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are plotted and compared to a second-order approximation composed of the
first two terms of the asymptotic expansion. We observe that this second-order
approximation is an accurate proxy for the maximum coding rate. The nu-
merical results also confirm that the speed at which the maximum coding rate
approaches its asymptotic limit is indeed slower than for the point-to-point
setup with VLSF codes.

3.1.3 Paper C: “Common-Message Broadcast Channel with
Feedback in the Nonasymptotic Regime: Full Feed-
back”

This paper continuous the investigation of CM-DMBCs in the nonasymptotic
regime, but under full feedback. Since VLSF codes are not sufficient to achieve
zero-dispersion for CM-DMBCs, our objective with this paper is to identify if
the use of VLF codes instead of VLSF codes can improve the maximum coding
rate and the second-order term in its asymptotic expansion. Specifically, we
aim at characterizing the maximum coding rate for CM-DMBCs with two users
and full feedback using either fixed-blocklength codes or variable-length codes.
In the variable-length setup, the encoder terminates the transmission based on
feedback and not based on stop signals. We focus our attention on a certain
general class of CM-DMBCs for which the capacity is strictly smaller than the
capacities of each of the component channels (see (2.41)). This assumption
implies that the CAIDs of each of the component channels are different which,
as a result, allows the encoder to favor one of the decoders by adapting the
input distribution. The key idea is that the encoder can use the full feedback to
compute the accumulated information density at each decoder and make small
adjustments to the input distribution in order to ensure that the difference be-
tween the information densities at the decoders is tightly concentrated around
zero. It turns out that the second-order term in the asymptotic expansion of
the maximum coding rate for this simple feedback scheme is improved in both
the fixed-blocklength-setup and the variable-length-setup compared to the cor-
responding no-feedback cases.

For the variable-length setup, we establish nonasymptotic achievability and
converse bounds. Analyzing these under mild technical conditions in the large-
n regime shows that the second-order term in the asymptotic expansion of
the maximal coding rate is zero. In the fixed-blocklength-setup, we also prove
nonasymptotic achievability and converse bounds, which are analyzed in the
large-n regime. Under the same technical conditions as for the variable-length
setup, it is shown that our achievability bound achieves a dispersion which
is halved compared to the no-feedback setup described in Section 2.4. Under
a symmetry condition, which can be interpreted as a multiuser analogue of
(2.16), we also show that our feedback scheme achieves the exact second-order
term in the asymptotic expansion of the maximum coding rate. Finally, we
evaluate numerically our nonasymptotic bounds for a particular CM-DMBC,
and in this case, we observe that our second-order approximation is accurate
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Fig. 3.1: A CM-DMBC composed of parallel AWGN channels. Here, J is the message, and
Ĵ1 and Ĵ2 are the decoders estimates of J . The channel gains h11, h12, h21, and h22 are
deterministic, and W11, W12, W21, and W22 are standard Gaussian random variables.

for blocklengths of interest.

3.1.4 Paper D: “Generalized HARQ with Delayed Chan-
nel State Information and Average Latency Con-
straints”

Under-utilization of slots in the HARQ-IR protocol significantly impairs the
achievable throughput when the average latency is small. In this paper, we
consider the setup in Section 2.5, where the encoder is provided with delayed
CSI. We propose a generalized version of the HARQ-IR protocol that uses de-
layed CSI to adapt the rate in each transmission slot. The key idea is that
delayed CSI provides information about the accumulated mutual information
at the receiver. The encoder can now append new information bits to the
message during transmission in such a way that the number of appended bits
depends on the delayed CSI. We consider the maximum achievable throughput
of this protocol subject to an average latency constraint. We prove that the
rate adaptation scheme in this case is simple and has a closed-form solution. In
particular, it coincides with the rate adaptation scheme used in the backtrack
retransmission protocol proposed in [23]. Next, we introduce versions of the
protocol that adapt the rate based only on a finite number of feedback mes-
sages. More specifically, the receiver can feed back the delayed CSI, but only a
quantized version of it. We evaluate the protocol numerically and find that the
generalized HARQ-type protocol significantly improves the throughput com-
pared to the conventional HARQ-IR protocol. We also compare the protocol
to an HARQ-IR protocol with power adaptation and show that this protocol
is indeed also outperformed by generalized HARQ-type protocol.
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3.2 Future Work

In [Paper A], we used approximations of the maximum coding rate to analyze a
protocol for a wireless system broadcasting to K users. The key idea was that
the second-order penalty in the asymptotic expansion of the maximal coding
rate for fixed-blocklength codes over an AWGN channel introduces a trade-off
between total transmission time and average power consumption at the users.
An significant limitation of the approach taken in the paper is that it uses
the second-order approximation for the maximum coding rate for the AWGN
channel with the same channel gain for all user. Hence, to improve applicability
of the results, it is natural to consider if similar trade-offs arise when users have
different channel gains or when fading is present. Moreover, in the analysis, it
is assumed that the transmitter encode packets and send them consecutively
in time. A rigorous information-theoretic analysis of this problem may reveal
new communication schemes.

In [Paper B] and [Paper C], we investigated a class of CM-DMBCs with
input and output alphabets of finite cardinalities. To extend the applicability
of the results obtained in these papers, an interesting extension to consider
is the broadcast channel composed of parallel Gaussian subchannels without
channel fading depicted in Fig. 3.1. For this broadcast channel, provided that
the channel gains are such that the optimal power allocations are different for
each of the component channels, the effect of adapting the input distribution
as in [Paper C] can be achieved by adapting only the power allocated to the
Gaussian subchannels. This broadcast channel is of particular interest because
it satisfies the condition in (2.41) (provided that the maximizations are also
subject to a power constraint). In addition to these properties, it turns out
that a feedback scheme for which the power allocation is affected by small
adaptations can be analyzed using noncoherent decoding techniques as used
in [57]. It is thus expected that the half-dispersion-result obtained in [Paper C]
continues to hold for the class of CM-DMBCs just described.

Finally, the common-message broadcast channel is mainly studied because
of its simplicity compared to other multiuser channels. At the time of writ-
ing, there is preliminary work studying the maximum coding rates of VLSF
and VLFT codes for the multiple-access channel. A nonasymptotic achiev-
ability bound for this channel is provided in [55]. Achievability, converse, and
asymptotic expansions for maximum coding rate of the Gaussian multiple-
access channel were reported in [49]. However, [49] only provide loose bounds
on the second-order term and, in particular, it was not revealed whether the
second-order term is zero or not. The problem of establishing the second-order
coding rates for the multiple-access channel and other multiuser channels is
thus an interesting open problem.
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