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Abstract—Pain is a symptom of many disorders associated
with actual or potential tissue damage in human body. Man-
aging pain is not only a duty but also highly cost prone. The
most primitive state of pain management is the assessment
of pain. Traditionally it was accomplished by self-report or
visual inspection by experts. However, automatic pain assessment
systems from facial videos are also rapidly evolving due to
the need of managing pain in a robust and cost effective way.
Among different challenges of automatic pain assessment from
facial video data two issues are increasingly prevalent: first,
exploiting both spatial and temporal information of the face
to assess pain level, and second, incorporating multiple visual
modalities to capture complementary face information related to
pain. Most works in the literature focus on merely exploiting
spatial information on chromatic (RGB) video data on shallow
learning scenarios. However, employing deep learning techniques
for spatio-temporal analysis considering Depth (D) and Thermal
(T) along with RGB has high potential in this area. In this
paper, we present the first state-of-the-art publicly available
database, ’Multimodal Intensity Pain (MIntPAIN)’ database, for
RGBDT pain level recognition in sequences. We provide a first
baseline results including 5 pain levels recognition by analyzing
independent visual modalities and their fusion with CNN and
LSTM models. From the experimental evaluation we observe that
fusion of modalities helps to enhance recognition performance
of pain levels in comparison to isolated ones. In particular, the
combination of RGB, D, and T in an early fusion fashion achieved
the best recognition rate.

I. INTRODUCTION

International Association for the Study of Pain (IASP)
defined ’pain’ as ”an unpleasant sensory and emotional ex-
perience associated with actual or potential tissue damage,
or described in terms of such damage”. It is a prevalent
medical problem and managing pain is a moral imperative, a
professional responsibility and a duty of medical practitioners
[4]. However, the dualistic nature of pain has been recognized
throughout history containing both sensory and affective com-
ponents [29]. This dualistic nature states that pain is both a
powerful somatic sensation as well as a powerful behavioral
state of mind. To evaluate these dimensions there are many

different neuro-physiological tools or techniques which can
be used. The widely used technique to measure pain level
is ’self-report’. However, self-reported pain level assessment
does not always effectively apt in practical scenarios due to
inconsistent metric properties across dimensions, efforts at
impression management or deception, as well as differences
between clinicians’ and sufferers’ conceptualization of pain
[3]. Moreover, it requires cognitive, linguistic and social
competencies that make self-report unfeasible to use for young
children and patients with limited ability to communicate [17],
[22], [26].

Beside ’self-report’ of pain, visual pain expression can be
revealed in the face and expresses emotion valley regarding to
experiencing pain [39]. It can also provide the information
about the severity of pain that can be assessed by using
the Facial Action Coding System (FACS) of Ekman and
Friesen [5], [37]. Prkachin first reported the consistency of
facial pain expressions for different pain modalities [32] and
then together with Solomon developed a pain metric called
Prkachin and Solomon Pain Intensity (PSPI) scale based on
FACS in [34]. Although there is a debate about the correlation
between self-reported pain and facial pain expression [14],
many works found significant relationship between these two
[8], [33]. Another of the most widely used scales are the
Visual Analogue Scale (VAS) [7]. The VAS is a psychome-
tric response scale, which is often utilized to characterize
subjective attitudes which cannot be directly measured, on
a continuous line between two end-points [7]. The VAS is
capable of characterizing both the level of pain intensity, the
level of unpleasantness and is able to shed light on both the
somatic component and the affective component in a relatively
simplistic way.

The scales, like PSPI or VAS, provide notions to calibrate
pain existence and intensity by visual observations from facial
images or videos either by a human expert or an automated
system. While human observation constitutes the ground truth
for the pain level for objective assessment, automated system
for pain assessment based on facial image or video analysis
tries to provide an effective alternative to self-report or human978-1-5386-2335-0/18/$31.00 c©2018 IEEE



expert for pain assessment. However, automatically assessing
pain level from facial image or video is rather challenging.
This is not only because of the challenges associated with
finding the pain features in the absence of enough visual
difference between pain/non-pain facial frames. This is also
because of the presence of external factors like ’smiling
in pain’ phenomenon and/or gender difference (male’s vs
female’s way of experiencing) to pain [23], [24], [40]. These
result to a non-linearly wrapped facial emotion levels (due to
the presence of pain) in a high dimensional space [36].

