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ENGLISH SUMMARY 

The mechanism of phase transition and the composition-structure-property relation 

are critical for understanding the nature of glass transition and for designing glasses 

with improved properties. However, these issues have not been fully understood 

owing to the non-equilibrium nature and structural complexity of glasses. The goal 

of this Ph.D. project is to explore the structure, phase transition, and dynamics of 

four special oxide glasses and liquids. Based on the classification of glass network 

former and modifier, we investigate the following: modifier-free system (B2O3-

Al2O3-SiO2-P2O5), modifier-containing systems (Na2O-CaO-B2O3-SiO2, GeO2-BaF2-

AlF3), and network former free system (CaO-Al2O3).  

For B2O3-Al2O3-SiO2-P2O5 system, studied glasses exhibit nano-phase separation, 

i.e., a droplet phase (50-100 nm) and a matrix phase. The droplet contains boroxol 

rings and the matrix involves the B-O-Si network. With the substitution of SiO2 by 

B2O3, the content of boroxol rings increases in the droplet, and the matrix becomes 

boron-rich, giving rise to the decrease of glass transition temperatures (Tg) of both 

phases. Furthermore, it is found that ordered domains form in the matrix during heat 

treatment, implying the structural heterogeneity of the system. 

For Na2O-CaO-B2O3-SiO2 system, the configurational heat capacity at Tg (Cp,conf(Tg)) 

increases non-linearly with the substitution of SiO2 by B2O3. It is discovered that 

superstructures in the intermediate range order (IRO) govern the major increase of 

Cp,conf(Tg) with composition. Furthermore, the configurational entropy at Tg is mainly 

governed by IRO superstructures and angular constraints of O-B-O and O-Si-O 

bonds. For GeO2-BaF2-AlF3 system, nano-clusters (~20 nm) form in the supercooled 

region (925-986 K). The nano-clusters undergo a reversible order-disorder transition 

upon heating. The formation and breaking-down of the nano-cluster are associated 

with the germanium speciation, giving rise to the non-monotonic variation of Tg with 

the maximum temperature of dynamic heating.  

For CaO-Al2O3 system, viscosity and density of both stable and metastable liquids 

are determined using the aerodynamic levitation technique. With the substitution of 

Al2O3 by CaO, the structural network evolves from oxygen deficient network, 

through continuous random network at the eutectic (C12A7), to [AlO4] incomplete 

network, leading to the low-energy atomic packing of C12A7. This structural 

evolution gives rise to non-monotonic variations of Tg, thermal expansion, and glass 

forming ability across the binary system, featuring a threshold at C12A7. 

Furthermore, these extremely poor glass-forming liquids undergo dynamic fragile-

to-strong transitions in the supercooled region upon cooling. Interestingly, 

considering the four studied systems together, it is found that structural ordering, 

nano-cluster formation, crystallization, order-disorder transition, and abnormal 

dynamics take place in the temperature region of 1.15-1.2Tg.  
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DANSK RESUME 

Faseovergangsmekanismen samt relationer mellem den kemiske sammensætning, 

strukturen og egenskaberne er kritisk vigtige for forståelsen af glasovergangen og 

for at designe glasser med forbedrede egenskaber. Disse aspekter er dog endnu ikke 

fuldt forståede, hovedsagligt grundet glassernes ude-af-ligevægt tilstand og deres 

strukturel kompleksitet. Målet med denne afhandling er at udforske strukturen, 

faseovergangene, og dynamiske egenskaber af fire bestemte oxidglasser og 

glasdannende væsker. Baseret på opdelingen af glasbestanddele i nevtværksdannere 

og netværks-modificerende elementer undersøger vi følgende: et ikke-modificeret 

system (B2O3-Al2O3-SiO2-P2O5), to modificerede systemer (Na2O-CaO-B2O3-SiO2 

og GeO2-BaF2-AlF3) samt et netværksdannerfrit system (CaO-Al2O3). 

For B2O3-Al2O3-SiO2-P2O5 systemet, de undersøgte glasser udviser nano-

faseseparation, dvs. en dråbefase (50-100 nm) og en matrixfase. Dråberne 

indeholder boroxol-ringe mens matrixen indeholder et B-O-Si netværk. Som følge af 

udskiftningen af SiO2 med B2O3 stiger indholdet af boroxol-ringene i dråberne, 

mens matrixfasen bliver rigere på bor, hvilket resulterer i et fald i glasovergangs-

temperaturen (Tg) af begge faser. Det er fundet, at ordnede domæner dannes i 

matrixen under opvarmning, hvilket antyder strukturel heterogenitet af systemet. 

For Na2O-CaO-B2O3-SiO2 systemet, den konfigurationelle varmekapacitet ved Tg 

(Cp,conf(Tg)) stiger nonlineart med udskiftningen af SiO2 med B2O3. Det er opdaget, 

at superstrukturer i mellemrækkende orden (MRO) styrer stigningen af Cp,conf(Tg) 

med sammensætningen. Derudover er den konfigurationelle entropi ved Tg 

hovedsagligt styret af MRO og bindingsbegrænsninger af O-B-O samt O-Si-O. For 

GeO2-BaF2-AlF3 systemet, nanodomæner (~20 nm) dannes i det underafkølede 

temperaturspænd (925-986 K). Nanodomænerne undergår en reversibel orden-

uorden overgang under opvarmning. Dannelsen og ødelæggelsen af nanodomænerne 

er forbundet med germanium-fordelingen, resulterende i en nonmonotonisk 

variation af Tg med den højeste temperatur for dynamisk opvarmning. 

For CaO-Al2O3 systemet, viskositeten og densiteten af stabile og metastabile væsker 

er bestemt vha. en aerodynamisk levitationsteknik. Som følge af udskiftningen af 

Al2O3 med CaO, det strukturelle netværk omdannes fra et oxygen-manglende 

netværk, via en kontinuerlig tilfældig netværk ved det eutektiske punkt (C12A7), til 

[AlO4] ukomplet netværk, resulterende i en lav-energi atomisk pakning af C12A7. 

Denne strukturelle evolution medfører nonmonotoniske variationer af Tg, termisk 

ekspansion og glasdannende egenskaber på tværs af det binære system indtil en 

grænse ved C12A7. Derudover undergår disse ekstremt dårligt glasdannende væsker 

en fragil-stærk overgang i det underafkølede domæne ved nedkøling. Ved at betragte 

disse fire systemer, er det fundet at strukturel orden, nanodomænedannelsen, orden-

uorden overgange samt abnormalt dynamik eksisterer i 1.15-1.2Tg spændet. 
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CHAPTER 1. INTRODUCTION 

Glass is a fascinating material, which has been attracting the interests of scientists, 

engineers and users. It is not only used in daily life as window and cookware, but 

also in high-tech applications, e.g., as photonic material. Although the technology of 

glass production is gradually mature, advanced technologies and new types of 

glasses are still being developed. 

Unlike crystal, glass is a “solid” that lacks of long range order (LRO) and 

translational periodicity, and exhibits glass-liquid transition upon heating [1-3]. 

Various methods have been developed to prepare glasses, e.g., sol-gel, chemical 

vapor deposition, and ball-milling [2,4], while the most widely used one is melt-

quenching. When heating a crystal above its melting temperature (Tm), an 

equilibrium liquid forms by virtue of the first order phase transformation. In 

contrast, the liquid will become supercooled upon cooling below Tm. The 

supercooled liquid is a metastable state in the view of thermodynamics, which 

means it always tend to transform to a stable state, i.e., crystal. However, if the 

cooling rate is high enough to bypass macroscopic crystallization, the relaxation 

time of the supercooled liquid will exponentially increase upon cooling and finally 

exceed the timescale of experimental observation, leading to the frozen-in of the 

supercooled liquid, and hence, the formation of the glass [5]. Being one kind of 

amorphous solids, the essential feature of a glass is an abrupt change of the second 

derivative of enthalpy and volume upon heating through glass transition region, i.e., 

the increase of isobaric heat capacity (Cp) and coefficient of thermal expansion 

(CTE), respectively. Therefore, the presence of glass transition distinguishes glass 

from other amorphous solids, and is normally characterized by glass transition 

temperature (Tg). The widely accepted definition of Tg for oxide glasses is the 

temperature where the viscosity of the supercooled liquid is 10
12

 Pa s [6-8]. Upon 

cooling from Tm to Tg, the dynamics (i.e., viscosity and relaxation time) increase 

several orders of magnitude, whereas the structural evolution in this temperature 

region is undetectable or moderate. Besides, for a series of glass forming liquids, 

variations of dynamics and thermo-physical properties with composition and 

temperature are complex when supercooled liquids approaching Tg, e.g., non-linear 

and/or non-exponential [9,10]. Hence, exploring structural origins of dynamics and 

thermo-physical properties for glasses and liquids is still a challenge, and the 

composition-temperature-structure-property relation need to be well understood in 

various systems. 

1.1. BACKGROUND AND CHALLENGES 

The field of glass science and technology broadens rapidly, and it offers researchers 

a variety of open questions. Important issues include the basic nature of glass 

transition and whether it is general for various systems. To explore the condition a 

liquid can form glass by melt-quenching, glass forming ability (GFA) is proposed 
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and original characterized by critical cooling rate (qcrit), i.e., the lowest cooling rate 

for glass formation [11-14]. Since the determination of qcrit is difficult and time-

consuming, a number of parameters have been proposed to indirectly reflect GFA, 

such as the Tg/Tm ratio, the difference in free energy between liquid and solid, and 

the liquid viscosity at Tm [15]. Nevertheless, structure and bonding are essential 

factors to determine how ease the liquid can form glass. Furthermore, structural 

evolutions with composition and temperature are fundamental to design glasses with 

outstanding properties. 

For oxide glasses, cations within the glass network are categorized by three types in 

the view of bonding character: network former, network modifier, and network 

intermediate. Network formers, e.g., B, Si, P, and Ge, are covalently bonded with 

oxygen to form polyhedra, constituting the framework of glass structure. In contrast, 

network modifiers change the topology and the connectivity of the glass network by 

virtue of the formation of ionic bonds with oxygen. For some oxide glasses such as 

aluminate and borate glasses, modifier cations play dual roles: in charge balancing 

network polyhedra such as [BO4]
-
 and [AlO4]

-
; in modifying the glass network by 

the formation of non-bridge oxygen (NBO). Network intermediate behaves in a way 

between network former and modifier, highly relying on the environment of network 

intermediate. Although a variety of glass systems have been thoroughly studied, the 

correlation between structure and properties for various glass systems has not been 

holistically explored. Therefore, it is necessary to make a comprehensive 

comparison among these correlations for entirely different glass systems. In this 

thesis, we choose four special glass systems: traditional oxide glass system 

containing both network former and network modifier (Na2O-CaO-B2O3-SiO2); 

mixed network former glass system without typical network modifier (B2O3-Al2O3-

SiO2-P2O5); germanate glass system with partial substitution of fluoride for oxide 

(BaF2-AlF3-GeO2); binary oxide glass system without typical network formers 

(CaO-Al2O3). 

Besides the structure, dynamics and thermodynamics of glasses and liquids are 

critical for understanding the origin of glass transition. Upon cooling from Tm to Tg, 

the viscosity increases in an Arrhenius or non-Arrhenius way with temperature for 

different liquids. Angell proposed a classification based on these varied behaviors of 

viscosity, i.e., liquid fragility [16,17]. The liquid fragility describes how fast the 

viscosity increases upon cooling, and is quantified by liquid fragility index m, i.e., 

the slope of log~ Tg/T curve at Tg. More fragile the liquid is, bigger m is. It is 

meaningful to explore how composition and structure influence m, providing 

opportunity to understand the mechanism of viscous flow. Moreover, the relation 

between liquid fragility and thermodynamics such as configurational heat capacity 

(Cp,conf) and configurational entropy (Sconf), is important. Although many studies 

obtained fruitful achievement [18-20], how to correlate these properties with 

structure in different systems is still a challenge. In addition, the ordered length scale 

of structure in glasses and liquids is not limited below 0.5 nm, i.e., short range order 
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(SRO). Ordered structures such as rings and superstructures have been observed in 

the length scale of 0.5-2 nm, i.e., intermediate range order (IRO) [21-24]. It is 

worthwhile to explore the influence of IRO structure on properties and interactions 

of different IRO structures for glasses and liquids. Revealing these correlations in 

various systems is helpful to design glasses with optimized properties by modifying 

compositions and controlling thermal histories. Moreover, these relations are helpful 

to understand the fundamental physics governing the glass transition. 

1.2. OBJECTIVES 

The objectives of the present Ph.D. thesis are summarized as follows:  

1. Reconcile the evolution of structure and thermodynamics with composition 

during glass transition region. 

 

2.  Explore the structure and the dynamics of liquids in stable and metastable 

states. 

 

3. Investigate the influence of structural heterogeneity on crystallization, 

phase separation, and phase transition in glasses and supercooled liquids. 

 

4. Clarify the correlation between structure, dynamics, and thermo-physical 

properties of various supercooled liquids. 

 

1.3. THESIS CONTENT 

This thesis is presented as a plurality, including an introductory overview followed 

by four journal papers (either published or submitted for publication). These papers 

constitute the main body of the thesis, and will be referred to by their roman 

numerals: 

I. H. Liu, M.M. Smedskjaer, H.Z. Tao, L.R. Jensen, X.J. Zhao, and Y.Z. Yue, “A 

medium range order structural connection to the configurational heat capacity of 

borate–silicate mixed glasses”, Physical Chemistry Chemical Physics, 18, 

10887 (2016). DOI: 10.1039/c6cp00749j 

 

II. H. Liu, R.E. Youngman, S. Kapoor, L.R. Jensen, M.M. Smedskjaer, Y.Z. Yue, 

“Nano-phase separation and structural ordering in silica-rich mixed network 

former glasses”, J. Phys. Chem. B, (under review). 

 

III. H. Liu, Y.B. Hu, Y.Z. Yue, “Nano-cluster formation in supercooled oxyfluoride 

germanate liquids”, J. Am. Ceram. Soc., (under review) 
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IV. H. Liu, R.K. Pan, W.L. Chen, Z.T. Shan, A. Qiao, J.W.E. Drewitt, L. Hennet, S. 

Jahn, D.P. Langstaff, H.Z. Tao, G.N. Greaves, Y.Z. Yue, “Reconciling 

rheology, phase transitions and structure across the extensive cementitious 

calcium-aluminate melts and glasses”, (to be submitted).



5 

CHAPTER 2. GLASS STRUCTURE 

Since a variety of glass properties strongly rely on their compositions, it is critical 

for understanding the structure of glass. Several theories have been proposed, such 

as Zachariasen’s Continuous Random Network Model (CRN) [25], Greaves’s 

Modified Random Network (MRN) [26], Compensated continuous random network 

model (CCRN) [27], and Phillips’ network constraint theory [28]. As classified in 

Section 1.1, typical network formers include SiO2, B2O3, P2O5, and GeO2. Alkali and 

Alkaline-earth oxides belong to typical network modifiers, and Al2O3 is one kind of 

network intermediates. The general structure of glasses with simple composition 

will be briefly discussed, and afterwards we will focus on the structure of four 

special oxide glasses.  

Compare to a crystal, the most remarkable difference in the structure of a glass is the 

lack of symmetry and periodicity in glass network. However, the short-range order 

of a glass is similar to the crystal with the same chemical composition, and hence 

can be well-defined and fully discussed in terms of the polyhedra of network former 

cations. It is manifested that bond lengths and angles within the polyhedra only vary 

in a narrow range [3]. The disorder of glasses is partly reflected by the broad 

statistical distribution of inter-polyhedral angles, dihedral angles, and a variety of 

types and sizes of rings which consist of the polyhedra [3]. In oxide glasses, most 

network former cations covalently bond with 3 or 4 oxygen to form triangle plane or 

tetrahedra, which constitute the glass network. Oxygen is distinguished by bridging 

oxygen (BO) and non-bridging oxygen (NBO), which is linked to two and one 

network former cation, respectively. The formation of NBO normally results from 

the addition of network modifier to the glass network. 

2.1. SIMPLE OXIDE GLASSES 

Among oxide glasses, silicate glasses are studied most extensively due to their 

widespread applications, ranging from window glass to optical fibres [3,29-32]. The 

network of silica glass at ambient pressure consists of SiO4 tetrahedra without NBO. 

