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Abstract  

The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic 

therapy. Obtaining further knowledge on their roles and inter-relationship in humans is therefore crucial. 

Preclinical results are contradictory concerning co-expression and functional interdependency of TRPV1 

and TRPA1 but no human evidence exists. This human experimental study investigated whether 

functional responses from the subpopulation of TRPA1+-nociceptors could be evoked following 

defunctionalization of TRPV1+-nociceptors by cutaneous application of high-concentration capsaicin.  

Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch 

or vehicle for 24h. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 

agonist) or 10% topical allyl-isothiocyanate (‘AITC’, a TRPA1-agonist), delivered by 12mm Finn 

chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. 

Quantitative sensory tests were performed before and after provocations to assess changes of heat pain 

sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the 

chemical provocations. In the capsaicin-pretreated areas both the subsequent 1% capsaicin- and 10% 

AITC-provoked pain intensities were inhibited by 92.9±2.5% and 86.9±5.0% (both: P<0.001), 

respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P<0.001) 

as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin- 

and 10% AITC provocations (both: P<0.001). Ablation of capsaicin-sensitive afferents caused consistent 

and equal inhibition of both TRPV1 and TRPA1-provoked responses assessed psychophysically and by 

imaging of vasomotor responses. The present study suggests that TRPA1 nociceptive responses in human 

skin strongly depend on intact capsaicin-sensitive, TPRV1+ fibers. 
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1. Introduction  1 

A variety of receptors are expressed by cutaneous nociceptors (C- and Aδ-fibers). Key transducers 2 

include the transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), both of which are 3 

members of the TRP ion-channel superfamily 45. TRPA1 and V1 are activated by various algogens and 4 

noxious stimuli, and much GPCR-detected nociceptive and pruriceptive signaling co-opts these channels. 5 

In particular, TRPA1 is required for non-histaminergic itch, as multiple histamine-independent itch 6 

transduction pathways involve TRPA1 co-activation 88. TRPA1 is also involved in pain as well as 7 

inflammation of the skin, airways and gastrointestinal tract, acting both as an inflammatory instigator and 8 

a detector of various inflammatory mediators 19,67. TRPA1-signalling has been implicated in a diverse 9 

range of diseases including migraine 28, diabetic neuropathy 48 as well as atopic dermatitis, where lesional 10 

skin areas exhibit highly increased expression 60,63.  11 

 12 

While capsaicin activates TRPV1, allyl isothiocyanate (AITC), also known as mustard oil (MO) activates 13 

TRPA1 10. TRPV1 is evidently more densely expressed in rodent dorsal root ganglion (DRG) nociceptors 14 

than TRPA1 but the two receptors do exhibit substantial co-expression. However, it remains unclear 15 

whether a functionally significant subpopulation of TRPA1+ but TRPV1- nociceptors exists. Following 16 

the initial discovery of TRPA1, rodent studies showed an almost complete DRG co-expression of TRPV1 17 

and TRPA1 mRNA 81. Using calcium imaging in rat trigeminal ganglia, AITC-responsiveness was shown 18 

in 35% of the neurons, while capsaicin exited 55%, including all of the AITC-responsive cells 41. 19 

Contrasting these findings, several recent rodent studies using, e.g., back-labeling of cutaneous afferents 20 

and unbiased single cell RNA sequencing have suggested that TRPA1+ nociceptors, which do not express 21 

TRPV1 are much more common than previously assumed 37,51,56,82,85. As such the expressional patterns of 22 

TRP-channels in nociceptive DRG neurons and on peripheral nociceptors and in particular, the functional 23 

overlap between TRPA1 and V1 in the nociceptive system of rodents remain unknown. Moreover, despite 24 

substantial inter-specie differences in somatosensory processing 22, no attempts in have been conducted to 25 

assess TRPA1/V1 interactions human skin and in particular whether TRPA1-induced responses are 26 

predominantly TRPV1-dependent. Due to the significant pathophysiological implications of TRPA1 and 27 

