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Abstract

Heterotrophic marine nanoflagellates are important grazers on bacteria in the water column.

Some marine bacteria appear more resistant to grazing than do others. Marine nanoflagel-

lates can be grown in the laboratory in batch cultures fed specific bacterial isolates. In some

cultures, the flagellates appear unable to completely deplete the bacterial prey even when

the bacterial strain otherwise is an excellent prey. This may indicate that some marine bac-

teria are able to induce defence mechanisms if they are grazed by nanoflagellates. Four

morphologically distinct marine heterotrophic nanoflagellates, of which 3 were still identified

as Procryptobia sorokini (Kinetoplastea) and one as Paraphysomonas imperforata (Chryso-

phyceae) were isolated from a coastal location along with 3 isolates of the marine bacterium

Pseudoalteromonas sp. Flagellate growth and grazing on bacterial prey were analysed in

batch cultures. Pseudoalteromonas was a suitable prey for all 4 flagellate isolates. They

grazed and grew on Pseudoalteromonas as sole prey with maximal cell-specific growth

rates of 0.1–0.25 h-1 and gross growth efficiencies of 38–61%. Exposure to dense flagellate

cultures or their supernatants did, however, cause a fraction of the Pseudoalteromonas

cells to aggregate and the bacterium became apparently resistant to grazing. Concentra-

tions of suspended Pseudoalteromonas cells were therefore not decreased below 1,700–

7,500 cells μL-1 by any of the flagellate isolates. These results indicate that Pseudoaltero-

monas sp. can be an excellent prey to marine nanoflagellates but also that is in possession

of inducible mechanisms that protect against flagellate grazing.

Introduction

Heterotrophic nanoflagellates play important roles in marine environments as bacterial graz-

ers. Pelagic nanoflagellates control the concentration of bacteria in the water column [1, 2]
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and mediate the transfer of bacterial biomass to higher trophic levels of aquatic food webs [3].

Not all bacteria are captured and consumed equally efficient by all flagellates. Most intercep-

tion feeding nanoflagellates (e.g. kinetoplastids and chrysophytes) seem to prefer larger, non-

motile bacterial cells while smaller bacterial cells are preferred by e.g. the filter feeding choano-

flagellates [4–6]. Bacteria may use a range of defence mechanisms to protect themselves from

flagellate grazing, such as cell surface masking, digestional resistance, toxin production, aggre-

gation, and microcolony formation [7]. Bacteria that are resistant to grazing may gain compet-

itive advantages over other bacteria when grazed by nanoflagellate. In chemostat and

mesocosm experiments, grazing resistant bacterial species [8, 9] or grazing resistant pheno-

types of otherwise grazing sensitive bacteria [10–12] have dominated bacterial populations

when nanoflagellates were also present. Evolutionary adaptations improving grazing resistance

of bacterial strains have also been described [13]. It has furthermore been observed that some

marine bacteria change physiology in the presence of heterotrophic nanoflagellates, grow in

microcolonies, and secrete mucus to protect against grazing [14–16]. Flagellates are recognized

by chemosensory mechanisms and the protective responses can be induced by cell free

medium or filtrates from flagellate cultures [15, 16]. Grazing resistance may have a metabolic

cost and grazing sensitive bacteria tends to become dominating in the absence of flagellate

predators [9–11, 13].

Growth and bioenergetics have been investigated in several marine nanoflagellates [17–

29]. Maximal specific growth rates are commonly between 0.1–0.25 h-1 at 10–20˚C with net

growth efficiencies of 15–61% (measured either in units of biomass or cell carbon). The rela-

tionship between specific growth rate and concentration of bacterial cells can be described by

Monod type saturation kinetics with half saturation constants of 1,300–45,000 bacterial cells

per μL [17, 19–21, 23, 29]. These half-saturation constants are higher than the bacterial con-

centrations (1,000 bacterial cells per μL or less) normally found in marine waters [30] and bac-

terivorous marine nanoflagellates generally live under food limited conditions. In several

studies, however, where flagellates have been grown in batch cultures, have the flagellates

stopped taking up bacteria at concentrations of 2–20,000 bacterial cells per μL [19, 23, 28]. We

observed the same phenomenon in preliminary batch cultures of marine nanoflagellates fed an

isolated marine bacterium, Pseudoalteromonas sp. while there seemed not to be a clear rela-

tionship between initial and final Pseudoalteromonas concentrations. This could suggest that