Its distribution of O-Si-O angle within tetrahedra (maximum at 109.7°) is similar as 

that of SiO2 crystal, while its distribution of Si-O-Si angle between tetrahedra (varies 

from 120° to 180° and maximum at 144°) is much broader than that of SiO2 crystal 

[3,33]. The addition of alkali and/or alkaline-earth oxides partially breaks the silicate 

network by virtue of the formation of NBO [34-36]. As the content of modifier 

increases, SiO4 tetrahedra are gradually converted from Si(Q
4
) (SiO4 tetrahedra with 

4 BO) to Si(Q
3
), Si(Q

2
), Si(Q

1
), and Si(Q

0
), i.e., depolymerization of the silicate 

network.  

P2O5 is another typical network former. The high valence electron of P
5+

 causes the 

existence of terminal oxygen (TO) and the formation of P=O double bond in PO4 
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tetrahedra [3,37-40]. It should be noted that this short P=O bond is different with P-

NBO bond because of its significant π-bond character, arising from the additional 

valence electron of P
5+

 [39,40]. When modifiers enter phosphate network, BO is 

progressively converted to NBO [39,40]. Furthermore, TO and NBO becomes 

indistinguishable, which is a result of π-bond delocalization [39,40].The sequential 

depolymerization of phosphate network with the addition of network modifier 

oxides is similar as that for silicate network. 

Although B2O3 is also a typical glass former, boron trioxide and borate glasses 

behave differently compared with SiO2 glasses. For instance, B2O3 glasses exhibits 

low glass transition temperature Tg (515-575 K) and moderate liquid fragility 

(m=40), whereas SiO2 glass has high Tg (1500 K) and low m (20) [3,18]. 

Furthermore, B2O3 glass consists of a large amount of planar boroxol rings (B3O6) 

which are connected by each other or non-ring BO3 triangles [3,41,42]. Supercooled 

B2O3 liquid hardly crystallize under ambient pressure, because it needs significant 

structural rearrangement to form B2O3 crystal which is totally lack of boroxol ring 

[3]. When network modifier is added into B2O3 glass, three-fold coordinated boron 

(B
III

) species will be firstly converted to four-fold coordinated boron (B
IV

) species to 

form BO4 tetrahedra, which is charge compensated by modifier cations. If the 

fraction of B
IV

 reaches a critical value, the excess modifier leads to the formation of 

NBO with the consumption of BO4 tetrahedra. In borate glasses, NBO is 

energetically favorable to bond with B
III

 rather than B
IV

 [3,9]. The conversion 

between B
III

 and B
IV

 species causes abnormal changes of physical and thermal 

properties of glasses, which is called “boron anomaly”. For example, the initial 

addition of alkali and/or alkaline earth oxides results in an increase of Tg and a 

decrease of coefficient of thermal expansion (CTE), while further addition of 

network modifiers produces opposite trends [18,43,44]. The composition where 

threshold of property occurs depends on types of network modifiers. 

The structure of GeO2 glass is quite similar as that of SiO2 glass, i.e., consists of 

GeO4 tetrahedra [3,45]. The bond length of Ge-O is larger than that of Si-O and the 

bond angle of Ge-O-Ge is smaller than that of Si-O-Si, leading to the relative high 

concentration of structural defects and Ge-Ge bonds in GeO2 glass compared to SiO2 

glass [1-3]. As modifier oxides are initially added to GeO2 glass, part of four-fold 

coordinated Ge (Ge
IV

) species are transformed to five- or six-fold coordinated Ge 

(Ge
V
 or Ge

VI
) species [3,45-47]. Ge

V,VI
 species prefer to connect with GeO4 

tetrahedra through corner-shared oxygen by occupying low energy state instead of 

bonding with other Ge
V,VI

 polyhedra [47]. Furthermore, the long bond of Ge-O has 

effects on the environment of modifier cations in the network, giving rise to the 

formation of 6-membered rings and cavities where modifier cations might stay in 

when modifiers are initially added [3,45-47]. After the contents of isolated 

polyhedra (GeO5 and GeO6) and 6-membered rings saturate, further increase of 

modifier oxides causes three main structural changes, the conversion from Ge
V, VI

 

back to Ge
IV

, the formation of NBO in GeO4 tetrahedra, and the break of 6-
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membered rings. These changes of germanate structural units have significant 

effects on glass properties, i.e., “germanate anomaly”, which is similar as “boron 

anomaly” [45,47].  

2.2. BORATE-SILICATE GLASSES 

Borate-silicate mixed glass plays an important role in daily life and technologies due 

to their outstanding properties such as low CTE, high thermal and chemical 

resistance, and low dielectric constant [48-51]. Although the structure of borate-

silicate mixed glasses is complex, the SRO structure have been studied previously 

by performing Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray and 

neutron diffraction [48,52-56]. Basically, if B2O3 enters silicate network together 

with network modifiers, there is a competition between BO3 triangles and SiO4 

tetrahedra to bond with modifier cations, i.e., a competition between the formation 

of BO4 tetrahedra and that of NBO. The distribution of modifier cations and the 

fraction of specific structural units depend on the content and type of the modifier 

[52,53,57]. Based on the classic model proposed by Yun and Bray [21,58], a vast of 

studies explored the structural evolution of boron and silicon species with 

composition in various borate-silicate mixed glasses. It is found that modifier anions 

prefer to stay in borate network instead of silicate network if the modifier is 

insufficient [21,58-61]. However, more recent investigations inferred that modifier 

anions could be more randomly distributed between the silicate and borate network 

[62]. Moreover, many studies showed that the thermal history of glasses plays a 

critical role in determining the fraction of structural units. For example, B
III

 species 

are more favorable in the glass having high fictive temperature, and B
IV

 species form 

upon annealing for borosilicate glass fibers [59,63,64]. Recently, Smedskjaer et al. 

have explored the structural evolution of Na2O-CaO-B2O3-SiO2 glasses with varying 

B2O3/SiO2 ratio and successfully predicted glass properties by using two-state model 

and temperature-dependent constraint theory, respectively [18]. However, besides 

SRO structural units, borate-silicate mixed glasses also contain abundant 

intermediate range order (IRO) structural units, i.e., superstructures [21-24,54,65-

70]. Studies of Raman spectroscopy and neutron scattering verified the existence of 

various IRO superstructures containing B
IV

 throughout the compositional region of 

alkali borate glasses, giving rise to the multiple four-fold coordinated boron sites 

[23,24,65-67]. It is also implied that IRO superstructures and mixed Si-O-B units 

exist in borosilicate glasses [21,22]. Nevertheless, the evolution of IRO structure 

with composition has not yet been well understood for Na2O-CaO-B2O3-SiO2 

glasses.  

Table 2-1 shows the nominal chemical compositions of the studied glasses 15Na2O-

10CaO-(75q)B2O3-(75(1-q))SiO2, where q represents the mole ratio of 

[B2O3]/([B2O3]+[SiO2]). The details of glass preparation and characterization are 

described in Paper I. Fig. 2-1 shows the ternary phase diagram of (Na2O+CaO)-

B2O3-SiO2 obtained from [71]. Due to the existence of multiple network formers, 
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there is a potential for borate-silicate mixed glasses to exhibit phase separation 

which significantly affect glass properties [29,72-75]. Although some compositions 

(q=0.5, 0.6 and 0.68) are close to the boundary of phase separation region at 873 K, 

the Raman spectra performed on each sample with five different surface locations 

exhibit no differences. This confirms that there is no phase separation above size 

limit of Raman laser (~10 um) in all studied glasses. Furthermore, differential 

scanning calorimetry (DSC) curves are reproducible for each glass (Fig. 3 in Paper 

I), again verifying that studied glasses show no phase separation. 

Table 2-1 Nominal chemical compositions of 15Na2O-10CaO-(75q)B2O3-(75(1-

q))SiO2 glasses. R and K values are the molar ratio of ([Na2O]+[CaO])/[B2O3] and 

[SiO2]/[B2O3], respectively. 

q 

Nominal chemical 

composition (mol%) R K 

B2O3 SiO2 Na2O CaO 

0.08 6 69 15 10 4.17 11.50 

0.16 12 63 15 10 2.08 5.25 

0.32 24 51 15 10 1.04 2.13 

0.5 37.5 37.5 15 10 0.67 1.00 

0.6 45 30 15 10 0.56 0.67 

0.68 51 24 15 10 0.49 0.47 

0.84 63 12 15 10 0.40 0.19 

1.0 75 0 15 10 0.33 0 
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Figure 2-1 Ternary phase diagram of (Na2O+CaO)-B2O3-SiO2 system obtained 

from [71]. The numbers refer to the sample ID, q. The shaded area is the region of 

isothermal bimodal phase separation at 873 K. 

Fig. 2-2 shows the full range (250-1650 cm
-1

) Raman spectra of the studied Na2O-

CaO-B2O3-SiO2 glasses. In general, the Raman spectra are divided into three main 

regions: low-frequency (300-550 cm
-1

), medium-frequency (550-810 cm
-1

), and 

high-frequency (900-1600 cm
-1

) regions [42,76-80]. In the low-frequency region, the 



CHAPTER 2. GLASS STRUCTURE 

9 

Raman spectrum of each glass exhibits a broad band which is a sum of several 

Raman peaks. The structural assignments of these Raman peaks depend on 

composition. According to literature [24,59,61,63,64,70,76,81], for the silica-rich 

composition (q<0.32), the broad band mainly corresponds to the breathing vibrations 

of Si-O rings and the stretching and bending vibrations of Si-O-Si bonds. Peaks 

located at ~445 and ~465 cm
-1

 arise from network deformation of large size and 

small size Si-O rings, respectively. The bands of Si(Q
4
), Si(Q

3
), and Si(Q

2
) appear at 

~495, ~540, and ~590 cm
-1

, respectively. As the content of B2O3 increases in the 

silica-rich compositions (q=0.08-0.32), the broad band shifts towards lower 

frequency from ~580 to ~500 cm
-1

, implying the decrease of the number of NBO in 

Si(Q
n
). This is because some of the added boron is B

IV
 species which are charge 

compensated by modifiers. In addition, NBO is normally bonded to Si and B
III

 

instead of B
IV

, because NBO-B
IV

 bonding will accumulate negative charges and 

induce modifier clusters which are not favorable in the view of thermodynamics. 

Further increase of B2O3 content above q=0.32 leads to the partial conversion from 

Si-O-Si units to mixed B
III

-O-Si units, and hence the broad band shifts from ~500 to 

~530 cm
-1

 [70]. In the high-frequency region, two separated broad bands appear in 

the region of 900-1200 and 1250-1600 cm
-1

, respectively [76]. The broad band in 

900-1200 cm
-1

 consists of multiple peaks attributed to various vibration modes, i.e., 

stretching vibration of Si-BO in Si(Q
3
) and Si(Q

4
), the stretching vibration of B

III
-O-

Si bond, and the asymmetric stretching vibration of B-BO in BO4 tetrahedra. The 

two bands shift towards to lower frequency as increasing B2O3 content. Furthermore, 

the band shape changes with composition, indicating that structural species vary as 

B2O3 content increases. We infer that the vibration modes corresponding to these 

peaks gradually change from stretching vibrations of Si-BO in Si(Q
3
) and Si(Q

4
) to 

those of B
III

-O-Si and BO4. In boron-rich compositions, the evolution of the peaks 

with composition reflects the change in the ratio of B
IV

 to (B
III

+B
IV

), i.e., N4 

[23,70,82]. The band in 1250-1600 cm
-1

 corresponds to the stretching vibrations of 

BO3 units. These BO3 units include major non-ring BO3 with one or two NBOs and 

minor BO3 in boroxol ring, which are characterized by peaks at  ~1400 and ~1250 

cm
-1

, respectively [83]. 
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Figure 2-2 Raman spectra for Na2O-CaO-B2O3-SiO2 glasses. 
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IRO structural units give rise to Raman peaks in the medium-frequency region 

[42,59,61,76,79]. We deconvolute the Raman spectra in 550-810 cm
-1 

based on 

literature [23,24,48,84-86]. The method of Raman peak deconvolution and the 

assignments of deconvoluted peaks are described in Paper I. Fig. 2-3 shows the 

evolution of IRO structural units with varying q by assuming the integrated area of 

each deconvoluted Raman peak is approximately proportional to the content of its 

corresponding IRO structure [68,87,88]. As q increases, the content of the mixed B-

O-Si network unit (danburite-like ring) first increases and then decreases. The 

presence of mixed B-O-Si units indicates that initially added boron are mainly in B
IV

 

species and distribute in silicate network in a certain way rather than forming 

isolated clusters [61]. As the content of B
III

 increases, it is favorable for BO4 

tetrahedra to bond with B
III

 to form borate superstructures instead of staying in the 

silicate network. This is confirmed by the formation of 6-membered borate rings 

with B
IV

 by consumption of mixed B-O-Si units with further increase of the B2O3 

content above q=0.32. Furthermore, the 6-membered borate ring is most sensitive to 

the B2O3/SiO2 ratio compared to other IRO units. Although N4 decreases as q 

increases [18,86,89,90], the content of BO4 tetrahedra increases with q, leading to 

the decrease of the fraction of SiO4 tetrahedra with NBOs (Fig. 2-2). This is 

consistent with the previous findings that when the ratio of SiO2 to B2O3 is below 

0.5, almost all modifier cations act as charge compensators for B
IV

 [58]. As the B2O3 

content increases, Na
+
 and Ca

2+
 cations accumulate around these structural units due 

to the negative charge localization.  

Hence, we propose the structural evolution with varying B2O3/SiO2 ratio for Na2O-

CaO-B2O3-SiO2 glasses. In the silica-rich glasses, most of boron atoms are B
IV

 

species bonded with SiO4 tetrahedra to form mixed B-O-Si units, which is a result of 

insufficiency of B
III

 species. As B2O3 content increases, the fraction of B
III

 species 

increases, and hence borate superstructure rings form by consumption of mixed B-

O-Si units. This indicates the distribution of BO4 units has a close correlation with 

the content of BO3 within borate ring. Meanwhile, the contents of chain- and ring- 

type metaborate groups vary non-monotonically with maximum at q=0.5 and 

minimum at q=0.84, respectively, indicating there is a competition between the 

formation of BIV species and NBO. As q increases above 0.6, 6-membered borate 

ring with B
IV

 becomes dominant among IRO structures, and almost all modifier 

cations are used to charge compensate BO4 units. 
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Figure 2-3 Composition dependence of deconvoluted Raman peak area of various 

IRO units. 

2.3. MIXED NETWORK FORMER GLASSES 

Mixed network former glasses are technically important due to their low CTE and 

Young’s modulus [91-99]. They also have high liquidus viscosities (>3×10
4
 Pa s), 

which are advantageous for glass formation [91,96]. Furthermore, unique structural 

features occur in this kind of glasses, e.g., the preferred formation of AlPO4 and 

BPO4 units in which P bond to 4 BOs (P(Q
4
)) for ternary and quaternary mixed 

network former glasses [91,93,94,96]. It has been reported that there is a preference 

for Al-O-P compared to B-O-P association in B2O3-Al2O3-SiO2-P2O5 quaternary 

glasses [91], whereas BPO4 units have higher priority to form than AlPO4 units in 

B2O3-Al2O3-P2O5 ternary glasses [94]. However, the existence of these crystal-like 

structures (AlPO4 and BPO4) and multiple network formers could have great 

potential to cause phase separation for the mixed network former glasses, which 

have not been well understood. Therefore, we explored the structure of xB2O3-

4Al2O3-(86-x)SiO2-10P2O5 (x=17, 23, 25, 27, 29, 31) glasses. The analyzed chemical 

compositions are shown in Table 2-2, which is in agreement with the nominal 

compositions. 

Table 2-2 Glass ID and corresponding analyzed chemical composition (mol%) of 

xB2O3-4Al2O3-(86-x)SiO2-10P2O5 glasses. 