A vast body of literature was produced in the recent years
to automatically measure pain levels from facial color RGB
images or videos [8], [33]. On the other hand, recent advances
in facial video analysis using deep learning frameworks such
as Convolutional Neural Networks (CNN) or Deep Belief
Networks (DBN) provide the notion of realizing non-linear
high dimensional compositions [35]. Deep learning archi-
tectures have been widely used in face recognition [16],
[25], [42], facial expression recognition [21], [31], [43] and
emotion detection [20], [30], [35]. Pain level estimation using
a deep learning framework was also proposed [2], [44].
Employing deep learning framework for pain level assessment
from facial video entails two kinds of information processing
from facial video sequences: i) spatial information, and ii)
temporal information [19]. Spatial information provides pain
related information in the facial expressions of a single video
frame. On the other hand, temporal information exhibits the
relationship between pain expressions revealed in consecutive
video frames and it provides a valuable information about the
behavioral state of subjects [38]

Besides the spatial and temporal information from facial
images, many other factors such as face qualities (e.g. low
face resolution or brightness) [2], [9]–[13] and face captur-
ing modalities (e.g. color RGB, depth and/or thermal) play
important role in automatic pain assessment. Face quality
in pain assessment was investigated in the literature [2] by
using super resolved images. However, multimodal pain de-
tection from RGB, Depth and Thermal (RGBDT) imagery
is a hardly explored area both in terms of availability of
databases and effective methodology for pain level classifi-
cation. Lack of database in such area is a major issue of
concern [22] and employing effective methodology affects the
performance [18], [22]. Irani et al. collected a RGB-Depth-
Thermal (RGBDT) database by employing pressure pain on
the shoulder of healthy subjects and employed Support Vector
Machine (SVM) on spatio-temporal features from different
modalities to distinguish between different pain levels [19].
However, the database is not publicly available.

In this paper, we present the first state of the art publicly
available multimodal pain intensity database for RGBDT pain
level recognition in sequences1. We employ a hybrid deep
learning framework by combining a CNN and a Recurrent
Neural Network (RNN) to exploit spatio-temporal information
of the collected data for each of the modalities. Then, we em-

1Database download page: http://www.vap.aau.dk/mintpain-database/

ploy both early and late fusion strategies between modalities
to investigate both the suitability of individual modalities and
their complementarity.

The rest of the paper is organized as follows. Section
II provides the description of the new database, including
data collection, post-processing, and characteristics. Section III
describes the proposed methodology in order to provide a first
baseline analysis for pain level assessment using multimodal
spatio-temporal data with deep learning strategies. Section
IV presents the experimental setup and the obtained results.
Finally, section V concludes the paper.

II. MULTIMODAL INTENSITY PAIN DATABASE

Two notable databases that are publicly available for video
pain experiments are the UNBC-McMaster database [27] and
BioVid database [41]. However, none of these are having
RGBDT modalities; and to the best of our knowledge, there
is no publicly available RGBDT database that focuses on pain
analysis from face. By considering such lack of availability
of a multimodal RGBDT pain database, the main contribution
of this work is creating a multimodal pain intensity database
using experimental pain on healthy subjects. It is to be noted
that electrical stimulation is a highly reproducible and non-
invasive method to elicit experimental pain or discomfort;
and both Functional Electrical Stimulation (FES) of muscle
nerves and electrical stimulation of the Nociceptive With-
drawal Reflex (NWR) are easy to manipulate using graded
stimulation intensities to generate pain [1]. Thus, we have
collected the new RGBDT database, named as Multimodal
Intensity Pain (MIntPAIN) database, by employing controlled
electrical stimulation to generate pain to the subjects’ muscles.
Table I shows the distinction between the new MIntPAIN
database and the other two available pain databases. Though
BioVid database is a big database and has a number of non-
visual modalities like ECG and EEG, the only visual modality
is RGB. This is the case for the small UNBC-McMaster
database as well. However, the new MIntPAIN database is a
sizable one and includes all RGBDT modalities. The following
subsections describe the procedure of data collection and the
database structure.