Pseudoalteromonas sp. may be able to activate growth independent responses that protect

against grazing. Bacteria of the genus Pseudoalteromonas are widespread in marine environ-

ments [31] and among the bacteria that can readily be isolated from seawater and grown in

axenic cultures in the laboratory. These bacteria are believed to be suitable prey for marine

nanoflagellates since flagellate grazing apparently maintains the concentration of Pseudoaltero-
monas and other large gram-negative bacteria low in the sea [32]. Pseudoalteromonas species

are known to secrete anti-bacterial compounds, toxins, extracellular enzymes, and exopolysac-

charides, and surface dwelling strains can inhibit growth and settlement of other organisms

[31].

If grazing protective mechanisms can be induced also in non-growing marine bacteria,

such mechanisms may be found in e.g. Pseudoalteromonas species because these bacteria are

heavily grazed [32] and in other connections have shown diverse metabolic capabilities [31].

In this paper, we have quantified growth of 4 heterotrophic, interception feeding, marine

nanoflagellates feeding on 3 Pseudoalteromonas isolates, verified that Pseudoalteromonas sp. is

excellent prey to these marine flagellates, and observed that Pseudoalteromonas indeed appears

to be in possession of defence mechanisms that can be induced to protect them from being

grazed by the flagellates.

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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Materials and methods

Sampling, isolation, and cultivation of marine nanoflagellates

Seawater (temperature = 8˚C, salinity = 22‰) was sampled at a coastal location (public beach

area) at Dokkedal, Denmark (56˚54’21.2"N 10˚16’9.2"E) 5–40 cm below the surface and

brought to the laboratory and incubated at 15˚C in the dark. Seawater for preparation of

growth media was collected at the same location, filtered through 0.22 μm filters and auto-

claved after enrichment by 0.01–1 g L-1 yeast extract.

Nanoflagellates were propagated by mixing 80 mL of freshly sampled sea water with 20 mL

of medium, reaching a final concentration of yeast extract of 0.01 g L-1. After 2 weeks of incu-

bation at 15˚C in the dark, the cultures were examined for the presence of heterotrophic nano-

flagellates under the microscope, diluted in sterile seawater until a flagellate concentration of 1

cell per μL, and 1 μL was transferred into a well in a microtiter plate containing 200 μL of ster-

ile medium containing 0.01 g L-1 of yeast extract. This left on average 1 flagellate cell in each

well. After 4–5 days if incubation at 15˚C, each well was examined for the presence of flagel-

lates under the microscope. Water from wells containing nanoflagellates were again diluted to

a flagellate concentration of 1 cell per μL and transferred into a new well repeating the proce-

dure described above. This procedure was repeated at least twice until all flagellates in one well

appeared morphologically identical under the microscope (phase contrast, 40x and 60x objec-

tives). Biweekly, the flagellate isolates were transferred into new batch cultures at 15˚C in 22‰

autoclaved seawater supplemented by 0.01 g L-1 of yeast extract.

Isolation and cultivation of Pseudoalteromonas sp.

Seawater was sampled at Dokkedal, Denmark and diluted in sterile sea water until a bacterial

concentration of approximately 10 cells per μL where after 25 μL was spread on petri dishes

containing seawater enriched by 1 g L-1 of yeast extract and solidified by 10 g L-1 agar. The

plates were incubated at 15˚C for 4–5 days, and individual colonies were transferred to

0.22 μm filtered and autoclaved seawater enriched by 1 g L-1 of yeast extract and grown in

batch cultures at 15˚C. Three of these clonal isolates supported growth of clonal nanoflagellate

cultures and were maintained in liquid culture and used as flagellate feed.

Molecular identification of nanoflagellate and bacterial isolates

Four supposedly clonal nanoflagellate isolates and three clonal bacterial isolates that supported

growth of the flagellates were identified by partial 18S rDNA or 16S rDNA sequencing, respec-

tively. Approximately 25 mg of lyophilized biomass was subjected to bead-beating (6000 rpm

for 3×5 seconds using 1.4 mm ceramic spheres, 0.1 mm silica spheres, and one 4 mm glass

bead) on a Precellys tissue homogenizer (Bertin, France). Samples were cooled on ice before

and after the bead beating. Thereafter genomic DNA was extracted by the Qiagen DNeasy

Plant Mini Kit (Qiagen, Germany) or the FastDNA™ SPIN kit for soil (MP Biomedicals, USA).