TRPV1, e.g., in pain and itch conditions, development of selective TRPA1 and V1-antagonists are being 28 

actively pursued for instance as novel analgesics and antipruritics. Acquiring further knowledge regarding 29 

the functional interdependency of TRPA1/V1 is therefore important for drug development, early phase 30 

testing, and potential evaluation of disease indications.  31 

 32 

33 
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Administration of 8% topical capsaicin (QutenzaTM) can drastically defunctionalize human TRPV1+ 1 

nociceptive cutaneous afferents 4,9,43,61, thus enabling investigation of sensory and vasomotor responses in 2 

absence of this significant proportion of nociceptors 9,35. This randomized, double-blinded, vehicle-3 

controlled study aimed to evaluate the extent of the functional overlap between the TRPA1 and TRPV1 in 4 

healthy human skin, by comparatively assessing pain, heat pain sensitivity, and neurogenic inflammation 5 

evoked by capsaicin and AITC in skin areas pretreated with topical 8% capsaicin. Based on recent rodent 6 

studies, we hypothesized that prolonged 8% capsaicin-pretreatment would result in a complete abolition 7 

of TRPV1-evoked responses, but only a moderate reduction in TRPA1-evoked responses, reflecting a 8 

substantial, but incomplete, functional overlap between the two nociceptor populations in human skin.  9 

 10 

2. Methods 11 

 12 

2.1. Participants and study design 13 

Eighteen healthy subjects (9M/9F, aged 28 ± 7 years (mean ± SD)) were recruited. Subjects were pain-14 

free, without previous known dermatological, allergic, musculoskeletal, neurological, or psychiatric 15 

disorders. Subjects were instructed to abstain from alcohol and medication 24 h prior to all sessions. 16 

Before participating in the study, all subjects signed a statement of informed consent in accordance with 17 

the 2013 Helsinki Declaration. The regional ethics committee approved the experimental protocol (study 18 

no. N-20170018). The study was carried out in a vehicle-controlled, double-blinded manner with 19 

balanced randomization of the placement of pretreatment (vehicle vs. 8% capsaicin), provocation 20 

compounds (10% AITC and 1% capsaicin) as well as the order of provocation tests. The study was 21 

conducted in three sessions with intersession intervals of 24 h (see Fig. 1A). In session 1, patches were 22 

applied, in session 2 patches were removed and in session 3, provocation compounds were applied, and 23 

sensory as well as vasomotor responses were assessed. The investigator conducting the psychophysical 24 

tests in session 3 was blinded with respect to treatment. Therefore, Investigator A conducted session 1 and 25 

2, and Investigator B conducted session 3 or vice versa. All sessions were conducted using a standardized 26 

script, in order to minimize information/observer bias. 27 

 28 

2.2. Application of 8% capsaicin and vehicle patch (pretreatment) 29 

A total of four squared areas (A1-A4), measuring 4x4cm, were marked on the volar forearms of all 30 

subjects (see Fig. 1B). Each area was treated in a block-randomized manner with a patch (4x4 cm) 31 

containing either 8% capsaicin (Qutenza, Astellas Pharma A/S, Kastrup, Denmark) or vehicle (Qutenza 32 

Demo patch, Astellas Pharma). The patches were placed 4 cm apart to blind the subjects (taking 33 

advantage of the poor spatial resolution of cutaneous chemesthesis (previously estimated to be 34 
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approximately 15 cm on the longitudinal axis of the volar forearm in healthy controls) while ensuring that 1 

neurogenic inflammatory reactions evoked in the 3rd session would not overlap. Furthermore, unblinding 2 

caused by identification of primary and secondary capsaicin-evoked neurogenic inflammation, were 3 

avoided by masking patches using non-transparent medical tape. This approach has been applied in a 4 

previous study using a similar 8% capsaicin ablation method 9. Following the application of patches in 5 

session 1, subjects rated the pain intensity on each arm, once every hour, for six hours. This was done 6 

using a numerical rating scale (NRS0-10;”no pain” = 0 to “worst imaginable pain” = 10). Then, 24 h later, 7 

subjects rated the average and peak pain scores experienced during the 24 h. Robust defunctionalization 8 

of TRPV1+ epidermal fibers is known to be induced by 24 h application of 8% capsaicin 9; hence, patches 9 

were left for 24 h before being removed during session 2. After patch removal, the participants were 10 

asked if they could identify the active patch area, to get an estimate of the successfulness of the blinding 11 

procedure.  12 

 13 

2.3. Quantitative sensory testing (QST)  14 

In session 3, heat pain thresholds (HPT) and suprathreshold heat pain sensitivity (SHPS) were assessed 15 

using a Medoc Pathway (Medoc Ltd, Ramat Yishay, Israel) equipped with a 3x3 cm stimulator probe 16 

with the aim of assessing the development of heat hyperalgesia. This was done to assess changes in heat 17 

pain sensitivity evoked by the pretreatment and provocation compounds. All sensory tests were performed 18 

as three consecutive stimuli to the treated areas (A1-A4, Fig. 1B). The provocation order and anatomical 19 

locations were randomized. Hence, if A1 was determined to be the first area for provocation compound 20 

application, this was also the first area in which sensory testing were performed. Sensory testing was 21 

performed in all 4 areas immediately before moving on to provocation compound administration. This 22 

was done in order to ensure that all measurements had the same time from pre-HPT/STHP to substance 23 

administration (provocation).  24 

 25 

Heat pain thresholds were measured using a ramping stimuli of 1°C/s from a baseline temperature of 26 