Glass ID 
Analyzed Composition (mol%) 

SiO2 B2O3 Al2O3 P2O5 

B16 70 16.06 3.92 9.88 

B22 64.3 22.05 3.81 9.78 

B24 62.45 23.76 3.83 9.89 

B26 60.33 25.86 3.83 9.91 

B28 58.41 27.71 3.85 9.95 

B30 56.09 29.97 3.84 10.03 
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Fig. 2-4a shows the 
27

Al MAS NMR spectra of the studied glasses. For the B16 

glass, the spectrum consists of three Al resonances centered around 38, 6 and -19 

ppm, corresponding to four-, five-, and six-fold coordinated aluminum (Al
IV

, Al
V
, 

and Al
VI

) environments, respectively. These resonances shift to higher shielding 

compared to those usually observed in aluminosilicate glasses. This is because the 

existence of P as the next-nearest neighbor (NNN) of AlOx polyhedra and the higher 

electronegativity of P compared to that of Si [100]. This is illustrated by the close 

similarity of the resonance of Al
IV

 in these studied glasses and that in AlPO4 (~40 

ppm) [91,101]. Al
V
 and Al

VI
 species are present as charge-balancing polyhedra due 

to the lack of any traditional modifiers in studied glasses [102]. As increasing the 

B2O3 content, the spectra remain unchanged in terms of peak positions but slight 

changes in Al coordination number occur, i.e., the population of Al
IV

 species 

increases and those of Al
V
 and Al

VI
 species. The resonance of Al

VI
 overlaps with the 

more intense resonance of Al
V
. Moreover, the population of Al

VI
 species remains in 

the range of 2-3 % for all compositions. Therefore, it is difficult to quantify the 

fraction of Al
VI

 species for each composition. The estimated average coordination 

number of Al slightly decreases from 4.25 to 4.23 as the B2O3 content increases.  

Fig. 2-4b shows the
 11

B MAS NMR spectra, containing a broad line between 2-20 

ppm and a narrow peak near -4 ppm, which correspond to the resonances of B
III

 and 

B
IV

 species, respectively. The deconvoluted B
III

 broad line has three unique 

resonances. Two of them correspond to ring and non-ring B
III

 species with isotropic 

chemical shifts of 17.5 and 14 ppm, respectively, which are typically observed in 

borosilicate glasses. The third peak at 12 ppm is attributed to B
III

 species with P 

NNN. As the B2O3 content increases, the peak of ring B
III

 becomes more prominent. 

Specifically, approximately 4.6% of B
III

 species are in ring sites for B16 glass, 

increasing to 19.7 % for B30 glass. 

The narrow peak near -4 ppm in 
11

B MAS NMR spectra consists of two resonances 

of B
IV

 species centered at -4.2 and -2.0 ppm, corresponding to B
IV

 species in BPO4 

units and those with a mix of P and Si as NNN, respectively. As the B2O3 content 

increases from B16 to B30 glass, N4 decreases from 26.8% to 17.5%. 82% of B
IV

 

species are in BPO4 units for B16 glass, dropping to 78-80% for other glasses. 

Fig. 2-4c shows 
31

P MAS NMR spectra, which is composition independent. Each 

spectrum can be fit with a single Gaussian peak at -33.7 ppm. The FWHM is 

approximately 16 ppm, and the peak position varies less than 0.5 ppm with the 

composition. This peak corresponds to the resonance of P(Q
4
) (PO4 tetrahedra with 4 

BOs) bonded to Al (AlPO4 units) and B (BPO4 units). The insensitivity of 
31

P MAS 

NMR spectra with composition indicates that changes in B2O3 content do not 

significantly affect the phosphorus speciation. In addition, we cannot fully exclude 

the existence of other phosphate groups such as P(Q
3
), because they might be hidden 

by the P(Q
4
) resonances. Furthermore, the breadth of the peak at -33.7 ppm makes it 

difficult to quantitatively resolve P speciation. Nevertheless, 
31

P MAS NMR spectra 
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verify that most P is in AlPO4 and BPO4 units, which is consistent with the results 

from 
27

Al and 
11

B MAS NMR spectra and previous studies [91]. 
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Figure 2-4 (a) 
27

Al, (b) 
11

B, and (c)
 31

P MAS NMR spectra of studied glasses. In (b), 

B
IV

(Si, P) represents BO4 tetrahedra with Si and P as NNN, while B
IV

(P) means B
IV

 

species in BPO4 environments. 

Fig. 2-5 shows the full range (200-1400 cm
-1

) Raman spectra of the studied mixed 

network former glasses. In general, the Raman spectrum of each glass consists of 

five bands and can be divided into three frequency regions [103-107]. In the low 

frequency region (200-620 cm
-1

), the intense peak at ~460 cm
-1

 is attributed to 

symmetric stretching vibration of Si-O-Si bond, while the shoulder at ~330 cm
-1

 is 

assigned to pyrophosphate-type species (P(Q
1
), i.e., PO4 tetrahedra with 1 BO and 3 

NBOs [103]. As the B2O3 content increases, the intensity of the shoulder slightly 

decreases, indicating P(Q
1
) species are partially converted to other phosphate species. 

In the medium frequency region (620-850 cm
-1

), there are two weak bands and one 

sharp peak in the region of 660, 710, and 805 cm
-1

, respectively. According to 

literature, we infer that the first two bands could be resulted from vibrations of B-O-

B superstructures and P(Q
2
)-O-P(Q

2
) chain-like structures [103-105], and the sharp 

peak at ~805 cm
-1

 corresponds to the breathing vibration of boroxol ring [106]. The 

two weak bands at 660 cm
-1 

and 710 cm
-1 

are composition independence, while the 

one at 805 cm
-1 

becomes significantly intense with the addition of B2O3, implying 

that large amount of added boron are B
III

 species in boroxol rings. In the high 

frequency region (850-1350 cm
-1

), there are three distinct bands in the region of 

850-980, 1100-1250, and 1270-1350 cm
-1

, respectively. Vibrations of P(Q
n
) and 

Si(Q
n
) species give rise to the first two bands [103]. A remarkable shoulder exists at 

1080 cm
-1

 in the second band, which is a signature of the presence of BPO4 and 

AlPO4 structures [103]. The intensity of this shoulder increases as SiO2 is gradually 

substituted by B2O3, indicating the increase of boron has a positive effect on the 

formation of P(Q
4
) species. The last band reflects the stretching vibration of P=O 

double bond [107]. As B2O3 content increases, the intensity of this band decreases 

obviously, which is consistent with the changing trend of the shoulder at 1080 cm
-1

, 

i.e., more P(Q
4
) species forms and less P(Q

3
-Q

1
) species exist by virtue of the partial 

replacement of SiO2 with B2O3.  
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Figure 2-5 Raman spectra of studied mixed network former glasses. 

According to previous studies [91-99], for mixed network former glasses containing 

B2O3, Al2O3, and P2O5, there is a competition between B
IV

 and Al
IV

 to be associated 

with P
4
 to form BPO4 and AlPO4 units, respectively. From NMR results, it is found 

that the content of AlPO4 units is approximately constant with the increase of B2O3 

content, indicating the formation of AlPO4 is favored over that of BPO4 in studied 

B2O3-Al2O3-SiO2-P2O5 glasses. This implication is consistent with literature [91-96]. 

However, our structural characterizations (NMR and Raman) also show some 

unexpected implications. For studied glasses, we maintain a constant P:Al ratio 

(~2.5) larger than 1, and hence, it is expected that all Al should be in Al
IV

 sites 

regardless of the substitution of boron for silicon [91,92]. Moreover, the content of 

(Al2O3+B2O3) is much larger than P2O5 content, and hence, all P should be in P(Q
4
) 

species and form AlPO4 and BPO4 units [91,93,96]. Strikingly, as illustrated by 
27

Al 

MAS NMR results, Al
V
 and Al

VI
 species exist in all studied compositions, implying 

AlPO4 units cannot completely form. The presence of Al
V
 and Al

VI
 species 

accompanies the formation of other P species, e.g., P(Q
2
), as illustrated by Raman 

spectra. As the B2O3 content increases, the population of  Al
V
 and Al

VI
 slightly 

decrease while that of BPO4 unit increases, leading to the increase of P(Q
4
) content. 

This is consistent with the weakening of the Raman peak at 1300 cm
-1

. Therefore, 

we infer that, for B2O3-Al2O3-SiO2-P2O5 glasses, there is always a tendency for P to 

form species other than P(Q
4
) even the ratio of (Al2O3+B2O3)/P2O5 is much larger 

than 1. However, this tendency becomes weaker as increasing the ratio of 

(Al2O3+B2O3)/P2O5. 

Since the content of Al2O3 is small (~4 mol%) for all studied glasses, we use the 

ternary composition diagram of B2O3-SiO2-P2O5 (Fig. 2-6) obtained from [108] to 

explore the immiscible composition region and the possible phase separation. The 

phase separation becomes easier when the glass composition deviates from that in 

the glass formation region (region II in Fig. 2-6) towards B2O3 apex [108]. Therefore, 

our studied glasses have possibility to exhibit phase separation. This is confirmed by 

our results of differential scanning calorimetry (DSC), i.e., the existence of two 

distinct glass transition regions, which will be discussed in Section 3.2. In contrast, 

Raman spectra performed on five different surface locations for each glass show no 
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significant difference, indicating the possible size of phase separation region should 

be less than 2 μm, i.e., the resolution limit of Raman laser.  
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Figure 2-6 Ternary composition diagram of B2O3-SiO2-P2O5 system. Regions I and 

II are the regions of glass-ceramic and glass formation, respectively. 

To further explore the phase separation, we performed scanning electron microscopy 

(SEM) and energy-dispersive X-ray spectroscopy (EDS) on as-prepared and etched 

B28 glasses. Two acids (HCl and HF) with different concentration (5% and 10%) 

were used and etching duration varied from 30 s to 10 min. Both HCl and HF 

etching remove droplets (50-100 nm) from the glass matrix (Fig. 2-7). For HCl 

etching, the droplets are relatively separate from each other, while those are 

interconnected in the glass matrix for HF etching, which is similar to the early stage 

of spinodal phase separation [109]. Due to the light mass of boron, we exclude B 

and O elements, and calculate the atomic percentage (atom%) of Si, Al, and P for as-

prepared and etched B28 glasses based on analyzed composition and EDS results 

(Table 2-3). After HCl etching, Al and P atom% of the glass significantly decrease, 

indicating that one glass phase dissolved in HCl is boron-rich and contains some P 

and Al. After HF etching, Si, Al, and P atom% keep unchanged, indicating two glass 

phases are simultaneously dissolved in HF. In addition, we performed Raman 

measurement on B28 glass etched by 10% HCl for 10 min (Fig. 2-8). After HCl 

etching, the bands at ~450, 950, and 1300 cm
-1

 become intense, while the intensity 

of the peak at 805 cm
-1

 significantly decreases. This implies that the dissolved glass 

by HCl is boron-rich and might contain some of BPO4 and AlPO4 units, which is in 

good agreement with EDS results. Therefore, the structure of the droplet shown in 

SEM images (Fig. 2-7) could be rich in boroxol rings and the matrix could consist of 

B-O-Si network. 
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Figure 2-7 SEM images of B28 glasses etched by (a) 10% HCl and (b) 10% HF for 

10 min. 

Table 2-3 Si, Al, and P atom% of as-prepared and etched B28 glasses. B and O 

atom% are excluded from analyzed composition and EDS results. 

Atom% as-prepared HCl etched HF etched 

Si 67.91 75.01 67.79 

Al 8.95 6.36 8.66 

P 23.14 18.63 23.54 
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Figure 2-8 Raman spectra of as-prepared B28 glass (black) and the one etched by 

10% HCl for 10 min (red).  

2.4. OXYFLUORIDE GERMANATE GLASSES 

Oxyfluoride germanates have high glass-forming ability, excellent chemical and 

mechanical stabilities [110-114]. In addition, the heavy mass of germanium 

guarantees germanate glasses being good candidates of infrared windows operating 

in the 0.5-5 μm region [115,116]. More importantly, since oxyfluoride germanate 
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glasses have low phonon energies, they are good candidates of photoluminescence 

materials if rare-earth ions are doped [45,47,110-113,117-120]. Hence, many studies 

focused on their luminescence properties and the environment of doped rare-earth 

ions [113], whereas the relation between structure and phase transition has not been 

well understood. 

As mentioned in Section 2.1, Ge
4+

 can covalently bond with different number of 

oxygen (i.e., 4-, 5-, and 6-fold coordinated Ge species). The distribution of Ge
IV

, 

Ge
V
, and Ge

VI
 depends on the content and type of network modifiers. When part of 

O
2-

 is substituted by F
-
, properties of glasses and liquids significantly change, arising 

from their different degrees of polarization. Although their ionic radii are similar 

(126 pm for O
2-

 and 119 pm for F
-
), M-F bond (M: metallic cation) is more ionic 

than M-O bond, leading to the increase of the crystallization rate upon heating the 

glass well above Tg [111,119]. In this section, we explore the structure and 

crystallization of 60GeO2-25BaF2-15AlF3 glass by using X-ray diffraction (XRD) 

and high-resolution transmission electron microscope (HR-TEM). The glass 

preparation is described in Paper 2. To obtain dynamically heated glasses, the as-

prepared glass was heated to different temperatures (Td) above Tg in differential 

scanning calorimetry (DSC) at 20 K/min and cooled down to room temperature. Td 

corresponds to either the onset or the peak temperatures of each crystallization peak 

shown in Fig. 2-9. The dynamically heated glasses are used to identify crystalline 

phases and explore the structural evolution with Td. 
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Figure 2-9 The DSC first upscan curve of as-prepared glass 60GeO2-25BaF2-

15AlF3 at 20 K/min.  

Fig. 2-10 shows XRD patterns of as-prepared glass and dynamically heated glasses. 

It is clearly seen that four crystalline phases progressively form. BaGeO3 (JCPDS: 

73-1438) starts to form when Td reaches 848 K. Further increase of Td from 903 to 

986 K leads to the formation of BaF2 (JCPDS: 85-1342) and GeF4 (JCPDS: 84-

1559). As Td reaches 1017 K, the main crystalline phase BaAl2Ge2O8 (JCPDS: 70-

0562) forms. The XRD patterns of the glasses with Td =903, 925, and 943 K exhibit 
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same Bragg peaks but enhanced intensities as Td increases, indicating BaF2 and GeF4 

form simultaneously in the region of 903-943 K. This is consistent with the partial 

overlap of the two exothermic peaks at 903 K and 943 K in Fig. 2-9.  
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Figure 2-10 XRD patterns of as-prepared glass and dynamically heated glasses. 

Fig. 2-11 shows TEM images of three glasses, i.e., as-prepared glass, daynamically 

heated glasses with Td=943 and 1017 K. Strikingly, for the glass with Td =943 K, 

three regions are clearly observed: one crystalline phase, one amorphous matrix, and 

nano-clusters with a size of 5-20 nm. The coexistence of crystalline and amorphous 

phases is further confirmed by the selected area electron diffraction (SAED) pattern 

(inset of Fig. 2-11b). The occurrence of nano-clusters indicates the significant 

structural heterogeneity of the dynamically heated glass. In contrast, the nano-

clusters vanish and the glass fully crystallizes when Td further goes up to 1017 K 

(Fig. 2-11c), which corresponds to the temperature of the main crystallization peak 

in the DSC curve (Fig. 2-9). 

   

Figure 2-11 High-resolution TEM images of (a) as-prepared glass, and dynamically 

heated glasses with (b) Td=943 K and (c) Td=1017 K. The insets show the selected 

area electron diffraction (SAED) patterns. 

2.5. CALCIUM ALUMINATE GLASSES 

Binary calcium aluminate glasses are of technical interest owing to their widespread 

applications in infrared windows, laser hosts, high-strength optical fibers, and photo-
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memory materials [121-123]. However, due to the lack of typical network formers, 

binary calcium aluminates have poor glass forming ability compared to other typical 

oxide glass forming systems. Although some CaO-Al2O3 glasses and liquids have 

been investigated [124-138], the intervention of fast crystallization upon cooling 

limits the temperature region of supercooled liquids and the composition region of 

glass formation. Laser-heated aerodynamic levitation furnaces (ALF) give us 

opportunities to overcome these difficulties. Due to the high cooling rate (10
2
-10

3
 

K/s) [139] and containless technique, we prepared xCaO-(1-x)Al2O3 glasses in a 

wide compositional region, i.e., 0.37<x<0.83 (Table 2-4), which is much wider than 

that (0.6<x<0.7) by using conventional melt-quenching method [140-144]. 

Furthermore, ALF can help us investigate structure, physical properties, and 

dynamics of the supercooled liquids. In this section, we first introduce ALF and then 

discuss structure and crystallization of CaO-Al2O3 glasses and liquids. 

Table 2-4 Glass ID and composition of studied CaO-Al2O3 glasses. 