A. Experimental Pain by Electrical Stimulation

Two self-adhesive electrodes (Pals Platinum Round 3.2cm,
Axelgaard Ltd., USA) were placed on the muscle belly of
the ’extensor digitorum’ muscle. The stimulation consisted of
a pulse train with a frequency of 30 Hz and square pulse
duration of 200s, stimulating for 1.5 seconds, administered
by an electrical stimulator (Noxitest IES 230) controlled by a
computer. One cathode (Ambu R© Neuroline 700) was placed
on the anterior surface of the head of the second metacarpal
bone and a common anode (7,5cm x 10cm Axelgaard Man-
ufacturing Co., Ltd R© PALS Platinum) was placed on the
dorsum of the subject’s left hand to elicit the NWR. Each
stimulus consisted of a constant current pulse train of five
separate 1ms pulses controlled and delivered at 200 Hz by a



TABLE I
THE NEW MINTPAIN DATABASE AND THE OTHER PUBLIC VISUAL DATABASES FOCUSING ON PAIN

Attribute UNBC-McMaster database [27] BioVid database [41] The new MIntPAIN database
Number of subjects 129 (16 are available) 90 (87 are available) 20 (all available)

Subject’s type Self-identified pain patient Healthy volunteers Healthy volunteers
Pain type Natural shoulder pain Stimulated heat pain Stimulated electrical pain

Pain levels 0-16 (PSPI) and 0-10 (VAS) 1-4 (Stimuli) 0-4 (Stimuli)
Available visual modalities RGB RGB RGB, Depth, Thermal

Size of the database 200 variable length videos 17300 5s videos with 25fps 9366 variable length videos
with 31,571 frames for all modalities with 1,87,939 frames

Year of publishing 2011 2013 2017

computer controlled electrical stimulator (Noxitest IES 230,
Aalborg, Denmark).

The FES motor threshold (M th) was visually identified
using a simplistic staircase model with increasing steps of
stimulation intensities starting at 5mA with increasing inten-
sities in increments of 1mA until a motor response could
be visually identified. The FES pain threshold (P th) and the
NWR stimulation P th and reflex threshold (Rth) was detected
using a more complex staircase model, with increasing and
decreasing stimulation intensities. The stimulation intensity
starting point was 1mA. From 1mA the intensity was increased
with ascending steps of 2mA until the stimuli was considered
painful (P th) or a reflex occurred (Rth). Whereupon the
stimulation intensity was reduced in steps of 2mA until the
stimulations was not considered painful or no motor response
was visually confirmed. The following two staircases then
consisted of increasing and decreasing stimulation intensities
in smaller steps of 1mA, until a total of 3 ascending and 3
descending estimations of the pain and motor threshold had
been made. From these six intensity values, an average of
the last four ascending and descending estimations was used
as the final estimate of the thresholds. The Rth detection
was performed online using customized software based on
evaluation of interval peak z-score. A reflex was detected if
the EMG signal had an interval peak z-score larger than 12.
The EMG signals were rectified and their interval peak z-score
was calculated as:

Interval peak zscore =
reflex peak − µbaseline

σbaseline
(1)

To grade the stimulation intensities used for FES, we defined
four equally spaced Stimulation Intensities (SI1−4) by as
follows:

SIi=1to4 =M th +
1

3
(M th − P th) ∗ (i− 1) (2)

To grade the stimulation intensities used to stimulate the
NWR, the P th was multiplied with four fixed factors; 0.8, 1.0,
1.25 and 1.5, giving four stimulation intensities. These four
stimulation intensities for each cases of FES and NWR were
then used to stimulate the subject 10 times in a randomized
order with an inter-stimulus interval of 15-20 seconds leaving
time for the subjects to rate the pain intensity and unpleasant-
ness of the pain sensation. Before starting the data acquisition,

the stimulation intensities were tested to familiarize the subject
to the stimulation.