32°C, with a cut-off of 52°C and with 5s inter-stimulus intervals based on standardized QST protocols 27 

69,70. As soon as the subjects sensed the warmth sensation becoming painful, they pressed a stop button 28 

resulting in a return to the baseline temperature. For SHPS, subjects verbally rated the pain intensities 29 

(same NRS 0-10 as applied for 8% capsaicin pretreatment) following each heat stimulus. A stimulus went 30 

from a 32°C baseline to a 3 seconds plateau at 46°C and with ramping of 5°C/s. Inter-stimuli intervals 31 

were 10 seconds. Subjects were unable to observe the probe temperatures during the assessments. For 32 

SHPS, short 46°C stimuli were applied to induce mild to moderate pain without evoking discernable, 33 

prolonged neurogenic inflammation (evoked around 48°C 87), which could interfere with subsequent 34 
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chemically evoked vasomotor responses. Additionally, the stimulus intensity was chosen considering that 1 

it would be tolerable in all subjects and to avoid induction of sensitization. While HPT is thought to be 2 

encoded predominantly by mechano-heat-sensitive C-fibers (‘CMH’, possibly the quickly adapting 3 

subtype), the SHPS assessment was conducted to more broadly activate heat-sensitive nociceptors, 4 

including CMH, C-mechano-insensitive (CMi), and possibly type-II Aδ-fibers 23,40,50,84,89. Both HPT and 5 

SHPS, were calculated as means of the three consecutive stimuli. ∆HPT and ∆SHPS were defined as the 6 

average difference before vs after provocations. For correlation analyses, ∆HPT2 and ∆SHPS2 were used, 7 

defined as the average difference between vehicle and ablated areas at baseline. 8 

2.4. Application of chemical provocations 9 

After the initial sensory testing, a solution containing either 10% allyl isothiocyanate (hereafter referred to 10 

as ‘AITC10%’) or 1% capsaicin (hereafter referred to as ‘CAP1%’) was applied to the pretreated areas. 11 

The AITC (Sigma Aldrich, Brøndby, Denmark) was dissolved in 99% pharmaceutical grade paraffin 12 

(Løve Apoteket, Aalborg, Denmark) at a concentration of 10% AITC (vol/vol). This concentration was 13 

determined from previous studies 49,77, including a recently published dose-response study 10. Capsaicin 14 

was dissolved in a solution of 30% deionized water and 70% ethanol at a concentration of 1% (10mg/mL; 15 

Skanderborg Apotek, Denmark). For both AITC10% and CAP1%, a 50 µl solution was dispensed onto 16 

filter disc placed in a 12mm Finn chamber attached with BSN medical tape (Fixomull Stretch, BSN 17 

Medical AB, Billdal Sweden). Because AITC penetrates into the epidermis and evokes pain more rapidly 18 

than capsaicin, the AITC chamber was left on for 5 minutes while the capsaicin chamber was left on for 19 

20 minutes in accordance with previous studies 49,65. Following application of provocation compounds, 20 

subjects rated the pain intensity on a digital VAS (VAS0-100; ”no pain” = 0 to “worst imaginable pain”= 21 

100) for 6 minutes (AITC10%) or 25 minutes (CAP1%). This was done using eVAS software (Aalborg 22 

University, Denmark) installed on a 10.1” Samsung tablet computer (Samsung Electronics, Seoul, Korea), 23 

and with pain intensity sampled at 0.2 Hz, which allowed for a continuous recording of pain intensity. 24 

Chemically evoked pain intensity was regarded as the primary outcome of the study.  25 

2.5. Neurogenic inflammation assessed by superficial blood perfusion  26 

Immediately after removing the Finn chambers, superficial blood perfusion was measured using a Full-27 

Field Laser-speckle Perfusion Imaging instrument (FLPI-1, Moor Instruments Ltd, Axminster, UK). 28 