Glass ID 
Chemical composition (mol%) 

CaO Al2O3 

CA2 33.3 66.7 

CA 50 50 

C12A7 63.2 36.8 

C3A 75 25 

C5A 83.3 16.7 

 

Aerodynamic Levitation Furnace (ALF) 

Fig. 2-12 shows an overview of the ALF. The CaO-Al2O3 sample in the chamber (2) 

is fast heated to 3000 K by two CO2 laser beams (5) from the top and bottom, 

respectively. The inert gas enters the chamber together with the bottom CO2 laser to 

levitate the sample. The acoustic excitation system (3) provides a conventional sine 

wave to activate the levitated droplet to oscillate vertically. After switching off (3), 

the decay of the oscillation amplitude with time is monitored by the high speed 

camera (4) and hence the radius and the viscosity are determined. The temperature 

measurements are carried out using the single-color pyrometer (1). After switching 

off (5), the liquid droplet will be quenched to form glass sphere. 
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Figure 2-12 Schematic of the aerodynamic levitation furnace. (1) pyrometer, (2) 

aerodynamic levitation chamber, (3) acoustic excitation system, (4) high-speed 

camera, and (5) top and bottom CO2 lasers. 

Structure of CaO-Al2O3 liquids and glasses 

Fig. 2-13 shows pair distribution functions G(r) of CaO-Al2O3 liquids derived from 

experimental neutron diffraction and molecular dynamic (MD) simulation. For the 

four compositions, there are three peaks at ~1.8, ~2.4, and ~3 Å, corresponding to 

Al-O, Ca-O, and O-O bond, respectively. The insensitivity of the peak positions of 

the first and third peaks with composition indicates AlO4 tetrahedra are little 

distorted by the addition of CaO. As the fraction of CaO mole content (C/(C+A) 

ratio) increases, Ca-O peak becomes obvious, indicating the formation of CaOx 

polyhedra, i.e., less Ca
2+

 is used to charge compensating AlO4 tetrahedra. In 

addition, it is clearly seen that the simulation results are in good agreement with the 

experiments, confirming the reasonability of the liquid structure obtained from MD 

simulation. Fig. 2-14 shows abundant structural features of CaO-Al2O3 liquids 

derived from MD simulations. As C/(C+A) ratio increases from CA2 to C3A, Al
IV

 

species become dominant (from 74.79% to 93.04%), while the fraction of Al
V
 

decreases to less than 10% in C3A. Al
VI

 species only exist in CA2 glass (1.59%). 

For O species, tricluster oxygen (O
3
) exists in the glasses from CA2 to C12A7. As 

increasing C/(C+A) ratio, the fraction of NBO and that of free oxygen (O
0
) increase, 

while that of BO exhibits a non-monotonic trend with a maximum at CA. The MD 

results confirm the existence of abundant structural species in CaO-Al2O3 liquids 

such as O
3
, O

0
, and Al

V, VI
 species.  
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Figure 2-13 Pair distribution function G(r) of studied CaO-Al2O3 liquids. Black 

curves are derived from molecular dynamics simulations and colorful curves are 

derived from neutron scattering results. 
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Figure 2-14 Composition dependence of (a) O species and (b) Al species in CaO-

Al2O3 liquids. O
3
, O

2
, O

1
, and O

0
 represent tricluster, BO, NBO, and free oxygen, 

respectively. Al
IV

, Al
V
, and Al

VI
 represent four-, five-, and six-fold coordinated Al 

species, respectively. The filled data connected by dashed lines are MD simulation 

results and the hollow data are neutron diffraction results. 

Fig. 2-15 shows the Raman spectra of studied CaO-Al2O3 glasses in the range of 50-

1100 cm
-1

. In the THz region of each spectrum, the peak at ~88 cm
-1

 is the boson 

peak, and the peak at ~120 cm
-1

 corresponds to the rattling motion of Ca
2+

 in its 

oxygen cage. In the high frequency region (400-1000 cm
-1

), each spectrum consists 

of two broad bands in the region of 400-650 cm
-1

 and 650-1000 cm
-1

, respectively. 

The former one is attributed by the vibration of BO in Al-O-Al linkage [145-147], 

and the latter one corresponds to the Al-O stretching vibrations in Al(Q
n
). As 

C/(C+A) ratio increases, the peak position of the low-frequency band has no 

significant change, whereas that of the high-frequency one shifts non-monotonically, 

i.e., firstly to lower frequency and then to higher frequency. This indicates the 

average angle of BO keeps at ~120° and C12A7 has the structure with most efficient 

atomic packing. Furthermore, as C/(C+A) increases, the intensity of the low-
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frequency band
 
changes non-monotonically with a minimum at C12A7, indicating 

the degree of glass network connectivity initially decreases and increases further. 

This is consistent with the variation of Tg with composition as will be discussed in 

Section 3.4. In contrast, the high-frequency band
 
becomes asymmetrically broad. 

According to previous studies [147-151], there is no consistent interpretation of the 

broadness, remaining ambiguous without a detailed theoretical vibrational analysis. 

We infer that the broadness might be associated with the distribution of different 

Al(Q
n
) tetrahedra in the network. 
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Figure 2-15 Raman spectra of studied C-A glasses. 

Fig. 2-16 shows the compositional dependence of calcium clusters containing 

different number of CaOx polyhedra, which is derived from MD and RMC 

simulations of G(r) [140]. For CaO-Al2O3 melts, isolated and small clusters 

aggregate to form medium clusters from CA2 to CA, and ultimately form large 

clusters when the CaO content reaches 75%. For glasses, the development of cluster 

aggregation starts at lower CaO content, indicating the accumulation of CaOx 

polyhedra to form large clusters upon quenching the melts. 

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

CA

C3A

 

 

F
ra

c
ti
o
n
 o

f 
C

a
-O

 c
lu

s
te

r

C/(C+A)

 large (~165)

 medium (10-35)

 small (2-9)

 isolated

Melts

CA2

(a)

 

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0
(b)

 

 

F
ra

c
ti
o

n
 o

f 
C

a
-O

 c
lu

s
te

r

C/(C+A)

 large (~165)

 medium (10-35)

 small (2-9)

 isolated

Glass

CA

CA2

 
Figure 2-16 Distribution of clusters containing CaOx polyhedra with various sizes 

for CaO-Al2O3 (a) melts and (b) glasses. Out of 172 units: Large ~165 units (red), 

Medium 10-35 units (blue), Small units 2-9 units (pink), Isolated units (olive). 
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Crystalline phases are examined by performing XRD on heat-treated CaO-Al2O3 

glasses (Fig. 2-17). The temperatures of heat treatments are crystallization peak 

temperatures determined by DSC measurements (see Section 3.4). Since there are 

two crystallization peaks in the DSC curve for C12A7 glass, two peak temperatures 

are used to obtain two heat-treated C12A7 samples, i.e., high temperature one 

(C12A7-HT) and low temperature one (C12A7-LT), respectively. It can be seen that 

Ca12Al14O33 and Ca3Al2O6 are main crystalline phases of heat-treated C12A7, C3A, 

C5A, and CA. For CA2, the main crystalline phase is of CaAl4O7. All the 

identifications of crystals in our heat-treated CaO-Al2O3 samples are consistent with 

those in the binary phase diagram reported previously [152,153]. 

 
Figure 2-17 XRD patterns of heat-treated CaO-Al2O3 glasses. C12A7 glasses were 

heat-treated at two crystallization peak temperatures, corresponding to the high 

temperature heat-treated sample (C12A7-HT) and the low temperature heat-treated 

sample (C12A7-LT), respectively. 
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CHAPTER 3. PHASE TRANSITIONS 

Phase transitions involve many critical issues, e.g., glass transition, crystallization, 

and melting. The thermodynamics characterizing these phase transitions include 

enthalpic and entropic responses, and characteristic temperatures such as Tg, Tc 

(crystallization peak temperature), and Tm. When equilibrium liquid is cooled below 

its melting point (Tm), it will become supercooled, and its Gibbs free energy 

continues increase and surpasses that of its crystalline phase, leading to the 

thermodynamic favor of the formation of the crystal [154-157]. However, the 

supercooled liquid can bypass the crystallization and ultimately be frozen-in to form 

glasses if the cooling rate is high enough, because the viscous flow hinders efficient 

atomic arrangements. During the supercooling process, both atomic vibrations and 

the structural configurations continuously decreases, which are reflected by a loss of 

the vibrational and configurational entropy (Svib and Sconf), respectively, constituting 

the excess entropy of the supercooled liquid to the crystal. During the glass 

transition, most part of Svib and Sconf vanishes. The fraction of Svib in the excess 

entropy at Tg depends on the kinetic fragility of the liquid [158]. The liquid-to-glass 

transition can be seen as a partitioning process involving a break of ergodicity, 

avoiding the continuous decrease of the excess entropy of the liquid and 

circumventing the Kauzmann paradox [159]. In this chapter, we mainly investigate 

thermodynamics of glass transition, crystallization and phase separation. 

3.1. BORATE-SILICATE GLASSES 

To explore thermodynamics of glass transition, we performed DSC on the studied 

Na2O-CaO-B2O3-SiO2 glasses as described in Paper I. The glass transition 

temperature (Tg) is determined as the onset temperature of the glass transition in the 

isobaric heat capacity (Cp) curve where its upscan rate and prior downscan rate are 

10 K/min [6,8,160]. The Cp jump is the difference of the Cp between that of the glass 

and that of the liquid at Tg, i.e., Cp. Cp consists of vibrational and configurational 

contributions, i.e., Cp,vib and Cp,conf, respectively. The glassy state primarily contains 

vibrational degrees of freedom, i.e., Cpg≈ Cp,vib, where Cpg is the glass Cp 

[43,161,162]. The liquid state contains both vibrational and configurational degrees 

of freedom, i.e., Cpl=Cp,vib+ Cp,conf, where Cpl is the liquid Cp [44,163]. For relatively 

strong glass forming liquid, i.e., liquid fragility index m is below 60, Cp,vib changes 

little through glass transition, i.e., Cp,vib (glass) is nearly equal to Cp,vib (liquid) at Tg. 

Hence, the Cp primarily consists of Cp,conf, i.e., Cp,conf(Tg) ≈ Cpl - Cpg = Cp. This is 

the case for our studied glasses according to previous study [18]. 

As shown in Fig. 3-1, Tg exhibits a non-monotonic variation with a maximum at 

q=0.16 as increasing B2O3 content. Since Tg depends on the bonding strength and the 

network connectivity, the non-monotonic evolution of Tg with composition indicates 
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the polymerization of silicate network increases upon the initial addition of B2O3 

until q=0.16, and then decreases with further addition of B2O3 until the formation of 

borate network. The formation of NBO and the structural transformation between 

BO3 and BO4 units significantly influence the connectivity of glass network. In 

addition, Cp,conf(Tg) increases rapidly with increasing q for both the silica- and 

borate-rich compositions, while keeps an approximately constant value in the 

compositional range 0.32<q<0.84. The difference in Cp,conf(Tg) of silica-rich glass 

(q=0.08) and borate glass (q=1.0) is 32 J mol
-1

 K
-1

. In Fig. 3-2, we can see the N4 

value (ratio of B
IV

 to total B) cannot fully explain the composition dependence of 

Cp,conf(Tg). For borate glasses, the Cp,conf(Tg) is found to be mainly caused by the 

structural change in SRO, i.e., the enthalpy change (H) of the conversion between 

B
III

 and B
IV

 determined by using Van’t Hoff equation at different fictive 

temperatures [164,165]. However, this structural change can only give minor 

contribution (25%) to Cp,conf(Tg) for borate-silicate glasses (Fig. 3-3). Therefore, 

neither N4 nor the structural transformation from BO3 to BO4 give rise to the main 

change of Cp,conf(Tg) with composition in borate-silicate glasses. We infer IRO 

structural units could have effects on Cp,conf(Tg) [166,167], which will be discussed 

in Section 5.1. 
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Figure 3-1 The evolution of Cp,conf(Tg) (red) and Tg (blue) with composition for 

studied borate-silicate glasses. 
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Figure 3-2 The composition dependence of Cp,conf(Tg) (red sphere) and N4 value 

(blue triangle). The N4 value is calculated from our Raman data by using the method 

in Ref [69,168], and is consistent with N4 calculated from NMR results reported in 

Ref. [18]. 
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Figure 3-3 Comparison of the Cp,conf change during structural transformation B

III
-

to-B
IV

 with Cp,conf(Tg) for borate (blue triangle) and borate-silicate (red circle) 

glasses. The Cp,conf change of B
III

-to-B
IV

 is derived from the Van’t Hoff equation. The 

data are taken from Refs [69,164,169-172]. 

3.2. MIXED NETWORK FORMER GLASSES 

The DSC first upscan curves of xB2O3-4Al2O3-(86-x)SiO2-10P2O5 glasses at 10 

K/min show glass transition region and multi-crystallization region (Fig. 3-4a). As 

B2O3 content increases, the first crystallization peak (P1) becomes more intense. 

When B2O3 content reaches 26 mol%, a crystallization peak (P2) occurs and the last 

crystallization peak (P4) splits to two (P3 and P4). The two glass transition regions 

become evident with the increase of B2O3 content (Fig. 3-4b), indicating the studied 

glasses are phase separated to two glass phases, G1 and G2, characterized by Tg1 and 

Tg2, respectively. The phase separation in xB2O3-4Al2O3-(86-x)SiO2-10P2O5 glasses 
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is consistent with the immiscible composition region shown in ternary composition 

diagram of B2O3-SiO2-P2O5 if the small content of Al2O3 (~4 mol%) is neglected 

(Fig. 2-6). Moreover, both the two Tgs decrease linearly with the addition of B2O3, 

and Tg1 decreases faster than Tg2 (Fig. 3-5a). Therefore, the substitution of B2O3 for 

SiO2 plays a critical role in network connectivity of both G1 and G2. On the other 

hand, the crystallization peak temperatures (Tp) decrease with the addition of B2O3 

(Fig. 3-5b), reflecting the ease of crystallization. The occurrence of P2 (characterized 

by Tp2) and the split of P4 (characterized by Tp3 and Tp4) imply that crystals formed 

in low-B2O3 glasses are thermodynamically unstable and transformed to other 

crystals when there is enough B2O3 content (26 mol%). 
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Figure 3-4 (a) The first DSC upscan curves at 10 K/min for xB2O3-4Al2O3-(86-

x)SiO2-10P2O5 glasses. (b) The second DSC upscan curves at 10 K/min subsequent 

to a downscan with the same scanning rate. The two arrows show shifts of the two 

glass transition temperatures (Tg1 and Tg2) with increasing B2O3 content. 
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Figure 3-5 Composition dependence of (a) Glass transition temperatures and (b) 

crystallization peak temperatures. 

In addition, we have calculated three parameters to characterize the thermodynamics 

of the glass transition (Fig. 3-6). Tg and (dCp/dT)max are the width and the steepness 

of the glass transition, respectively. Cp shows no clear trend with B2O3 content for 

both G1 and G2. (dCp/dT)max of G1 keeps unchanged, while that of G2 continuously 

decreases with the increase of B2O3 content. Tg of both G1 and G2 increase but with 

different changing rates as increasing B2O3 content. For oxide glass forming systems, 
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Tg and (dCp/dT)max are inversely proportional in a series of glasses, which is the 

case for G2, i.e., the narrow glass transition region is matched by its increased 

(dCp/dT)max. However, for G1, the glass transition region becomes significantly 

wider while (dCp/dT)max remains unchanged with increasing B2O3 content, leading to 

a large enthalpy change during the glass transition region. In addition, we have 

calculate Tc, i.e., the temperature range between the offset of glass transition and 

the onset of the first crystallization peak, reflecting glass stability against 

crystallization. Tc increases until B2O3 content reaches 26 mol% and keeps almost 

unchanged with further increase of B2O3 content. This indicates that substitution of 

B2O3 for SiO2 in the studied glasses is helpful to stabilize glasses against 

crystallization, whereas it promotes liquid-liquid phase separation. 
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Figure 3-6 Composition dependence of (a) Cp, (b) width of glass transition Tg, (c) 

slope at the inflection point of the sharp rise curve of Cp in the glass transition zone, 

i.e., (dCp/dT)max, (d) temperature range between the offset of glass transition and the 

onset of the first crystallization peak, i.e., Tc. The properties of two glass phases G1 

and G2 are shown as red and blue spheres, respectively.  