As an experimental protocol, the subjects were seated com-
fortably in an armchair with the left arm resting. The position
of the chair was adjusted to obtain a comfortable resting
position and an angle of 100◦ in the elbow joint of the left
arm. The subject was instructed to position the left arm within
a marked area to ensure identical positioning throughout the
entire experiment.

B. Data Acquisition Setup

EMG was recorded from the subjects left arm, from the
Extensor Carpi Ulnaris (ECU) muscle, using three surface
electrodes (30 x 22 mm, type 720, Ambu A/S, Denmark) in a
tripolar configuration with an inter-electrode distance of 2cm.
The EMG signal was pre-amplified and filtered (10-500 Hz)
and stored as a 1s recording; 200ms pre- and 800ms post-
stimulation. The subjects’ perceived pain intensity was rated
on a 10cm electronic VAS, anchored by assigning 0 as the
perception threshold, 5 as the PTh and 10 as the most intense
pain imaginable. Each stimulation was rated by the subject and
stored. The subjects’ perceived unpleasantness intensity was
also rated on a 10cm electronic VAS, anchored by assigning
’0’ as not unpleasant, 5 as unpleasant and 10 as the most
unpleasant imaginable.

To capture the facial pain expression of the subject during
the stimulation, the database was collected in three modalities:
color RGB, depth and thermal. Color RGB and depth data
of frontal facial images are captured by Microsoft Kinect
Version2. The thermal data was captured by Axis Q1922
thermal camera. A Logitech camera was also used to determine
a light signal to indicate the starting and ending time stamps of
electrical stimulation. After collecting the raw data while giv-
ing the electrical stimulation to the subjects, we followed some
post-processing steps to organize the database. In particular,
we synchronized the facial image frames in all three modalities
by following the capturing time stamps and annotated them in
sequences with different pain levels obtained from the EMG
data. Time synchronization of the frames was accomplished
by the time stamps in the RGB frames with variable frame
rate. Depth frames followed the same time stamps than RGB.
However, the thermal frames were captured exactly at 30
fps. Thus, we just discarded thermal frames by keeping only
the ones corresponding to the RGB time stamps. We also



(a) RGB (b) Thermal (c) Depth

Fig. 1. Example of captured video frames in different modalities of the new MIntPAIN database. Depth image is histogram equalized for visualization.

TABLE II
KEY ATTRIBUTES OF THE NEW MULTIMODAL INTENSITY PAIN

(MINTPAIN) DATABASE OBTAINED BY ELECTRICAL STIMULATION

Attribute Value and comments
No. of subjects 20 healthy volunteers

Age range (22-42)y with mean 29.8y
Height range (1.60-2.00)m with mean 1.79m
Weight range (50.0-110.0)kg with mean 81.20kg

Pain levels (0-4), 0 for no-pain and (1-4) for four pain levels
Pain type Electrical stimulation (including both FES and

NWR in two trial) for (1-10)sec in each sweep
Self-report Using VAS ranging (0-10)

Visual RGB resolution 1920x1080 with fps<30
Modalities Depth resolution 512x424 with fps<30

Thermal resolution 640x480 with fps=30
Sequence Total 9366 videos (50-50 pain/non-pain)

details Average frames in each sequence = 20.07 (for RGB)
Duration of the sequences [1-10]sec

provide an approximate image registration across modalities
by means of homography estimation. For this, we calculated
homography matrices from RGB to D and T using [15].

