Formation and Structure of Passivation Gels by Reactive Molecular Dynamics Simulations

Du, T.; Smedskjær, Morten Mattrup; Li, H.; Bauchy, Mathieu

Publication date:
2018

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 28, 2019
The long-term dissolution rate (stage II) of nuclear waste immobilization glasses is thought to be controlled by the hydrated passivation gel that gradually forms on their surface. However, the mechanism of formation of such gel remains debated—i.e., precipitation from the solution or internal reorganization of the glass. Further, the mechanism of stage II dissolution (and its rate-limiting step) remains unclear. Here, based on reactive molecular dynamics simulations, we investigate the kinetics of formation and structure of several gels exhibiting varying compositions (i.e., varying Al/Si ratios) and formation mechanisms (i.e., solution precipitation or in situ glass reorganization). The influence of the composition and structure of the gel on the mobility of hydrated species is studied.