To explore the phase separation, isothermal treatment and dynamic heating were 

performed on as-prepared B28 glass. The isothermal treatment and dynamic heating 

are defined in Paper II. The isothermal treatment temperature (Th) and duration (th) 

are in the range of 694 (Tg1) - 902 K (Tg2+10 K) and 5-2880 min, respectively. Fig. 

3-7 shows the first upscan Cp curves of B28 glasses heat-treated at varied Th for 120 

min. It can be seen that isothermal treatments influence both Tg1 and Tg2. Moreover, 

as Th increases to 892 K (i.e., Tg2 of as-prepared B28 glass), crystallization interrupts 

the second glass transition, i.e., low temperature (LT) crystallization. The occurrence 
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of LT crystallization indicates that isothermal treatments above Tg2 induce the 

formation of ordered domains in the glass. Upon heating the glass containing these 

ordered domains, crystal growth leads to the LT crystallization peak. 
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Figure 3-7 The first upscan Cp curves of heat-treated B28 glasses with varied Th for 

120 min. 

In contrast, Fig. 3-8 shows the first upscan Cp curves of B28 glasses heat-treated at 

(a) 790 K and (b) 892 K for varied durations. For Th=790 K, as th increases up to 120 

min, the isothermal treatment has little influence on G1, whereas G2 becomes 

unobservable. As th increases to 480 min, the glass transition region of G2 restores 

characterized by an enhanced Cp. Furthermore, the re-occurred glass transition of 

G2 exhibits an overshoot, which becomes intense as th increases till to 2880 min. For 

Th=892 K, the increase of th from 5 to 40 min causes slight change of Tg1 and Tg2, but 

significant increase of Cp during the second glass transition region. Further 

increase of th from 80 to 480 min causes the LT crystallization. Therefore, ordered 

domains form during heat treatments if Th enters the second glass transition region 

(892 K) and th is appropriate long (40 min). In contrast, the isothermal treatment 

with relative low Th (790 K) induces significant overshoot of the second glass 

transition when the duration is long enough (480 min).  
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Figure 3-8 The first upscan Cp curves of heat-treated B28 glasses with (a) Th=790 K, 

and (b) Th=892 K for varied th. 
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Fig. 3-9 shows multiple upscan Cp curves of four heat-treated B28 glasses. 

Remarkably, for the glass heat-treated at Th<Tg2 for 5 min, LT crystallization occurs 

after multiple DSC scans, indicating the dynamic heating (up to 993 K) can also 

induce the formation of ordered domains. Furthermore, an increase of the degree of 

the isothermal treatment (i.e., increase of th and/or Th) makes the LT crystallization 

easier during the subsequent dynamic heating. In addition, after multiple scans, the 

DSC upscan curves become overlapped with each other, e.g., scans 7-8 in Fig. 3-9(a) 

and (b), scan 5 in (c), and scan 3 in (d). This indicates that after the LT 

crystallization, the residual part of G2 is stable against crystallization during heating 

up to 993 K. Table 3-1 lists the numbers of DSC scans needed to induce and 

accompanish the LT crystallization, i.e., Nin and Nac, respectively. As Th and/or th 

increases, Nin and Nac decrease. 
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Figure 3-9 Multiple upscan Cp curves of heat-treated B28 glasses with (a) Th=790 

K, th=10 min, (b) Th=790 K, th=1440 min, (c) Th=892 K, th=80 min, and (d) Th=902 

K, th=120 min. 
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Table 3-1 The number of DSC scans needed to induce (Nin) and accomplish (Nac) the 

LT crystallization for heat-treated B28 glasses. 

Isothermal treatments 
Nin Nac 

Th (K) th (min) 

790 5-2880 3-6 7 

892 

5-20 3-6 7 

40 2-5 6 

80 1-4 5 

120 1-3 4 

240-480 1-2 3 

902 120 1-2 3 

 

To further explore the association between LT and high temperature crystallization 

features, we reheat the LT crystallized B28 glass, and compare its calorimetric 

response with that of the as-prepared glass (Fig. 3-10). It can be seen that the first 

crystallization peak at ~1050 K of the as-prepared glass is not observed for the LT 

crystallized B28 glass, indicating that crystals formed during the LT crystallization 

correspond to those formed at ~1050 K in the as-prepared B28 glass. Furthermore, 

the two separated crystallization peaks at ~1120 and 1210 K of the as-prepared glass 

merge to a broad one for the LT crystallized B28 glass. This indicates that the 

residual part of G2 interacts with G1 in the temperature range of 993-1330 K, i.e., 

they are micro-separated. 
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Figure 3-10 The first DSC upscan curves up to 1473 K at 10 K/min for as-prepared 

B28 glass (black) and LT-crystallized B28 glass (red).  

3.3. OXYFLUORIDE GERMANATE GLASSES 

The first DSC upscan curve of as-prepared glass 60GeO2-25BaF2-15AlF3 shows the 

glass transition (750-820 K) and crystallization (820-1050 K) (Fig. 2-9). As 
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described in Section 2.4, dynamically heated glasses are obtained to explore 

structural evolution with Td (dynamic heating temperature) and crystallization. In 

Fig. 3-11a, the first three crystallization peaks become weaker and vanish with the 

increase of Td. The glass network connectivity changes significantly during dynamic 

heating as illustrated by the evolution of Tg with Td (Fig. 3-11b). The non-monotonic 

variation of Tg with Td exhibits three stages. In stage 1 (Td=820-903 K), Tg 

continuously increases. In stage 2 (Td=903-925 K), Tg exceeds that of GeO2 glass 

and reaches a maximum. In stage 3 (Td=925-986 K), Tg decreases to approach that of 

GeO2 glass. The evolution of Tg with Td in the two latter stages is similar to the 

composition dependence of Tg in germanate glasses [45-47,173], indicating a 

possible existence of germanate anomaly zone, which will be discussed in Section 

5.3. In addition, since 60GeO2-25BaF2-15AlF3 belongs to relative strong liquid 

(m≈60, see Section 4.3), Cp,conf(Tg) ≈Cpl – Cpg = Cp. As Td increases, Cp,conf(Tg) 

exhibits a non-monotonic change with a maximum when Td=848 K (Fig. 3-12).  
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Figure 3-11 (a) DSC first upscan curves of the glasses dynamically heated to 

different Td. Arrows show the temperature positions of Td. (b) The evolution of Tg 

with Td, exhibiting three stages illustrated by the dashed curves. Tg(GeO2) is the 

glass transition temperature of the GeO2 glass. The blue region displays the possible 

germanate anomaly zone. 
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Figure 3-12 The change of Cp,conf(Tg) with Td. 
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In Fig. 3-11a, besides the change of glass transition and crystallization peak, a 

remarkable endotherm occurs at 925 K for the dynamically heated glasses with Td in 

the range of 925-986 K. To the best of our knowledge, this endothermic response 

has not been discovered before in oxyflouride germanate glasses. We perform DSC 

multiple DSC scans on these glasses to explore in-depth the features of this 

endotherm. In Fig. 3-13a, it can be seen that the endotherm in upscans corresponds 

to an exothermic peak in downscans, indicating the structural transition giving rise 

to these thermal responses is reversible in cycles of heating and cooling. 

Furthermore, these thermal responses are reproducible in the subsequent scans (Fig. 

3-13b), implying that no further structural changes such as crystallization happen 

during the multiple scans. In addition, when the as-prepared glass is heated up to 

1173 K, i.e., before melting, neither glass transition nor the endotherm appears in the 

subsequent scans (Fig. 3-13c). In contrast, when the as-prepared glass is heated up to 

1473 K, i.e., above Tm, both the glass transition and the endotherm occur in the 

subsequent scans (Fig. 3-13d), implying that the endotherm could be caused by glass 

rather than crystals formed during heating. In addition, there are two ways to induce 

the endotherm: dynamic heating the as-prepared glass to the temperature region of 

925-986 K or to the temperature above 1473 K. 
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Figure 3-13 (a) DSC curves of dynamically heated glass with Td=925 K. (b) 

Multiple DSC scans of dynamically heated glasses with Td=820, 869, 903, and 925 

K. The maximum temperature of DSC scans in (a) and (b) is 943 K. (c) and (d): 

DSC curves of as-prepared glass. The maximum temperatures of DSC scans in (c) 

and (d) are 1173 K and 1473 K, respectively. The main figures of (c) and (d) show 

DSC curves from 700 to 1000 K, and insets show those from 700 K to the maximum 

temperature.  



STRUCTURE, PHASE TRANSITIONS, AND DYNAMICS IN FOUR SPECIAL OXIDE GLASS SYSTEMS 

34
 

3.4. CALCIUM ALUMINATE GLASSES 

Fig. 3-14a displays the DSC first upscans of studied CaO-Al2O3 glasses at 20 K/min. 

The presence of glass transition and subsequent crystallization for all CaO-Al2O3 

compositions confirms their amorphous nature. Fig. 3-14b shows the composition 

dependence of characteristic temperatures. The presence of minimum of Tm at 

C12A7 is because the thermal barrier of the first-order transition is lowest at the 

eutectic composition in the binary system. Strikingly, the variations of Tg and Tp 

with composition follow the similar trend as that of Tm, which is in strong contrast to 

that reported in literature [147,174-177]. We prepared CaO-Al2O3 glasses by using 

sol-gel method and ALF to insure homogeneous dispersion of ions and to avoid 

heterogeneous crystallization during quenching. Furthermore, ALF significantly 

extends the composition region of glass forming, and hence our finding of Tg reveals 

a more universal trend compared to previous studies. In addition, it is found that Tg 

determined by DSC is not equal to the temperature where the viscosity is 10
12

 Pa s 

for CaO-Al2O3 glasses. Let Tg=T(log=12) - Tg(DSC), we found that Tg is 91 K, 

71 K, and -18 K for CA, C12A7, and C3A glasses, respectively. The values of 

T(log=12) are obtained from Refs. [147,174-177]. This result implies that the 

frozen-in mechanism of structural rearrangement in of CaO-Al2O3 liquids changes 

as the composition varies from Al2O3-rich to CaO-rich.  
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Figure 3-14 (a) DSC first upscan of studied CaO-Al2O3 glasses at 20K/min. (b) 

Composition dependence of glass transition temperature (Tg), crystallization peak 

temperature (Tp), and melting temperature (Tm). Tm is obtained from the binary 

phase diagram of CaO-Al2O3. 

As the C/(C+A) ratio increases, the glass density (ρg) shows a maximum at eutectic 

composition, i.e., C12A7, while the atomic density displays a monotonous decrease 

with an inflection point at C12A7 (Fig. 3-15). In Al2O3-rich composition from CA2 

to C12A7, most Ca
2+

 cations play a role in charge-balancer of the AlO4 tetrahedra, 

which constitute the glass network. Therefore, Ca
2+

 cations occupy interstitial sites 

among AlO4 tetrahedra, leading to the decrease of free volume, and hence the 

increase of ρg. The decrease of the atomic density in this composition region is 

caused by the decrease of the atomic number per mole. In CaO-rich composition 
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from C12A7 to C5A, the gradual depolymerization of AlO4 network causes the 

decrease of both glass and atomic density.  

Fig. 3-16a shows the liquid atomic density measured by using ALF. According to 

the temperature dependence of liquid density, we calculate the mean linear 

coefficient of thermal expansion (CTE) of CaO-Al2O3 liquid in the temperature 

region of 1700-2800 K. Since the configurational entropy is frozen-in when the 

supercooled liquid is transformed to the glass, the CTE of solids is chiefly 

vibrational, and hence the CTE of the glass should be approximately equal to that of 

the crystal with the same composition. We collect the CTE data from Refs. 

[142,178-181] and combine them with our measured liquid CTE, as shown in Fig. 3-

16b.  The CTE of C12A7 liquid is exceptionally low. This indicates that it occupies 

the deep and least anharmonic interatomic potential, and hence its structure is most 

atomic packed.  
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Figure 3-15 Glass density and atomic density of studied CaO-Al2O3 compositions. 
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Figure 3-16 (a) liquid atomic density of studied CaO-Al2O3 compositions. (b) 

Coefficient of thermal expansion (CTE) of CaO-Al2O3 glasses (red), liquids (blue), 

and crystals (pink). The CTEs of liquids are calculated by using liquid atomic 

density in (a), while those of glasses and crystals are collected from Refs. [142,178-

181]. 
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CHAPTER 4. DYNAMICS 

Understanding the temperature and composition dependence of liquid dynamics is 

critical for glass manufacturing and fiber spinning since this changing trend 

determines kinetic barriers of crystal nucleation and growth [32]. Furthermore, 

liquid dynamics is also central for exploring the origin of glass transition and the 

mechanism of relaxation. As mentioned before, although moderate structural 

changes are observed, the viscosity and relaxation time of the supercooled liquid 

rapidly rises by more than ten orders of magnitudes towards 10
12

 Pa s upon cooling. 

The liquid fragility index m proposed by Angell is widely accepted to describe how 

far the temperature dependence of viscosity departs from the Arrhenius behavior 

[16,158], as given by 

𝜕𝑙𝑜𝑔𝜂

𝜕
𝑇𝑔

𝑇

|

𝑇=𝑇𝑔

= 𝑚                           (4.1) 

where  is the viscosity of the liquid and Tg is the glass transition temperature where 

its viscosity is 10
12

 Pa s for most oxide glasses. The low/high value of m reflects the 

Arrhenius-like/non-Arrhenius dependence of log with Tg/T and hence the liquid is 

strong/fragile. For most liquids, the temperature dependence of is non-Arrhenius, 

indicating the activation energy barrier of viscous flow is temperature dependent. In 

addition, it has been found recently that DSC method can be used to calculate liquid 

fragility m by virtue of the relation between fictive temperature (Tf) and cooling rate 

(qc) [7,182]: 

𝑑𝑙𝑜𝑔(1/𝑞𝑐)

𝑑(𝑇𝑔/𝑇𝑓)
=

𝐸𝑞(𝑇𝑓)

𝑅𝑇𝑔
= 𝑚                             (4.2) 

where Eq(Tf) is the activation energy of the structural relaxation and R is the ideal 

gas constant. The cooling rate qc is given in K/s and the viscosity η is in Pa s. The 

fundamental finding to support DSC method is that the activation energy of 

structural relaxation is equal to that of viscous flow. The fictive temperature (Tf) of a 

glass refers to the temperature at which the structure of an equilibrium liquid is 

frozen-in, and is proportional to qc [160]. In this chapter, we investigate dynamics 

and/or liquid fragility in the four special oxide systems.  

4.1. BORATE-SILICATE GLASSES 

We performed DSC scans on one of studied borate-silicate glasses (15Na2O-10CaO-

51B2O3-24SiO2, q=0.68) at different scanning rates (Fig. 4-1). By using Eq. 4.2, we 

calculated its liquid fragility index, i.e., m=45±5, which is in consistent with 

previous studies [18]. Therefore, we use previous data to analysis the evolution of m 
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with composition (Fig. 4-2a). It can be seen that initial addition of B2O3 causes rapid 

increase of m from q=0.08 to 0.32, while further addition of B2O3 leads to a slow 

increase of m from q=0.32 to 1.0, indicating the viscosity increases faster upon 

cooling to Tg for the liquid containing more B2O3. Furthermore, the rapid increase of 

m in SiO2-rich compositions (0.08<q<0.32) reflects that the evolution of viscosity 

with temperature is sensitive to the added B2O3 in this composition region. 

According to structural results, most boron is B
IV

 and bonds with Si to form 

danburite-like rings in this composition region. Therefore, we infer that the 

danburite-like rings are easy to break down to decrease the viscosity upon heating 

above Tg, because they are not energetic favorable compared to other borate rings. 