The DNA regions encoding part of the 18S and 16S rDNA regions were amplified from 25–50

ng genomic DNA template using primer pairs F-566/R-1200, cryso240/ cryso651, and 27F/

1492R, respectively (Table B in S1 File). PCR products were generated in 50 μL reaction vol-

umes containing 0,02 U Phusion™ High-Fidelity DNA Polymerase (Thermo Scientific, USA),

1× HF Green Buffer, 200 μM dNTP mix, and 0.5 μM forward and 0.5 μM reverse primer. PCR

products were subsequently purified with either the QIAquick PCR Purification Kit (Qiagen,

Germany) or the QIAquick Gel Extraction Kit (Qiagen, Germany) and outsourced for

sequencing at Eurofins Genomics (Eurofins, Germany). A blastN analysis was performed

against the non-redundant database at NCBI to identify the relevant taxa [33].

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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Grazing experiments

Nanoflagellate isolates were grown in 100 mL batch cultures in conical flasks incubated at

15˚C in an orbital shaking incubator operated at 100 RPM. Pseudoalteromonas sp. harvested

from 1-day old batch cultures that had entered stationary phase served as feed. Initial concen-

trations of flagellates were 30–70 cells per μL while initial concentrations of Pseudoalteromonas
sp. were 7,500–30,000 cells per μL. The bacteria were harvested by centrifugation and resus-

pended in 1 mL 0.22 μm sterile filtered seawater before added to flagellate cultures in order to

minimize potential transfer of left-over components from the bacterial growth medium to the

flagellate cultures. Flagellate and bacterial cells were simultaneously counted in samples taken

from the cultures and used to quantify growth and grazing (see below).

Determination of cell densities, cell dry weights, yield coefficients, and

gross growth efficiencies

Concentrations of nanoflagellates, cf and bacteria, cb were determined from microscopically

counts in a 0.0025 mm3 hemocytometer (Thoma). The concentration of grazing resistant bac-

terial cells, cb,end was estimated as bacterial concentrations remaining in each culture after flag-

ellate growth has stopped. In bacterial cultures cell concentrations were also followed

indirectly from measurements of the optical density at 600 nm, OD600 after dilution to OD600

values below 0.3.

The concentration of dry biomass of nanoflagellate or bacterial cultures were measured

after filtration of culture onto pre-dried and pre-weighed 0.22 μm MF membrane filters (Milli-

pore) and drying at 105˚C overnight. Dry weights of individual bacterial cells, mb were esti-

mated by comparing dry biomass concentrations to bacterial cell concentrations. Dry weights

of individual flagellate cells, mf were estimated the same way, but after subtraction of the dry

bacterial biomass concentrations in the cultures.

The yield coefficient, Yf/b was estimated from slopes of linear regressions of plots of increase

of flagellate concentration, cf−cf,0. vs. decrease of bacterial cell concentration, cb,0 –cb. The

number of bacterial cells needed to produce one nanoflagellate cell, Yb/f corresponds to Yf/b-1.
Gross growth efficiency, GGE was calculated by multiplying Yf/b values by the ratio between

dry flagellate and bacterial cell weights.

Modelling of cell concentrations and estimation of flagellate performance

Grazing and growth of flagellates were described using the growth model shown in S1 File.

The individual equations in the model were discretized and solved numerically using Euler’s

solution at time intervals, Δt = 0.2 h, starting at t = 0, and in the order shown in Table A in S1

File. Maximal clearance rate, Clmax and ingestion rate, Imax were estimated by fitting Eqs. A-F

in S1 File to experimentally determined concentrations of flagellate and bacterial cells in 3 flag-

ellate batch cultures grown on different initial concentrations of non-growing bacterial cells.

The numerical differences between measured and calculated cell concentrations were simulta-

neously minimized in all 3 cultures. The half saturation constant, kb was found from Eq. H,

while the maximal specific growth rate, μmax of the flagellates was estimated from Eq. E in S1

File setting I = Imax.