C. Structure of the Database

The new MIntPAIN database has multimodal pain data
obtained by giving electrical stimulation in five different
levels (Level0 to Level4, where 0 implies no stimulation and
4 implies the highest degree of stimulation) to 20 healthy
subjects. After prior ethical approval for the data collection,
the subjects were invited to be volunteer. They were adequately
informed about the electrical pain stimulation and overall data
recording procedure. Each subject exhibited two trials during
the data capturing session and each trial has 40 sweeps of pain
stimulation. In each sweeps we captured two data: one for no
pain (Label0) and the other one for one of the four pain levels
(Level1-Level4). As a whole each trial has 80 videos (50-50
pain/non-pain ratio) for 40 sweeps. Among these, some sweeps
are missing for few subjects. This is due to the unexpected
noise in the EMG reading of one subject, talking by one
subject during data capturing, and lack of VAS scale by two
experimental subjects. Fig. 1 shows some full-frame samples
of a recorded subject for the three different modalities. Fig.
2 shows examples of cropped database faces for the different
annotated pain levels and modalities. Note the clear difficulty
in performing visual assessment of this complex multi-class
problem, particularly for the second subject (at the right) in
the figure. A list of key attributes of the database is shown in
Table II.

III. DEEP MULTIMODAL PAIN DETECTION

In this section, we describe the methodological proposal
in order to perform a baseline analysis for the 5-level pain
recognition on the presented database. We test standard deep
approaches to the three provided modalities. We then fuse the
modalities by employing both early and late fusion techniques.
The pain scores are measured by employing CNN (to exploit
spatial characteristics) and a combination of CNN and RNN
(to exploit spatio-temporal characteristics) on both individual
and fused modalities. In this section, we first describe the
preprocessing steps and the architecture of the deep learning
strategies considered. Finally, we discuss the different fusion
strategies that have been applied.

A. Preprocessing

Fig. 1 shows that the original RGBDT video frames present
a large portion of the subject body in the space of the acqui-
sition room. For the experimental evaluation we just focus on
face-based pain recognition. Thus, on the synchronized data
modalities, we applied face detection using the method of [28]
on RGB modality and cropped associated faces on D and T
modalities by using computed homographs. The procedure is
shown in Fig. 3 and described below. We are providing time
synchronization and homography matrices codes together with
the database. Time and space calibration steps are described
in database section. The cropped faces are then fed to deep
learning frameworks for individual and fusion performance
analysis.

B. Baseline evaluation

In order to provide a baseline results on the presented
database we use a standard two step deep approach. First
we apply a 2D-CNN for frame wise feature extraction and
pain recognition. Secondly, an implementation of RNN called
Long-Short Term Memory (LSTM) [2] is used to estimate
the temporal relations between the frames and to perform
sequence level pain recognition.

We fine-tuned the VGG-FACE model [2] pre-trained with
faces. The model was fine-tuned against different modalities,
specifically RGB, D and T, creating three different models
used for feature extraction. Given the lack of existing pre-
trained models of faces on depth and thermal modalities and
considering the moderate amount of data of our database
to train it with VGG-FACE from scratch, we considered to
use the same pre-trained model (RGB) for the fine-tuning
of all three modalities. This allowed us to make important



(a) RGB faces

(b) Thermal faces

(c) Depth faces

Fig. 2. Faces from two subjects for all 5 pain levels (Level0 to Level4 from left to right) for all different modalities. The depth images are depict by editing
the colormap for visualization purpose.

Fig. 3. Preprocessing steps employed on the raw video frames of different modalities to crop facial regions before deep learning of pain levels.

contributions by asking: whether a model pre-trained against
RGB data can also be used with similar data captured in the
other modalities like D and T, and whether what the network
learned in RGB is still meaningful in the other modalities.