Further moderate increase of m in B2O3-rich compositions (0.32<q<1.0) is a result of 

the existence of large amount of borate structural units with large freedom and the 

lack of rigid silicate structure network. In addition, Cp,conf(Tg) has similar 

composition dependence as m, implying a closely association between them (Fig. 4-

2b). The structural origin of Cp,conf(Tg) will be discussed in detail in Section 5.1. 
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Figure 4-1 DSC upscan curves of 15Na2O-10CaO-51B2O3-24SiO2 glass (q=0.68) at 

different scanning rates (5-25 K/min). For each upscan curve, its heating rate is 

equal to the cooling rate of its prior downscan curve. 
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Figure 4-2 (a) Composition dependence of liquid fragility m. q represents the mole 

ratio of [B2O3]/[B2O3]+[SiO2]. (b) Relation between Cp,conf(Tg) and liquid fragility 

index m of studied borate-silicate glasses. 
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4.2. MIXED NETWORK FORMER GLASSES 

Fig. 4-3a shows the DSC upscans of B28 glass (28B2O3-4Al2O3-58SiO2-10P2O5) at 

different scanning rates (5 and 10 K/min). The low scanning rate significantly 

promotes the crystallization. This indicates the time needed for crystal growth is 

short and some ordered domains can form in the second glass transition region of 

850-950 K. In addition, we try to use DSC method to determine the liquid fragility 

index m for studied glasses. However, the large shift of fictive temperature (Tf) with 

the changing of scanning rate leads to extremely small value of m, e.g., m is even 

below 10 for B16, B28, and B30 (Fig. 4-3b). Therefore, it is inadequate to obtain m 

by DSC method for studied glasses. Nevertheless, the high sensitivity of Tf to the 

scanning rate implies the some domains of the glass structure relax much faster, i.e., 

the presence of structural heterogeneity. 
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Figure 4-3 (a) DSC curves of B28 glass at 5 K/min (black) and 10 K/min (red). (b) 

Liquid fragility index m calculated by using DSC method. 

We also measured the viscosity of B28 glass near 780 K (Fig. 4-4) by using a ball 

penetration viscometer (BÄHR, VIS405) [183]. It can be seen that m determined by 

using Eq. 4.1 is similar to the one calculated by using Eq. 4.2. In addition, we found 

that the temperature where the viscosity is 10
12

 Pa s locates between Tg1 and Tg2 for 

B28 glass. The viscosity results indicate the extremely strong nature of the studied 

mixed network former glass forming liquids. However, since the viscosity measured 

is the equilibrium viscosity, the viscosity data obtained near 10
12

 Pa s could be 

influenced by the formation of ordered domains during the measurement in the 

temperature region near the second glass transition, and hence there is a potential for 

crystal nucleation and growth. 
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Figure 4-4 Viscosity near 10

12
 Pa s for B28 glass. 

4.3. OXYFLUORIDE GERMANATE GLASSES 

Fig. 4-5 shows DSC upscan curves with different scanning rate for all studied 

glasses, and the liquid fragility index m is calculated by using Eq. 4.2 (Fig. 4-6a). 

Compare to the as-prepared glass, m increases for the dynamically heated glass with 

Td=848 K. As Td increases from 848 to 986 K, m continuously decreases and 

approaches that of GeO2 (m≈15). The initial increase of m could be caused by the 

completion of modifiers, and the later decrease of m could be associated with the 

interaction between different GeOx polyhedra and GeO4 rings. In addition, as similar 

to borate-silicate glasses, Cp,conf(Tg) is closely associated with m for oxyfluoride 

germanate glass forming liquids (Fig. 4-6b), although the value of m for dynamically 

heated glasses is much higher than that of borate-silicate glasses.  
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Figure 4-5 DSC upscan curves at different scanning rates (5-30 K/min) for the 

glasses dynamically heated to various Td. The heating rate is equal to the cooling 

rate of the prior downscan curve. 
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Figure 4-6 (a) Evolution of liquid fragility index m with heat treatment temperature 

Td. (b) Relation between m and configurational heat capacity at Tg in oxyfluoride 

germanate system. 

4.4. CALCIUM ALUMINATE GLASSES 

According to literature, xCaO-(1-x)Al2O3 liquid belongs to relative fragile type, and 

it becomes more fragile as the content of CaO decreases in the range of 0.5<x<0.75 

[121]. However, the previous studied composition and temperature regions are 

limited due to the ease of crystallization. Although the structure of some CaO-Al2O3 

liquids have been investigated [140,141], the dynamics have not been fully studied. 

In this section, we measured viscosity of equilibrium and supercooled CaO-Al2O3 

liquids in high temperature region (1500-2800 K) by using ALF. The relation 

between η and the damping constant of the oscillation Γ is given by [141]: 

𝜂 =
1

(𝑙−1)(2𝑙+1)

3𝑀𝛤

4𝜋𝑎
                            (4.3) 

where M is the droplet mass, a is its radius, and l is the number of the mode. 

Typically, l equals 2 for not too large excitation amplitudes. To determine Γ, the 

droplet was acoustically excited for a short time close to the primary resonance 

frequency. After removing the excitation, the decayed oscillation amplitude was 

monitored, which consists of the harmonic and damped parts [142]. The harmonic 

oscillator motion for the steady state is given by: 

𝑟ℎ/𝑣(𝑡) = 𝐴 ∙ 𝑠𝑖𝑛[2π𝜈ℎ0(𝑡 − 𝑡0)] + 𝑟0                           (4.4) 

where rh/v(t) is the ratio of horizontal to vertical radius. A is the amplitude, vho is the 

excitation frequency, t0 is an offset, and r0 is the mean radius of the droplet. For the 

damped decay: 

𝑟ℎ/𝑣(𝑡) = 𝐴 ∙ 𝑒𝑥𝑝[−𝛤(𝑡 − 𝑡1)] ∙ 𝑠𝑖𝑛[2𝜋𝜈𝑑ℎ0(𝑡 − 𝑡0)] + 𝑅𝑎𝑣                                (4.5) 
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where t1 is the starting time, vdho is the resonance frequency of the droplet, Rav is the 

radius of the droplet in rest. Therefore, the damping constant Γ can be determined by 

Eq. 4.5 and hence η is obtained by Eq. 4.3. 

Fig. 4-7 shows the viscosity of studied CaO-Al2O3 liquids. As the C/(C+A) ratio 

increases, the viscosity at Tm, (Tm), initially increases from CA2 to C12A7 and then 

decreases from C12A7 to C5A, implying that the mechanism of viscous flow in 

Al2O3-rich compositions is different with that in CaO-rich compositions. 

Furthermore, the low values of (Tm) for all CaO-Al2O3 liquids indicate that the 

kinetic barriers of nucleation and crystal growth are small, and hence the liquids are 

difficult to bypass crystallization to form glasses compared to most of oxide liquids, 

i.e., poor glass forming ability of CaO-Al2O3 liquids. In addition, the viscosity 

increases rapidly through Tm upon cooling. The non-Arrhenius rapid increase of 

viscosity indicates that the activation energy of viscous flow increases. Normally, 

the rapid increase of viscosity in high temperature range near Tm is closely 

associated with the decrease of ion exchange (mainly for oxygen) and rearrangement 

of structural units [131,132].  
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Figure 4-7 Tm scaled viscosity of studied CaO-Al2O3 liquids in the temperature 

region of 1500-2800 K. 

Due to the size limit of glass spheres prepared by ALF, the viscosity of CaO-Al2O3 

near Tg cannot be measured by ball penetration viscometer as described in Section 

4.2 for mixed network former glass. Therefore, we prepared C3A bulk glass to 

measure its viscosity near Tg, and then used DSC method to obtain the viscosity near 

Tg for other compositions. The relation between viscosity (), fictive temperature 

(Tf), and cooling rate (qc) is given by [184]: 

log𝜂(𝑇) = log𝐾𝑐 − log𝑞𝑐(𝑇𝑓)                             (4.6) 

where Kc is the shift factor. Eq. 4.6 is applied in this case when T=Tf . For the 

silicate glasses, logKc=11.35 [184]. For CaO-Al2O3 glasses, we modified the 
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parameter logKc=11 based on the viscosity of C3A bulk glass and qc(Tf) of C3A 

glass sphere as illustrated by Fig. 4-8. Therefore, the viscosity near Tg of other CaO-

Al2O3 glasses are obtained based on Eq. 4.6.  
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Figure 4-8 Relation between viscosity, fictive temperature, and cooling rate for 

C3A. The viscosity data are obtained by ball penetration viscometer. 

Fig. 4-9 shows the viscosity of three studied CaO-Al2O3 liquids in two temperature 

regions, i.e., around Tm and near Tg, respectively. Here we use Mauro-Yue-Ellison-

Gupta-Allan (MYEGA) model to fit the viscosity data, which is given by [185]: 

log𝜂(𝑇) = log𝜂0 + (𝑙𝑜𝑔𝜂(𝑇𝑔) − log𝜂0)
𝑇𝑔

𝑇
exp⁡[(

𝑚

𝑙𝑜𝑔𝜂(𝑇𝑔)−𝑙𝑜𝑔𝜂0
− 1)(

𝑇𝑔

𝑇
− 1)]     (4.7) 

where η0 is the high temperature limit of viscosity. We applied MYEGA to fit the 

viscosity data in two temperature regions, respectively. Strikingly, the dynamics 

behave differently in the two temperature regions (see the fitted lines in Fig. 4-9), 

i.e., the derived m is different. Let the m obtained from the viscosity data near Tg is 

written as m1, and that around Tm is written as m2, then m1<m2. According to 

previous studies [186,187], this mismatch of dynamics in different temperature 

regions implies that a fragile-to-strong (f-s) transition takes place in the liquid upon 

cooling from Tm to Tg. 
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Figure 4-9 Viscosity of three studied CaO-Al2O3 liquids (a) CA2, (b) C12A7, and (c) 

C3A in the temperature region near Tg and around Tm. Dashed lines refer to 

MYEGA fittings. 
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To simultaneously fit viscosity data in the two temperature regions, we use the 

generalized MYEGA equation which is given by [186]: 

log𝜂 = log𝜂0 +
1

𝑇[𝑊1 exp(−
𝐶1
𝑇
)+𝑊2exp⁡(−

𝐶2
𝑇
)]

                            (4.8) 

where η0 has the same meaning as in Eq. 4.7. C1 and C2 qualitatively represent the 

two different structural mechanisms controlling the dynamics in fragile and strong 

regimes, respectively. Based on Adam-Gibbs equation and temperature-dependent 

constraints theory [185-190], C1 and C2 correspond to the two constraint onsets of 

different structural mechanisms resulting in floppy-to-rigid transitions. W1 and W2 

are normalized weighting factors, corresponding to the contributions of fragile and 

strong part to the whole CaO-Al2O3 system. As illustrated in Fig. 4-10, the viscosity 

of the studied CaO-Al2O3 liquids can be captured by using the generalized MYEGA 

equation, i.e., the dynamics are reconciled in the temperature region from 

equilibrium liquids to deep supercooled liquids for CaO-Al2O3 system. The 

temperature and viscosity of the f-s transition point are given by [187]: 

𝑇𝑓−𝑠 =
𝐶1−𝐶2

𝑙𝑛𝑊1−𝑙𝑛𝑊2
                           (4.9) 

and 

log𝜂𝑓−𝑠 = 𝑙𝑜𝑔𝜂0 +
1

2

ln⁡(𝑊1/𝑊2)

𝐶1−𝐶2
∙
𝑊2

[−𝐶1/(𝐶1−𝐶2)]

𝑊1
[−𝐶2/(𝐶1−𝐶2)]

                          (4.10) 

The f-s transition point is the temperature at which the fragile and strong phases 

have the same contribution to the whole liquid dynamics. For CaO-Al2O3 liquids, 

the f-s transition occurs at ~1.15Tg, corresponding to a viscosity of about 10
5
 Pa s, 

which is hidden by crystallization upon normal cooling. Physically, the 

fragile/strong phase is characterized by high/low activation enthalpy and high/low 

transition point entropy. The relation C1 > C2 is indicative of a higher activation 

enthalpy for the dynamics in the fragile phase. However, at high temperature this is 

more than compensated by the relation W1 > W2, indicating a much greater number 

of transition paths (i.e., transition point entropy) for the fragile phase. In the 

potential energy landscape, the fragile/strong phase would sample phase space with 

deeper/shallower inherent structures (ISs) and a much greater/fewer number of 

basins [191]. The competition between entropy and enthalpy is essential for the 

existence of f-s transition [186]. 
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Figure 4-10 Viscosity as a function of the Tg scaled temperature T. Black lines: fits 

of Eq. 4.8 to the viscosity for (a) CA2, (b) CA, (c) C12A7, (d) C3A, and (e) C5A. 

Blue and red dashed lines: a fragile term dominant at high temperatures and a 

strong term dominant at low temperatures, respectively. The two terms give 

contribution to the overall viscous behavior. Pink dashed lines: the temperature and 

viscosity where the f-s transition occurs. 

Since the MYEGA model is based on Adam-Gibbs (AG) model concerning 

configurational entropy Sc(T) [185], we use AG model to fit viscosity data of the 

fragile and strong phases, respectively, and hence, the excess entropy as a function 

of T is obtained (Fig. 4-11). Remarkable, a complementary reduction in excess 

entropy at Tf-s (Sf-s) circumvent the Kauzmann paradox [159]. Furthermore, a step-

wise reduction at Tf-s in atomic volume (Vf-s) also occurs (Fig. 4-12), substantiating 

the f-s transition. 
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Figure 4-11 Excess entropy as a function of the temperature for (a) CA2, (b) CA, (c) 

C12A7, (d) C3A, and (e) C5A. The fragile (low density liquid, LDL) and strong 

(high density liquid, HDL) phases are shown as blue and red curves, respectively, 

which are calculated by using Adam-Gibbs model to fit the viscosity data. The 

reduction step during the f-s transition upon cooling is shown as the pink arrow. 
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Figure 4-12 Atomic volume as a function of the temperature for (a) CA2, (b) CA, (c) 

C12A7, (d) C3A, and (e) C5A. The fragile and strong phases are shown as blue and 

red curves, respectively. The volume CTEs (β) of glasses are collected from 

literature [142,178-181], while those of liquids are determined from the temperature 

dependence of liquid density (blue data) measured in ALF. The reduction step 

during the f-s transition upon cooling is shown as the pink arrow. 
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CHAPTER 5. CORRELATION BETWEEN 

STRUCTURE, PHASE TRANSITIONS, 

AND DYNAMICS 

Due to the complex structural behavior of amorphous states which include liquids 

and glasses, the composition-structure-property relation is a longstanding issue in 

glass science and technology. Although this relation has been thoroughly explored 

by numerous studies in various systems, it still remains elusive in many aspects, e.g., 

the origin of Cp,conf(Tg), phase separation, phase transition, and f-s transition. 

5.1. BORATE-SILICATE GLASSES 

As discussed in Section 3.1, Tg first increases from 830 to 855 K as B2O3 is initially 

added, and rapidly decreases to 777 K with increasing q for q>0.16 (Fig. 3-1). 

According to previously studies of the temperature-constraint theory and “boron 

anomaly”, the non-monotonic variation of Tg with composition is mainly caused by 

the constraints (linear α and angular β) and the SRO structural conversion between 

B
III

 and B
IV

 species [18]. However, the non-linear variation of Cp,conf(Tg) cannot well 

explained in terms of SRO structure as discussed in Section 3.1 (Fig. 3-2, 3-3). For 

borate systems, it has been found that the freezing-in temperature of IRO structures 

(TχIRO) determined by in-situ high temperature Raman spectroscopy coupled well 

with Tg, whereas that of SRO structures (TχSRO) was much larger than Tg [53,106], 

indicating interactions between SRO structures happen at higher temperature than 

Tg. Furthermore, IRO structural units (borate rings) can thermally break without the 

structural changes in SRO [166,167]. The displacement of atoms in IRO structural 

units could give rise to the increase of the heat capacity, while no significant 

changes of SRO units occur. According to our Raman results, abundant 

superstructures containing different number of borate rings exist, giving excess 

conformational states to the glass network and a higher probability to sample high 

energy configurations in the energy landscape [42,48,79,80]. Besides, the number of 

types of IRO units reflects the abundance of microscopic states, giving rise to the 

increase of configurational entropy. Therefore, the rearrangement and inter-

cooperation of IRO structural units could play a critical role in the structural 

relaxation and hence in influencing the Cp,conf(Tg).  

Fig. 5-1 shows the relation between Cp,conf(Tg) and the content of IRO structural 

units. The linear relationship confirms that IRO superstructures have a major 

contribution to Cp,conf(Tg) in borate-silicate glasses. In the silica-rich compositions 

(0.08<q<0.32), danburite-like unit (mixed Si-O-B structure) and six-membered 

borate ring with B
IV

 have a major effect on the rapid increase of Cp,conf(Tg) as B2O3 
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content increases. In the composition region of 0.32<q<0.68, the danburite-like units 

diminish, and the counteraction between the decrease of the fraction of two types of 

metaborate groups and the increase of the fraction of other borate superstructural 

units (particularly six-membered borate rings) keeps the Cp,conf(Tg) unchanged. In the 

borate-rich compositions (q>0.68), both the six-membered borate rings with B
IV

 and 

boroxol has a positive effect on the increase of Cp,conf(Tg) with q. Therefore, the 

overall results suggest a strong correlation between IRO superstructures and 

Cp,conf(Tg) for Na2O-CaO-B2O3-SiO2 glasses. 
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Figure 5-1 The relation between Cp,conf(Tg) and the content of IRO superstructures. 