Results

Isolation and identification of nanoflagellates and bacterial prey

Four morphologically distinct nanoflagellates (Fig A in S1 File) were isolated and grown in

batch cultures. For 3 of the nanoflagellates, blast analyses of their 18S rDNA sequences showed

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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closest sequence similarity (99%) to GenBank ID KF479401.13 identifying them as Procrypto-
bia sorokini (Table D in S1 File). These 3 isolates were named P. sorokini strains G5, B11, and

A5, respectively. P. sorokini strain A5 had a hook shaped flagellum (Fig A in S1 File) and

resembled the morphotype Neobodo [34]. Procryptobia sorokini (syn. Bodo sorokini) as well as

Neobodo sp. belong to the Kinetoplastea, order Bodonida [35], which is a group of motile,

interception feeding nanoflagellates that are common members of the heterotrophic pico-

plankton. The last of the isolates was identified as Paraphysomonas imperforata and named

strain A2 (99% sequence similarity to GenBank ID KX431470.1). P. imperforata belongs to the

Chrysophyceae [35] and is also a motile bacterivorous predator. The nanoflagellates had dried

cell masses between 96 and 219 pg cell-1 during growth phases (Table 1).

At the location at Dokkedal from where the nanoflagellates were isolated, bacterial numbers

in the water varied between 200 and 900 cells μL-1 between October 2015 and April 2016.

Three bacterial isolates, isolated from the same water samples as the nanoflagellates, were iden-

tified through partial 16S rDNA sequencing as Pseudoalteromonas sp. and named strain B2,

B3, and B4, respectively (showing 99% sequence identity to GenBank ID MF061255.1, Table D

in S1 File). Pseudoalteromonas sp. grew as solitary rod shaped cells, approximately 2 μm in

length and with a diameter of 1 μm. Few aggregates of 10 or more cells were, however, also

present in growing cultures. Cells harvested from stationary phase of batch cultures grown in

22‰ seawater supplemented with yeast extract had cell masses of 3–4 pg cell-1 (Table 1). All 3

Pseudoalteromonas sp. isolates were grazed by the 4 nanoflagellates and supported their growth

when used as the only feed.

Growth and grazing

The 4 nanoflagellates, P. sorokini G5, B11, A5 and P. imperforata A2 were grown in batch cul-

tures on different concentrations of Pseudoalteromonas sp. (Figs 1 and 2). In control experi-

ments without flagellates, bacterial concentrations decreased by 0–10% during 14 h periods

(corresponding to the growth phase of flagellate cultures). The seawater used was therefore too

low in nutritional compounds to supported additional cell divisions in Pseudoalteromonas sp.

(under nutrient sufficient conditions the doubling time of Pseudoalteromonas sp. was approxi-

mately 1.5 h). In control experiments without addition of Pseudoalteromonas sp., flagellate

concentrations stayed constant or decreased by up to 30% during 24 h periods. Flagellate

growth and decreasing bacterial concentrations were therefore linked to grazing in these

experiments. Flagellate concentrations increased in proportion to the decrease in bacterial

Table 1. Characteristic values of batch cultures of Procryptobia sorokini G5, B11, A5 and Paraphysomonas imperforata A2, feeding on Pseudoalteromonas sp. B2, B3

or B4. Cell dry weights of flagellates, mf, and bacteria, mb, measured during growth and stationary phase, respectively. Yield of flagellates per bacterium taken up, Yf/b,
number of bacterial cells needed to produce one flagellate cell Yb/f, and gross growth efficiency, GGEwere evaluated from Figs 1C, 1D, 2C and 2D, respectively (data from

batch cultures of P. imperforata A2 feeding on Pseudoalteromonas sp. B2 in Fig B in S1 File. Maximal clearance, Clmax, and ingestion rates, Imax, are estimated by fitting

numerical solutions to Eqs. A and D in S1 File to experimentally determined concentrations of flagellate and bacterial cells (Figs 1A, 1b, 2A and 2B). Maximal specific

growth rate, μmax, and half saturation constant, Kb, are calculated from Eqs. E and H, respectively. Final bacterial concentration, Cb.end. Three batch cultures were carried

out for each combination of flagellate and bacterial isolate.