A 2D-CNN is unable to estimate long term temporal rela-
tions between frames. Therefore, a LSTM is used to learn these
temporal relations. The hybrid CNN+LSTM pain detection
framework is depicted in Fig. 4 along with different fusion
strategies. First, we extract facial features for the frames. We
obtain the features of the fc7 layer of the fine-tuned VGG-
FACE and use those as input to the LSTM to exhibit hybrid
deep learning performance. Pain levels (labelled from 0-4) are
predicted sequence-wise, i.e. given an unknown sequence of n
frames fi ∈ {f1, ..., fn}, the target prediction is the pain level
of the fn frame. Thus, training is set so that the information
contained in the past frames is used in order to predict the
current pain level.

C. Fusion strategies

In order to analyze the potential of the different visual
modalities, in the experimental section we evaluate both early
and late fusion methods as described below.

1) Early Fusion: For the early fusion analysis, different
modalities are integrated into the single combined data stream.
Then classifiers are fed using these large multimodal input
vectors for training. The combination of multiple individual
modalities into a single one implicates that the joint represen-
tations are projected to the same space using all the modalities
as input. In our specific case, D and T data have been stacked
together as new channels with the RGB data. The fusing
process generates a 5-dimensional matrix for each of the video
frames (more specifically, cropped facial region), considered
as the new input for the CNN.

2) Late Fusion: We consider late fusion by integrating
outputs of individual classifiers (deep models in our case) as
an input feature vector for a second stacked classifier. This
second classifier is the one which is in charge of producing
final classification [6].

IV. EXPERIMENTAL RESULTS

In order to present the results, first we discuss the ex-
perimental setup. In terms of experiments, we evaluate the
database for CNN and LSTM 5-class pain recognition both
at frame and sequence levels for the different modalities, and
early and late fusion strategies.



Fig. 4. The block diagram of fusion strategies along with the deep hybrid classification framework based on a combination of CNN and LSTM.

A. Experimental setup

We divided the 20 subjects of the proposed database in
5 disjoint sets and run 5-fold cross validation. Thus, each
partition corresponds to 16 subjects for training and 4 not
previously observed subjects for testing. Results are reported
as mean per frame and sequence accuracy over all five
classes. Sequence evaluation is addressed by majority voting
of individual frames predicted labels of the sequence. Since
the examples of class 0 i.e. no pain are several times more than
the other four classes, we augment the samples belonging to
the 4 classes to balance the number of training examples. The
data augmentation is performed by rotating the cropped faces
five degrees to the right and left. Thus, giving us three times
more training examples.

B. CNN independent modality evaluation

In this section, we discuss the challenges of finetuning a
CNN on our datasebase. We finetune the VGG-Face network
independently by each modality with a base learning rate of
0.00001 and momentum 0.1. We train all the layers of the
VGG-FACE network. We train the fully connected layers 10
times faster than the convolutional layers. The results are
compiled in Table III. One can observe that the accuracy
achieved by independent modalities is near guess prediction
given the inherent complexity of the pain level recognition
problem as well as the presence of new subjects at test
stage. Some samples of subjects of the database in Fig. 2
(more particularly, the second subject in the right) show the
clear difficulty to perform pain level assessment by human
observation. On the other hand, we observed that finetuning
D and T channels from a pretained RGB network provides
some meaningful information. As we will see below in the
case of fusion of modalities, it will be demonstrated by the
fact that the fusion of these fine-tuned modalities enhance final
performance in relation to isolated CNN models performance.

C. CNN-LSTM independent modality evaluation

For learning the temporal relationships between frames we
implement an LSTM. The input to the LSTM are the per

frame feature vectors extracted from the fc7 layer of the fine-
tuned VGG-Face CNN. We implement the LSTM framework
for each modality. While training LSTM we vary the hidden
states between 64 and 256. We also try a single layer to a 3
layers deep LSTM. The learning rate is 0.001 and we trained
the network until 50 epochs. Results are shown in tab III.
We concluded that there are two main reasons for the low
performance of the hybrid CNN+LSTM system. First, the low
performance of the independent CNN based features signifies
that the per frame feature vectors are not discriminative enough
to allow LSTM for a better generalization. Secondly, we have
limited the number of sequences to train the LSTM. Although
the influence of temporal information is clearly motivated in
the literature for pain assessment, we found that a simple state
of the art baseline based on LSTM with standard CNN features
is not enough to provide good generalization capabilities in
this scenario and based on the amount of provided data.