Besides, we also explore the evolution of Sconf(Tg) with composition. According to 

Adam-Gibbs theory, for a series of glasses, Sconf(Tg) is inversely proportional to the 

value of Tg [188]. Therefore, in our studied borate-silicate glasses, Sconf(Tg) is 

expected to decrease initially in SiO2-rich composition and rapidly increase with 

further increase of q. The different evolutions of Sconf(Tg) and Cp,conf(Tg) with 

composition indicate that the abundant IRO superstructures cannot fully contribute 

to the Sconf(Tg). According to laws of thermodynamics, Cp,conf(T) can be written as 

below: 

𝐶𝑝,𝑐𝑜𝑛𝑓(𝑇) = (
𝜕𝐻𝑐𝑜𝑛𝑓(𝑇)

𝜕𝑇
)𝑃 = (

𝜕𝐻𝑐𝑜𝑛𝑓(𝑇)

𝜕𝑆𝑐𝑜𝑛𝑓(𝑇)
)𝑃 ∙ (

𝜕𝑆𝑐𝑜𝑛𝑓(𝑇)

𝜕𝑇
)
𝑃
= 𝑇𝑐𝑜𝑛𝑓 ∙ (

𝜕𝑆𝑐𝑜𝑛𝑓(𝑇)

𝜕𝑇
)
𝑃
   (5.1) 

where Hconf(T) is the configurational enthalpy, and Tconf is the configurational 

temperature at constant pressure, which is equal to Tg for a standard cooling rate (10 

K/min) [18,192]. The relation between Sconf(Tg), Cp,conf(Tg), and kinetic liquid 

fragility index m can be explored by combining Adam-Gibbs equation with  Eqs. 4.1 

and 5.1: 

𝑆𝑐𝑜𝑛𝑓(𝑇𝑔) =
𝐶𝑝,𝑐𝑜𝑛𝑓(𝑇𝑔)

𝑚

𝑚0
−1

                            (5.2) 
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Therefore, we infer that Sconf(Tg) is influenced by m and Cp,conf(Tg). As q increases 

from 0 to 0.32, m has a major contribution to Sconf(Tg). Specifically, the high kinetic 

barrier of atomic diffusion (low m) limits the system to sample various basins in the 

energy landscape and hence occupy less microstates, leading to the decrease of 

Sconf(Tg) with the initial addition of B2O3 in SiO2-rich compositions. As q increase 

from 0.32 to 1.0, Cp,conf(Tg) has a dominant effect on Sconf(Tg), i.e., the large amount 

and abundant types of IRO superstructures guarantee the increase of Sconf(Tg) with 

further addition of B2O3. 

5.2. MIXED NETWORK FORMER GLASSES 

As shown in Fig. 3-5(a), both Tg1 and Tg2 decrease linearly with substitution of SiO2 

by B2O3. In the glasses containing multiple network formers, glass properties vary 

non-monotonically with the substitution between network formers, i.e., mixed 

network former effect, e.g., non-linear change of glass transition temperature (Tg) 

with composition in Na2O-B2O3-P2O5 glasses [193]. The mixed network former 

effect is a result of the competition between different network formers to attract 

network modifier [193,194]. In contrast, for studied mixed network former glasses, 

the changing trends of two Tgs with composition are linear because of a lack of 

traditional modifiers. Moreover, the simultaneous decreases of Tg1 and Tg2 with B2O3 

content indicate that boron enters both the two glass phases (G1 and G2) to lower the 

network connectivity. The temperature range of Tg1 is 650-840 K in the studied 

glasses, which is smaller than that in non-phase separated B2O3-Al2O3-P2O5 glasses 

(840-1100 K) which is prepared by sol-gel method [95]. However, the Tg of the 

glass prepared by sol-gel method is much higher than that of melt-quenched glass 

(~80 K difference in Ref. [95]). In addition, the Tg2 of the studied glasses (900-950 

K) is in the temperature region of that for B2O3-P2O5-SiO2 glasses (770-970 K) [96]. 

Therefore, we infer that G1 (droplet) contains a B-O-B network with some P2O5 and 

Al2O3, while G2 (matrix) contains a B-O-Si network with the remaining amount of 

P2O5 and Al2O3. When B2O3 substitutes SiO2, the two phases compete to incorporate 

B2O3. For G1, the increase of B2O3 content leads to the increase of boroxol ring 

content and the decrease of the relative fraction of B
IV

 species in BPO4 units, leading 

to the decrease of Tg1. For G2, the network changes from silica-rich to boron-rich 

network, giving rise to the decrease of Tg2. 

The phase separation in mixed network former glasses has not previously been 

explored, and hence, it is essential to understand its mechanism. Stable immiscibility 

and metastable (sub-liquidus) immiscibility occurs at temperatures above and below 

the liquidus temperature, respectively. Furthermore, they can be distinguished by 

different macroscopic structures of glasses. For stable immiscibility, the melt-

quenched glasses feature either layered structure or strongly opalescent appearance 

[109]. In contrast, the high viscosity (slow diffusion rate) of the liquids with 

metastable immiscibility often leads to the visually undetectable opalescence of the 

melt-quenched glasses. The fine-scale micro-separated phases can be “frozen in”, 

which are droplets and matrix phase, and may only be observed by electron 
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microscopy [109]. Therefore, we infer that the metastable immiscibility is the case 

for the studied glasses, which could be caused by the migration of oxygen vacancies. 

In the supercooled region, oxygen vacancies with relative high diffusivity rotate and 

react with neighboring oxygens, resulting in the change of the NNN of boron and the 

separated B-O-B and B-O-Si phases. The nano-phase separation in our studied 

glasses is similar to the spinodal phase separation found in sodium borosilicate 

glasses [195].  

In addition, the observed nano-phase separation is associated with the structural 

ordering of G2 during heat treatments. As mentioned in Section 3.2, isothermal and 

multiple dynamic heating can induce the formation of ordered domains in G2. Upon 

heating, these ordered domains grow at the temperature well below the offset of the 

second glass transition, leading to the partial crystallization of G2. The existence of 

ordered domains reflects the high degree of structural heterogeneity in the melt-

quenched glasses. Moreover, the degree of structural heterogeneity is especially 

significant in the G2 glass phase. 

5.3. OXYFLUORIDE GERMANATE GLASSES 

Structural origin of Tg changing trend with Td 

As discussed in Section 3.3 (Fig. 3-11b), the evolution of Tg with Td shows a three-

stages variation, indicating that the mechanism of structural evolution changes 

during the dynamic heating. Based on our XRD and TEM results and previous 

studies, we propose a structural mechanism during the dynamic heating. When the 

as-prepared glass (60GeO2-25BaF2-15AlF3) is heated to the region of 820-903 K, 

the crystalline phase BaGeO3 forms. Since BaO/GeO2 ratio (i.e., the mole ratio of 

network modifier to network former) in BaGeO3 crystal is much higher than that in 

as-prepared glass, the fraction of network former in the glass increases after 

precipitation of BaGeO3. Hence, the glass network becomes polymerized, leading to 

the increase of Tg with Td in stage 1 (Fig. 3-11b). As Td increases from 903 K to 925 

K, BaF2 and GeF4 crystals form, and hence the composition of the glass becomes 

GeO2-rich. Therefore, the germanate speciation is associated with the variation of Tg 

with Td in stages 2 and 3 (Fig. 3-11b). According to literature [47], the initial 

addition of network modifiers (alkali or alkaline earth oxides) into GeO2 glass leads 

to abnormal changes of various properties including Tg, i.e., “germanate anomaly”. 

The “germanate anomaly” normally occurs in the composition region with 5-20 

mol% modifier. Since the content of modifier in as-prepared glass is close to 20 

mol%, we infer that the non-monotonic variation of Tg with Td in stages 2 and 3 is a 

results of “germanate anomaly”. 

The presence of “germanate anomaly” could be result from the conversion between 

different Ge species and the formation of six-membered rings with GeO4 tetrahedra 

[45,47]. As modifiers are initially added into GeO2 glass, part of four-fold 

coordinated Ge species (Ge
IV

) are converted to five- or six-fold coordinated Ge 
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species (Ge
V
 or Ge

VI
), which are bonded to GeO4 tetrahedra through corner-shared 

oxygen [45]. Furthermore, the long bond of Ge-O leads to the formation of six-

membered rings and cavities in which modifiers stay. When the contents of Ge
V,VI

 

species and six-membered rings reach critical values, further addition of modifiers 

leads to the conversion from Ge
V,VI

 back to Ge
IV

 and the break of six-membered 

rings. 

Therefore, in stage 2, the formation of BaF2 and GeF4 induces the conversion from 

Ge
IV

 to Ge
V, VI

 and the formation of six-membered rings by the consumption of 

NBO and F
-
 in the glass, giving rise to the increase of Tg with Td. This structural 

evolution continuous until Td reaches 925 K. In stage 3, Ge
V, VI

 species are converted 

back to Ge
IV

 species and germanate rings break down by virtue of the formation of 

Al2BaGe2O8 together with BaF2 and GeF4 in the glass. Therefore, this structural 

evolution lowers the network connectivity of the glass and its structure tends to 

GeO2-like, i.e., Tg decreases and approaches to that of GeO2 glass in the stage 3. 

Order-Disorder Transition 

As mentioned in Section 3.3, a reversible endotherm occurs at 925 K upon heating 

the glasses with Td=925-986 K. We argue that the endotherm is not a signature of 

glass transition, because its intensity is comparable to that of the corresponding 

exothermic peak in DSC downscan (Fig. 3-13a). Typically, a glass transition 

exhibits a much weak exothermic response upon cooling compared to the endotherm 

upon heating. According to TEM results, we infer that the endotherm is a result of 

structural transformation of nano-clusters (20 nm) from ordered to disordered 

structure. The occurrence of this order-disorder transition accompanies the split of 

the main crystallization peak at 1020 K (Fig. 5-2), indicating the disordered domains 

evolved from the nano-clusters are different with the amorphous matrix. Moreover, 

XRD patterns of the glasses with Td=903, 925, and 943 K are similar (Fig. 2-10), 

whereas only two of them (Td=925 and 943 K) undergo the order-disorder transition 

upon heating (Fig. 3-11a). On one hand, the similarity of their XRD patters 

illustrates that the nano-cluster lacks of long range order, i.e., disordered nature. 

However, the nano-cluster should have some degree of IRO, leading to the 

endothermic order-disorder transition. On the other hand, it indicates that the 

thermal fluctuation at 903 K is not high enough for the supercooled liquid to 

overcome the activation energy of the nano-cluster formation, although the chemical 

composition of the glass with Td=903 K fulfills the condition of the nano-cluster 

formation. Therefore, the structural heterogeneity of the oxyfluoride germanate glass 

becomes significant (i.e., large amount of nano-clusters) only when Td is in the 

region of 925-986 K.  
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Figure 5-2 DSC first upscans of the glasses dynamically heated to various Td. Glass 

transition, order-disorder transition, and the split of the main crystallization peak 

are marked by blue, red, and gray box, respectively. The arrow shows the decrease 

of the crystallization peak temperature with increasing Td. 

To further reveal the formation mechanism of the nano-cluster, we consider the 

order-disorder transition together with Tg. Strikingly, the glass having maximum Tg 

starts to exhibit the order-disorder transition, i.e., the glass with Td=925 K. 

Therefore, we infer the nano-cluster could contain Ge
V, VI

 species and germanate 

rings. However, the structural evolution of the nano-cluster during this transition 

still needs to be revealed. 

Fig. 5-3 shows the characteristic temperatures as a function of Td. As Td increases, 

the composition of the glass evolves from 60GeO2-25BaF2-15AlF3 to GeO2-rich. 

Upon heating, all glasses exhibit glass transition and crystallization, characterized by 

Tg and Tp, respectively. Moreover, the changing trends of Tg and Tp with the increase 

of Td are non-monotonous, which is a result of “germanate anomaly”. For the glasses 

with Td≥925 K, nano-clusters form in amorphous matrix and undergo the order-

disorder transition upon heating. The disordered domains evolved from the nano-

clusters crystalize together with the amorphous matrix, giving rise to the splitting of 

the main crystallization peak. 
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Figure 5-3 Characteristic temperatures (T) as a function of the dynamic heating 

temperature (Td) for 60GeO2-25BaF2-15AlF3 glass system. Tg, Tendo, and Tp refer to 

the glass transition temperature, the peak temperature of the endotherm 

characterizing the order-disorder transition, and the crystallization peak 

temperature, respectively. The pink arrows show the splitting of the crystallization 

peak into two sub-peaks.  

As discussed in Section 4.3, Cp,conf(Tg) is proportional to m for studied glasses (Fig. 

4-6). In 60GeO2-25BaF2-15AlF3 liquid, the existence of large amount of Ba
2+

 and F
-
 

guarantees the low viscosity, and hence the viscosity rapidly increases upon 

supercooling towards to Tg, leading to the high m and Cp,conf(Tg). As Td increases, 

Ge
V, VI

 polyhedra and six-membered rings strengthen the network and give rise to 

the high viscosity of the liquid, leading to the decrease of m and Cp,conf(Tg). In 

addition, the liquid fragility and viscosity are closely associated with Sconf(Tg). As 

discussed in Section 5.1, Sconf(Tg) is inversely proportional to Tg for a series of 

glasses [18,189]. Therefore, the evolution of Sconf(Tg) with Td should exhibit a non-

monotonic feature with a minimum at Td=925 K. There are two principal 

contributions - chemical and topological contributions - giving rise to the 

configurational entropy [196]. The chemical contribution mainly results from 

mixing of chemically distinguishable units and the degree of disorder of the 

network. The topological contribution is determined by the distributions of bond 

lengths and angles of polyhedra. As Td increases from 820 K to 903 K, the decrease 

of NBO leads to the decrease of the distribution of various structural units, and 

hence chemical Sconf(Tg) decreases. As the composition of the glass enters 

“germanate anomaly” zone, the abundant structural species have significant effect 

on Sconf(Tg). 

5.4. CALCIUM ALUMINATE GLASSES 

According to our MD results and experimental characterizations of structure, it can 

be seen that a variety of cation and oxygen configurations exist in CaO-Al2O3 

glasses and liquids, which are seldom found in conventional oxide glasses. 
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Furthermore, the simulated viscosity and G(r) are in good agreements with 

experiments, confirming the validity of MD results and reconciling rheology with 

atomic structure for this unusual oxide glass forming system. As the CaO content 

increases, the structural network of CaO-Al2O3 evolves from compensated oxygen 

deficient random network (ODRN), through continuous random network (CRN) to 

incomplete random network (IRN) [3,197,198]. The evolution of structural network 

with composition across the binary calcium aluminate system provides insights to 

thermo-physical properties, thermodynamics, and rheology. 

As mentioned in Section 3.4, a remarkable non-monotonic changing trend of Tg with 

C/(C+A) ratio is found in studied CaO-Al2O3 glasses. The initial addition of CaO 

from CA2 to C12A7 leads to a decrease of the fraction of Al
V, VI

 and tricluster 

oxygen and an increase of the fraction of NBO, and thereby lowers the connectivity 

of the [AlO4] network. However, the effect of NBO on depolymerization of glass 

network becomes weak as further increase of C/(C+A) ratio from C12A7 to C5A. 

Besides charge-balancing [AlO4] and forming NBO, excess CaO produces free 

oxygen in Ca-rich compositions, which does not participate in lowering the 

connectivity of the network. The shortage of enough Al
3+

 results in a transformation 

from CRN (C12A7) to IRN (C5A) connected by CaOx polyhedra. This kind of 

topology is analogous to that of the invert glass, e.g., 2MgO-SiO2 and 60CaO-

30P2O5-3TiO2-7Na2O glasses [199,200]. The structure of these glasses can be 

regarded as an assemblage of different anionic polyhedra and cations. The 

negatively charged anionic polyhedra are held together by cations despite a certain 

degree of possible interlinking of the polyhedra by weak forces. Therefore, the 

network connectivity could be mainly governed by Ca-O network rather than Al-O 

network in Ca-rich composition region, and hence the increase of C/(C+A) ratio 

makes a positive contribution to Tg. On the other hand, in terms of the intermediate 

range order, CaO-rich glasses are believed to possess topologically disordered 

network consisting of large sized rings [121], which can also increase the degree of 

network connectivity. 