Flagellate

isolate

Bacterial

isolate

mf mb Yf/b Yb/f GGE Clmax Imax μmax Kb Cb.end

pg per cell pg per cell μL cell-1 h-1 h-1 h-1 cells per μL cells per μL

G5 B2 116 4.0 0.021 48 0.61 0.0041 11.7 0.25 2,854 1,700

B11 B4 124 3.6 0.016 61 0.57 0.0064 6.7 0.11 1,127 4,800

A5 B4 219 3.6 0.010 102 0.60 0.0025 20.7 0.20 8,350 4,600

A2 B3 96 3.1 0.015 67 0.46 0.0013 12.6 0.19 9,705 3,400

A2 B2 96 4.0 0.016 64 0.38 0.0017 6.3 0.10 3,615 7,500

https://doi.org/10.1371/journal.pone.0195935.t001

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195935 April 13, 2018 5 / 13

https://doi.org/10.1371/journal.pone.0195935.t001
https://doi.org/10.1371/journal.pone.0195935


concentrations (Figs 1 and 2). The yield, Yf/b varied between 0.010 and 0.021 flagellate cell per

ingested Pseudoalteromonas cell (Table 1), meaning that between 48 and 102 bacterial cells

were ingested to produce one flagellate cell. The estimated gross growth efficiency, GGE taken

into account the masses of the flagellate as well as the Pseudoalteromonas cells were between 38

and 61%. Fairly similar GGE’s (24–50%) were found when cell masses were predicted from

rough estimates of cell volumes (Table C in S1 File), although cell masses estimated from the

cell volumes were lower than the measured ones.

None of the nanoflagellate cultures were able to decrease the concentration of bacterial cells

to zero. Irrespectively of the initial bacterial density, 2–5,000 bacteria per μL remained in the

cultures when the flagellates entered stationary phase (Figs 1 and 2). Flagellate and bacterial

concentrations were modelled by Eqs. A-H in S1 File and maximal clearance rates, Clmax and

ingestion rates, Imax are listed in Table 1, along with maximal specific growth rates, μmax and

Fig 1. Procryptobia sorokini. Batch cultures of Procryptobia sorokini G5 feeding on Pseudoalteromonas sp. B2 (A and B) and P. sorokini B11 feeding on

Pseudoalteromonas sp. B4 (C and D). Concentrations of flagellate cells (open symbols) and bacterial cells (solid symbols) in cultures inoculated at

approximately 7,500 (4,▲), 15,000 (○,●), and 30,000 (□,■) Pseudoalteromonas sp. μL-1, respectively. Curves (A and C) drawn by fitting Eqs. A-F in

S1 File to measured concentrations of Procryptobia sorokini and Pseudoalteromonas sp. Data in S1 Dataset.

https://doi.org/10.1371/journal.pone.0195935.g001

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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half saturation constants, kb. Clearance and ingestion rates predicted from Eqs. B and C in S1

File as function of bacterial concentration are shown in Fig C in S1 File.

Responses in Pseudoalteromonas sp.

The major fraction of the Pseudoalteromonas sp. cells in flagellate cultures remained solitary

until the cultures were terminated (bacterial concentrations shown in Figs 1 and 2 represent

solitary cells) but at the end of the experiments, a fraction also formed aggregates of 10 or

more bacterial cells. Increased aggregation of Pseudoalteromonas sp. could be induced also by

cell free culture supernatant from the nanoflagellate cultures. Fig 3 shows numbers of bacterial

aggregates in Pseudoalteromonas sp. B2 diluted in seawater with and without addition of 10%

spent supernatant from a stationary phase P. sorokini G5 culture, sterile filtered through a

Fig 2. Procryptobia sorokini and Paraphysomonas imperforata. Batch cultures of Procryptobia sorokini A5 feeding on Pseudoalteromonas sp. B4 (A

and B) and Paraphysomonas imperforata A2 feeding on Pseudoalteromonas sp. B3 (C and D). Concentrations of flagellate cells (open symbols) and

bacterial cells (solid symbols) in cultures inoculated at approximately 7,500 (4,▲), 15,000 (○,●), and 30,000 (□,■) Pseudoalteromonas sp. μL-1,

respectively. Curves (A and C) drawn by fitting Eqs. A-F in S1 File to measured concentrations of flagellates and Pseudoalteromonas sp. Data in S1

Dataset.

https://doi.org/10.1371/journal.pone.0195935.g002

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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0.22 μm syringe filter. After 1 h of incubation, higher numbers of bacterial aggregates were

observed after the spent culture supernatant had been added. Increased cell aggregation was

likewise observed in Pseudoalteromonas sp. B3 and B4 upon addition of 0.22 μm sterile filtered

supernatant from cultures of all 4 nanoflagellates. When cell free culture supernatant taken

from stationary phase of flagellate batch cultures was added to newly inoculated flagellate cul-

tures, also flagellate growth was inhibited. Fig 4 compares growth of the 4 nanoflagellates in

batch cultures with and without addition of 5% 0.22 μm sterile filtered supernatant taken from

stationary phase cultures of one of the other flagellate isolates. Bacterial aggregates appeared in

all the flagellate cultures to which spent culture supernatant had been added. Finally was it

observed, that 0.22 μm sterile filtered supernatant taken from flagellate batch cultures also

effected growth of freshly inoculated batch cultures of Pseudoalteromonas sp. (Fig D in S1

File).