D. Fusion of modalities

In order to analyze if different modalities can complement
each other to enhance pain level recognition performance, we
ran early and late fusion analyses on all four possible combi-
nations of fusions against the three modalities. Early fusion
of modalities is used to fine-tune the VGG-Face network.
On the other hand, while doing late fusion the confidence
scores of classes from different modalities are combined with
a Random Forest classifier. The training parameters are the
same to the training parameters for fine-tuning the VGG-
Face network as in the case of the independent modalities
experiment. In tab. IV we show the results of early fusion (EF)
and late fusion (LF) for all combinations of modalities. From
this table, we can observe that the best result is achieved by
the early fusion of all three modalities. The confusion matrix
w.r.t. this result is shown in fig. 5. It is also apparent from the
table that both early fusion and late fusion strategies are more
discriminative than individual modalities. The sequence level
accuracy is slightly higher mainly because the majority voting
may help in some cases to recover from isolated frame miss-
classifications because of the usage of majority voting proce-



TABLE III
VGG-FACE CNN AND LSTM RESULTS ON INDEPENDENT MODALITIES.THE TOP ROW IS PER FRAME ACCURACY AND THE BOTTOM ROW IS PER

SEQUENCE ACCURACY. BEST SCORES IN BOLD

Modalities CNN-RGB CNN-T CNN-D LSTM-RGB LSTM-D LSTM-T
Mean Frame(%) 18.17 18.08 16.71 15.36 14.72 13.13

Mean Sequence (%) 18.55 18.33 17.41 15.36 14.72 13.13

TABLE IV
EARLY FUSION (EF) AND LATE FUSION (LF) RESULTS FOR DIFFERENT COMBINATIONS OF THE MODALITIES. TOP ROW IS PER FRAME ACCURACY AND

THE BOTTOM ROW IS PER SEQUENCE ACCURACY. BEST SCORES IN BOLD

Fusion EF-RGB-T EF-RGB-D EF-D-T EF-RGB-DT LF-RGB-T LF-RGB-D LF-D-T LF RGB-D-T
Mean Frame (%) 23.85 24.62 23.12 32.40 21.80 23.20 22.50 25.20

Mean Sequence(%) 30.77 27.92 25.30 36.55 22.10 22.30 22.70 25.40

Fig. 5. The confusion matrix corresponding to the early fusion of all three
modalities.

dure. We also experimented with features extracted from early
fused data to train an LSTM. Our preliminary experiments
showed that the performance was not comparable to the early
fusion experiments just with CNN, being in correlation to the
results obtained by LSTM in the case of isolated modalities
evaluation.

V. CONCLUSION

This work presented the first public available state of the
art database for pain assessment from RGB-Depth-Thermal
sequences. The new database includes 20 subjects and has
been annotated at frame level with 5 different levels of
pain. We also provided a first baseline based on standard
CNN and LSTM deep learning strategies. Furthermore we
performed both early and late fusion of modalities in order
to evaluate their complementary in order to enhance the
recognition performance of pain levels. From our evaluations,
we observed that fusion of modalities are more discriminative
than training the classifiers with independent ones for this
task. The early fusion of all three modalities provided the
highest performance. These results support the usability of
the different visual data sources provided in the database.
We also observed that the usage of LSTM to learn long

term dependencies in our data achieves poor performance for
the considered input fine-tuned VGG-features. Further work
includes the analysis of alternative appearance and temporal
features from the different modalities, different models for
spatio-temporal inference, as well as fusion strategies in order
to provide further insights about the complementary of the
three visual modalities.
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