In addition, the structural changes also result in non-monotonic variations of 

configurational entropy, viscosity, liquid fragility, and density [201]. As C/(C+A) 

ratio increases from CA2 to C12A7, the fraction of Al
IV

 species and BO increases, 

leading to the increase of viscosity. In the meantime, the modifiers have high 

possibility to occupy the free volume of the network containing rich of AlO4 

tetrahedra, and hence the decrease of the free volume causes the increase of glass 

and liquid density. From C12A7 to C5A, since there are no enough Al
IV

 sites, the 

broken AlO4 network with CaOx polyhedra and the existence of free oxygen cause 

the decrease of density and viscosity.  

We plot characteristic temperatures as a function of composition in the binary 

calcium-aluminates as shown in Fig. 5-4. Interestingly, all the changing trends 

exhibit a minimum at C12A7, which is consistent with the unique structure of 
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C12A7 (CRN). In addition, we also calculate three parameters characterizing the 

glass forming ability (GFA) as shown in Fig. 5-5. The original definition of GFA is 

the critical cooling rate of liquids, i.e., qcrit. However, it is difficult and time-

consuming to measure qcrit. Many researchers proposed various parameters for 

quantifying GFA [12,14,202-205]. Most of them correlated GFA with three main 

factors: structural information (e.g., bond type, molecular symmetry), 

thermodynamics (e.g., driving force of crystallization, cohesive energy) and kinetics 

(e.g., viscosity, nucleation and growth rate). Tg/Tm and (Tm) reflect the depth of 

supercooling and the atomic diffusion to form periodic cells, respectively, both 

being proportional to the improved GFA. cryst-melt/melt shows the density mismatch 

of crystal and melt, reflecting how ease the structural arrangements proceed during 

the first order phase transition and how heterogeneous crystallization close to Tm 

preferentially favors nucleation. The GFA metrics shown in Fig 5-5 indicates the 

best GFA of C12A7 across the binary CaO-Al2O3 system.  

In addition, the existence of f-s transition in supercooled CaO-Al2O3 liquids causes 

the reductions of atomic volume and excess entropy at Tf-s, giving rise to the positive 

Clapeyron slope which is given by: 

𝑑𝑇

𝑑𝑃
=

Δ𝑉𝑓−𝑠

Δ𝑆𝑓−𝑠
                             (5.3) 

This indicates that supercooled CaO-Al2O3 liquids behave in a similar way as 

supercooled metallic liquids [186,206,207], but different from the network structural 

liquids with liquid-liquid transitions (dT/dP<0) such as Y2O3-Al2O3 and water 

[121,208-210]. For metallic liquids, dT/dP>0 could be caused by icosahedral packed 

structures with non-directional bonds. Although CaO-Al2O3 liquids clearly have 

network topology, they can be envisaged as assembling of close packed AlOx and 

CaOx polyhedra. Fig. 5-6 shows the composition dependence of Sf-s, Vf-s and the 

Clapeyron slope. Interestingly, their changing trends follow those characterizing 

GFA. Based on the structural information, C12A7 has a structure of CRN with 

improved atomic packing and complex structural species (e.g., AlOx, CaOx, 

tricluster oxygen, and free oxygen), giving rise to special characteristics of C12A7 

glass and liquid in CaO-Al2O3 system, i.e., the lowest characteristic temperatures 

and liquid CTE, the best GFA, and the largest step reductions at Tf-s in atomic 

volume and excess entropy, and the highest value of the Clapeyron slope. 

Although the essential origin of f-s transition is still on debate, numerous researchers 

tried to clarify its possible origin in different systems [211-218]. The simulation of 

silica energy landscape revealed that the f-s transition might be related to the 

polyamorphism behavior of silica glass [213]. The f-s transition in water has been 

seen as the crossover from a non-glass forming to a glass-forming phase [186,211]. 

For CaO-Al2O3 glass forming liquids, Hennet et al. found that an increase in the 

degree of intermediate-range order occurred at around 1.25Tg for CA liquid, which 

is close to the dynamical crossover temperature [219]. This is consistent with our 
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finding that Tf-s is around 1.15Tg, implying that structural evolution in intermediate-

range order could have effects on f-s transition. Furthermore, it can be seen that Tf-s 

and Tp couple well through all compositions (Fig. 5-4), indicating that the 

heterogeneous crystallization is closely associated with the coexistence of strong and 

fragile polyamorphs. 
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Figure 5-4 Composition dependence of characteristic temperatures. Tg, Tp, Tf-s, and 

Tm refer to the glass transition temperature, crystallization peak temperature, f-s 

transition temperature, and melting temperature. Tg and Tp are determined by DSC 

curve. Tm data are obtained from the binary phase diagram. Tf-s data are calculated 

by using Eq.4.9. 
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Figure 5-5 GFA metrics Tg/Tm, (Tm), and (Tm)melt-crystal /(Tm)melt. The density 

data of crystals and melts are obtained from MD simulation. 
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Figure 5-6 The reduction step at Tf-s in atomic volume Vf-s and excess entropy Sf-s, 

and the Clapeyron slope at Tf-s. 
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CHAPTER 6. GENERAL DISCUSSION 

AND PERSPECTIVE 

Since properties of glasses and liquids are essentially associated with microscopic 

structures, it is critical for understanding composition-structure-property relations 

for various systems. For the four studied oxide system, it can be seen that not only 

structural units in short-range order such as network former polyhedra, but also 

superstructures in intermediate-range order greatly influence properties such as Tg, 

liquid fragility, and entropy. Furthermore, temperature dependence of structural 

evolution plays a key role in thermodynamics of the cooling process from liquids to 

crystals or glasses. Therefore, an expanded relation, i.e., composition-temperature-

structure-property, is proposed, which is helpful to design glasses with desirable 

properties and optimize parameters of glass manufacturing. 

As one of the most crucial features in amorphous state, structural heterogeneity 

attracts great interests for exploring its physical meaning and underlying effects on 

various properties. For instance, structural heterogeneity is closely associated with 

the non-exponential slowing down of dynamics and phase separation in supercooled 

liquid [5,220-222]. Moreover, it can be retained in the glass by virtue of 

hyperquenching and result in complex enthalpic relaxation if the glass is re-heated to 

Tg [223-225]. In addition, ordered structures can still survive in equilibrium silicate 

liquid [226], indicating the memory effect of equilibrium liquids. Recently, zeolitic 

imidazolate frameworks (ZIFs) glass has been successfully prepared using melt-

quenching method [227]. The ZIF glass exhibits polyamorphic transition upon 

heating, implying the presence of structural heterogeneity in this hybrid glass. We 

found three of the studied oxide systems exhibit structural heterogeneity in different 

degrees. For mixed network former glasses, ordered domains form in the glass 

matrix (G2) during isothermal heat treatments and/or multiple dynamic heating. The 

growth of the ordered domains interrupts the glass transition of G2 upon heating, and 

results in the interaction between the droplet (G1) and the residual part of G2. For 

studied oxyfluoride germinate system, nano-clusters form during dynamic heating, 

leading to a reversible order-disorder transition. Both the two systems exhibit 

significant structural heterogeneity, which highly influence thermodynamics and 

glass transition. For binary calcium-aluminate system, the coexistence of fragile and 

strong phases around Tf-s results in abnormal change of dynamics (f-s transition).  

As a property reflecting the glass network connectivity, the composition dependence 

of Tg is sensitive to SRO structural units and their interactions. For Na2O-CaO-B2O3-

SiO2 glasses, the non-monotonic variation of Tg with the SiO2/B2O3 substitution is 

mainly governed by N4 value, the fraction of NBO, and linear constraints of B-O and 

Si-O bonds. When Na2O and CaO are replaced by Al2O3 and P2O5, i.e., B2O3-Al2O3-

SiO2-P2O5 glasses, crystal-like units (BPO4 and AlPO4) form and nano-phase 
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separation takes place. In this case, boroxol rings and B
III

 non-ring species mainly 

governs the monotonic decrease of Tg with increasing B2O3 content for borate and 

mixed borate-silicate glassy phase, respectively. When oxygen is partially 

substituted by fluorine, e.g., oxyfluoride germanate glasses (GeO2-BaF2-AlF3), F
-
 

and NBO break the glass network, while Ge
V, VI

 species and germanate rings 

polymerize the glass network, leading to the non-monotonic variation of Tg with Td. 

When there is a lack of traditional network former, e.g., CaO-Al2O3 glasses, the 

structural network evolves from ODRN, through CRN to IRN containing AlOx and 

CaOx polyhedra with increasing CaO content. The oxygen tricluster and NBO 

mainly govern the network connectivity for Al2O3-rich compositions, whereas 

clusters of CaOx polyhedra become predominant in governing Tg for CaO-rich 

compositions. For all the four system, it is observed that the change of the 

coordination number of network former cation significantly influence Tg.  

The thermodynamics of glasses and liquids are investigated. In borate-silicate 

glasses, borate superstructures and mixed B-O-Si rings have major influence on 

Cp,conf(Tg). In addition, Sconf(Tg) could be simultaneously governed by superstructures 

and angular constraints of O-B-O and O-Si-O bonds. In mixed network former 

glasses, structural heterogeneity and structural ordering greatly influence the degree 

of micro phase separation and crystallization. In oxyfluoride germanate glasses, the 

change of SRO germanate units and the existence of germanate rings results in the 

formation of nano-clusters (IRO units), which causes reversible order-disorder 

transition. In the binary calcium aluminate glass forming liquids, polyamorphism 

causes mismatching of atomic volume and excess entropy in the low and high 

temperature regions and hence an abrupt change at Tf-s. Therefore, the structural 

heterogeneity in IRO scale has great influence on thermodynamics of liquids and 

quenching-derived glasses. 

In addition, the dynamics are also discussed in terms of viscosity and liquid fragility. 

For borate-silicate system, the liquid fragility is mainly governed by angular 

constraints of O-Si-O and O-B-O bonds. For mixed network former system, 

although it is difficult to precisely obtain m for each glass phase, we infer that this 

kind of glass-forming liquid is extremely strong due to a lack of traditional 

modifiers and the existence of crystal-like units such as BPO4 and AlPO4. For 

oxyfluoride germanate system, the presence of F
-
 guarantees the ease of viscous 

flow in high temperature region, leading to the high value of m. For the binary 

calcium-aluminate system, f-s transition exists across a wide composition range 

from CA2 to C5A – representing 50% of CaO-Al2O3 compositions. Furthermore, we 

try to explore the association between structure, glass transition, crystallization, and 

dynamics. Strikingly, various phase transitions occur in the temperature region of 

1.15-1.2Tg regardless of the type of the system. For mixed network former glass 

forming system, the first crystallization peak temperature (Tp) locates in the region 

of 1.15-1.18Tg2. For oxyfluoride germanate system, the peak temperature of the 

endotherm characterizing the order-disorder transition (Tendo) is ~1.16Tg. For the 
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binary CaO-Al2O3 system, Tf-s and Tp are ~1.15Tg, the dynamic cross-over 

temperature is ~1.2Tg, and the degree of IRO increases at ~1.25Tg [219]. Hence, the 

coherence of the three special oxide systems reconciles the structural heterogeneity, 

anomalous phase transition, and abnormal dynamics in this special temperature 

region, i.e., 1.15-1.2Tg. As supercooled liquid is cooled to approach ~1.2Tg, the 

ergodicity of the liquid is lost, the slow relaxation processes emerge, and the 

reciprocity between viscosity and ionic diffusion is broken, leading to the 

occurrence of a dynamic cross-over in structural heterogeneity.  
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CHAPTER 7. CONCLUSION 

We explored the evolution of structure and thermodynamics with substitution of 

SiO2 by B2O3 in a series of Na2O-CaO-B2O3-SiO2 glasses and liquids. The 

intermediate range order (IRO) structural units are found to govern the major change 

of the configurational heat capacity at Tg (Cp,conf(Tg)) with composition. Specifically, 

in the SiO2-rich glasses, the contents of B-O-Si (danburite-like) structural units and 

six-membered borate rings have a major contribution to the increase of Cp,conf(Tg). In 

the intermediate compositions, the competition between the disruption of B-O-Si 

units and metaborate structure and the formation of other borate superstructures 

causes Cp,conf(Tg) to be approximately constant. In the B2O3-rich glasses, the 

continuous formation of six-membered borate rings causes a further increase of 

Cp,conf(Tg).  In addition, it is found that Cp,conf(Tg) is closely associated with the 

kinetic liquid fragility index m. Furthermore, the configurational entropy at Tg 

(Sconf(Tg)) is mainly governed by IRO superstructures and angular constraints of O-

B-O and O-Si-O bonds. 

For mixed network former glass-forming system (B2O3-Al2O3-SiO2-P2O5), we 

investigated the structure, glass transition, nano-phase separation, and 

crystallization. With substitution of SiO2 by B2O3, all studied glasses exhibit nano-

phase separation, i.e., droplets (G1) with length scales of 50-100 nm and the glassy 

matrix (G2). Based on the structural characterizations, we suggest that G1 is rich in 

boroxol rings and G2 mainly involves the B-O-Si network, but both contain BPO4 

and AlPO4 units. As B2O3 content increases, three-fold coordinated boron (B
III

) 

species become dominant, the content of four-fold coordinated aluminum (Al
IV

) 

species slightly increases, and the P speciation remains unchanged. These structural 

evolutions result in a decrease of the BPO4 units in G1 and boron-rich network of G2, 

leading to the Tg decrease of for both phases. Structural ordering takes place in G2 

during isothermal and dynamic heating, implying the structural heterogeneity in the 

melt-quenched B2O3-Al2O3-SiO2-P2O5 glasses. The ordered domains lower the 

activation energy of crystal growth, promoting the partial crystallization of G2 and 

the interaction between G1 and the residual part of G2 upon heating. 

For oxyfluoride germinate glass-forming system (60GeO2-25BaF2-15AlF3), we 

studied the glass transition, crystallization, and order-disorder transition. Minor 

crystalline phases (BaGeO3, GeF4, BaF2) and major crystalline phase (Al2BaGe2O8) 

progressively form upon heating to ~50 K above Tg. After heating the glass to the 

temperature region of 925-986 K, nano-clusters (~20 nm) form, which could contain 

five- and six-fold coordinated germanium species, and six-membered GeO4 rings. 

The nano-clusters undergo an order-disorder transition during DSC upscanning, 

giving rise to a reversible endotherm at 925 K. The formation and breaking-down of 

the nano-cluster are associated with the increase and decrease of Tg with increasing 

dynamic heating temperature, respectively.  
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For calcium-aluminate glass-forming system, we reconciled its structure, rheology, 

thermo-physics, and phase transition across wide composition and temperature 

regions. By using aerodynamic levitation furnace (ALF), the composition region of 

glass-forming is extended, i.e., from CaO-2Al2O3 (CA2) to 5CaO-Al2O3 (C5A), and 

the supercooled region can be accessed without heterogeneous crystallization. With 

the substitution of CaO for Al2O3, the structural network evolves from oxygen 

deficient random network (ODRN) to incomplete random network (IRN) through 

continuous random network (CRN) at the deep eutectic (C12A7). Besides typical 

structural units, e.g., Al
IV

, BO and NBO, large amount of
 
Al

V, VI
 species and 

tricluster oxygen exist in the liquids and glasses of ODRN and CRN, which are 

seldom found in traditional oxide glass-forming systems. As the CaO content 

increases from CA2 to C12A7, these special structures become less, resulting in the 

structure of CRN with improved atomic packing (C12A7). Further increase of the 

CaO content breaks the continuous AlO4 network, giving rise to the mix of AlO4 

and CaOx polyhedra. This structural evolution causes non-monotonic variations of 

characteristic temperatures, atomic density, CTE, and GFA metrics across the 

binary calcium-aluminate liquids and glasses, featuring a threshold at C12A7. 

Remarkably, a fragile-to-strong transition (f-s) is found to be ubiquitous in the 

supercooled CaO-Al2O3 liquids. The f-s transition is further confirmed by the drops 

of atomic volume and excess entropy at Tf-s upon cooling. The positive Clapeyron 

slope indicates calcium aluminate liquids can be envisaged as close packed 

polyhedra, although they have network topology. 
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