Fig 3. Pseudoalteromonas. Concentration of aggregates>10 cells of Pseudoalteromonas sp. B2. Arrow marks addition of 10%

0.22 μm sterile filtered culture supernatant from a stationary phase culture of Procryptobia sorokini G5 (□) or 10% 0.22 μm

sterile filtered seawater (^). Initial concentrations were 1,000,000 solitary Pseudoalteromonas sp. B2 μL-1. Inset is micrograph

showing aggregated Pseudoalteromonas sp. B2 cells viewed under phase contrast.

https://doi.org/10.1371/journal.pone.0195935.g003

Feeding and growth of nanoflagellates on Pseudoalteromonas sp.
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Discussion

The 4 nanoflagellates isolated in this study, Procryptobia sorokini G5, B11, A5 and Paraphyso-
monas imperforata A2 were all able to graze and grow on Pseudoalteromonas sp. as their sole

prey. This bacterium seems, however, also able to become resistant to flagellate grazing and

was never completely depleted despite the high concentrations of flagellates. Cell aggregation

may be part of the mechanism that protects Pseudoalteromonas sp. against flagellate grazing

but since most of the Pseudoalteromonas cells remained solitary, cell aggregation may not be

the only protective mechanism in their possession. Since addition of cell free culture

Fig 4. Procryptobia sorokini and Paraphysomonas imperforata. Batch cultures of Procryptobia sorokini G5 fed Pseudoalteromonas sp. B2 (A), P.

sorokini B11 fed Pseudoalteromonas sp. B4 (B), P. sorokini sp. A5 fed Pseudoalteromonas sp. B4 (C), and Paraphysomonas imperforata A2 fed

Pseudoalteromonas sp. B3 (D). Concentrations of flagellates in cultures added 5% 0.22 μm sterile filtered culture supernatant from a stationary phase

culture of a different flagellate isolate (^) or 5% 0.22 μm sterile filtered seawater (□).

https://doi.org/10.1371/journal.pone.0195935.g004
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supernatant from flagellate cultures was sufficient to induce aggregation of Pseudoalteromonas
cells, this bacterium must be able to detect flagellates by a chemosensory mechanism. Our data

suggest that Pseudoalteromonas can be excellent prey for flagellates but also that the presence

of flagellates rapidly can induce growth independently defence mechanisms against grazing in

Pseudoalteromonas sp.

Pseudoalteromonas are gram-negative, rod shaped bacteria. They are large bacterial cells

[32] with dry weights of 3–4 pg cell-1 (Table 1). They therefore seem to fulfil the several criteria

for being suitable prey to interception feeding nanoflagellates [4–6, 17, 18, 22, 27]. Specific

growth rates ranged from 0.1–0.25 h-1 (Table 1), which is within the expected range for hetero-

trophic nanoflagellates [17, 19, 22, 24, 29]. In P. imperforata A2, the maximal clearance rates of

1.3 and 1.7 nL per cell per h agreed excellently with earlier measurement of 1.55 nL per cell per

h [36] while higher Clmax values have been found in other heterotrophic nanoflagellates [17].

Maximal ingestion rates ranged from 6 to 21 bacterial cells per cell per h. These values are low

compared to what have been found in earlier studies. E.g. has Imax previously been estimated

to 62–103 cells per cell per h in P. imperforata [21, 24] while 6 different nanoflagellates had

Imax values of 27–254 cells per cell per h [17]. Clearance and ingestion rates show, however,

considerable variations among nanoflagellates [22] and the low ingestion rates were probably

related to the large cell size of Pseudoalteromonas sp. Gross growth efficiencies (GGE’s) may

therefore represent at better foundation for comparing the performances of different flagellates

feeding on different prey. The GGE’s of the 4 nanoflagellates feeding on Pseudoalteromonas sp.

were between 38 and 61% (Table 1). These GGE estimates are high but within the range

observed also for other heterotrophic nanoflagellates [17–20, 22, 23, 25–27]. The GGE’s of P.

imperforata A2 of 36–46% (Table 1) were also within the range of 15–54% (based on either

mass or bio volume) previously reported for this species [21, 24, 29]. Changes in flagellate cell

size during the final cell generation [17, 20] or cryptic bacterial growth stimulated by re-miner-

alising of nutrients during the experiments [23] may, however, potentially have resulted in too

high GGE estimates. Still, the high GGE’s in combination with the high μmax indicate that Pseu-
doalteromonas can be an excellent prey to all 4 nanoflagellate isolates. The 4 nanoflagellates

and the 3 Pseudoalteromonas strains were isolated from the same waters. Potentially, it may

therefore be advantageous for Pseudoalteromonas sp. to be in possession of inducible defensive

mechanisms against flagellates, although the defensive reactions observed in this study

appeared at artificially high concentrations of flagellate and bacterial cells.

When flagellate grazing had decreased the concentration of Pseudoalteromonas sp. to

2–5,000 cells per μL grazing stopped and bacterial and flagellate concentrations became stable

(Figs 1 and 2). The decrease in concentrations of P. sorokini G5 after 15 h (Fig 1A) is maybe a

result of cannibalism [37]. Grazing and growth did not resume if additional Pseudoalteromo-
nas sp. was added (data not shown). Inhibition of newly inoculated flagellate cultures by spent

culture supernatant (Fig 4) demonstrates that it was not the high flagellate concentrations that

were growth-inhibiting. Because grazing stopped at fairly high bacterial concentrations, Kb val-

ues could only be estimated indirectly from Eq. H. The accuracy of these estimates may be

hampered by the fact that the grazing-resistant bacterial sub-population, cb,end was modelled as

being constant (Eq. F in S1 File) despite the protective mechanisms in Pseudoalteromonas sp.

rather appeared to be inducible (Figs 3 and 4). Still, the estimated Kb values of 1,100–9,700 bac-

terial cells per μL (Table 1) are within the range of Kb values found also in other marine nano-

flagellates [17, 19, 20, 22, 24, 29].

Bacterial concentrations of 2–5,000 cells per μL at which flagellate growth stopped cannot

be expected to represent lower limits for nanoflagellate growth and grazing, also the same has

been observed also in cultures of other heterotrophic marine nanoflagellates [19, 23, 28], but

may rather be a result of the induction of protective mechanisms in the bacterial prey. The Kb
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values (Table 1) were of the same order of magnitude as the lowest bacterial cell concentrations

in the cultures (Figs 1 and 2). If no protective mechanisms had been induced in Pseudoaltero-
monas sp., ingestion and specific growth rates of the flagellates should expectedly have pro-

ceeded at half their maximal values at the bacterial concentrations at which grazing and

growth actually stopped. In comparison to bacterial concentrations in seawater [30], 2–5,000

bacteria per μL are a high. We found e.g. only 200–900 bacterial cells per μL at the location

where the nanoflagellates were isolated during the winter period from October to March while

a second study counted 2–4,000 bacterial cells per μL at a nearby location during August and

September [1]. Data from earlier studies do also show that nanoflagellate batch cultures in

some cases have been able to decrease bacterial numbers to levels at or below 1,000 cells per μL

[17, 29, 38].

Aggregation could be one mechanism used by Pseudoalteromonas sp. to protect against

flagellate grazing [7] as partial aggregation of non-growing cells could be induced in all 3

Pseudoalteromonas by supernatant from all the isolated nanoflagellates, despite P. imperfor-
ata taxonomically is unrelated to P. sorokini. Aggregation is probably not the only protective

mechanism in Pseudoalteromonas sp. since the concentration of solitary bacterial cells

remained above the Kb values after flagellates entered stationary phase (Figs 1 and 2). Aggre-

gation may also not be particularly efficient in natural waters if cell concentrations are low.

Although bacterial aggregates are avoided by some nanoflagellates they may actually be pre-

ferred by others [39]. This could be one reason for at bacterium to use more than one pro-

tective mechanism. Protective mechanisms impose a metabolic load [9–11, 13]. Inducible

grazing mechanisms may therefore be way to preserve the ability of Pseudoalteromonas sp.

to compete with other bacteria when grazing pressures are low. The results of this study

therefore suggest that Pseudoalteromonas sp. may indeed be an excellent prey to marine

nanoflagellates but also that inducible defence mechanisms can protect it against flagellate

grazing.
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