Measurements were performed at a distance of 35 cm between the FLPI-lens and the skin surface. 29 

Exposure time was set to 8.3 ms and gain to 160 units. The data were analyzed using MoorFLPI Review 30 

V4.0 software (Moor Instruments Ltd, Axminster, UK). Increase in average and peak superficial blood 31 

perfusion, within the marked areas, was used as a measure of the primary neurogenic inflammation 32 

intensity. The axon-reflex-flare size, evoked by AITC10% and CAP1%, was calculated as the area 33 
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exhibiting a >50% increase in superficial blood perfusion, compared to the background baseline perfusion 1 

(i.e. the individual baseline capillary perfusion in areas unaffected by any skin provocation). The size was 2 

quantified in cm2 by relative comparison to the known size of the 4x4 cm area, resulting in an estimate of 3 

the size of the secondary neurogenic inflammation or “axon-reflex-response”. A line-approach was used 4 

to evaluate the spatial characteristics of the neurogenic inflammatory reaction. An 8 cm line, was marked 5 

longitudinally, centered through the administration area. Hereafter, superficial perfusion along this line 6 

was quantified and averaged in 0.33 cm increments. These methods have been used in a series of previous 7 

studies 7,8,10,64.  8 

 9 

2.6. Statistics  10 

Data handling and calculation of descriptive statistics were carried out using Microsoft Excel (Microsoft, 11 

NM, USA), while statistical comparisons were performed using SPSS 25.0 (IBM NY, USA). Sample size 12 

estimation was conducted using the approached outlined for similar crossover designs 59,64. All obtained 13 

data are presented as arithmetic means ± the standard error of mean (SEM), unless otherwise stated. The 14 

collected data were tested for normality by inspecting Q-Q plots and when needed by Shapiro-Wilk 15 

normality test. For combined reporting of statistically significant effects, the lowest F-value was reported. 16 

Average and peak pain intensities (NRS and VAS-recordings) were calculated and compared. The 17 

primary data analyses were conducted using the repeated measures analysis of variance (RM-ANOVA) 18 

with the factors: Pretreatment (2 levels; 8% capsaicin ablation and vehicle) and Provocation (2 levels; 19 

AITC10% and CAP1%). For HPT and SHPS, an additional level of Time (2 levels; before and after 20 

provocation) was added to the RM-ANOVAs. To assure that the randomized order of stimuli performed 21 

in session 3 did not constitute a bias, additional RM-ANOVAs were conducted wherein ‘order’ and 22 

‘anatomical location’ were added as between-subjects factors. Moreover, to comparatively assess the 23 

achieved inhibition of AITC and capsaicin-evoked pain %-reductions were calculated and compared 24 

using Wilcoxon signed rank Test. Z-score changes evoked by the 8% capsaicin pretreatment were 25 

calculated allowing for cross-parameter comparisons relative to outcome variability. The formula: Z = 26 

[(µtreatment - µbaseline) / σbaseline] was used. For all tests, Bonferroni post hoc test was used to compensate 27 

for multiple comparisons. Correlational analyses between selected parameters were performed by 28 

Pearson’s coefficient analysis and corrected by the Holm-Sidak method. A P-value ≤0.05 was considered 29 

significant. Asterisks for all figures: * P≤0.05, ** P≤0.01 and *** P≤0.001. 30 

 31 

 32 

 33 

  34 
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3. Results  1 

Nineteen subjects were enrolled and 18 completed the study sessions. One subject was excluded because 2 

of premature self-removal of the patches due to intense pain (drop-out). There were no unexpected side 3 

effects from applying either AITC or CAP. No significant differences were observed related to arm 4 

dominancy for any of the outcomes. It was specifically assessed and confirmed in all subjects that the 8% 5 

capsaicin-evoked pain had completely subsided prior to the beginning of session 3 (24 h after the patch 6 

removal), which is in line with a previous study using similar ablation technique 9. The statistical 7 

assessment of a potential effect of provocation order, anatomical location, and interference between 8 

stimuli revealed no significant results.  9 

 10 

3.1. Pain evoked by capsaicin-ablation treatment  11 

During the 24 h topical administration of 8% capsaicin patches, mean application pain plateaued at 3.8 ± 12 

0.5 (NRS0-10) for the right forearm and 3.7 ± 0.6 for left the forearm. There were no differences in pain 13 

between the right and left forearms (F1,17 = 0.292, P=0.596). Retrospectively rated average and peak pain 14 

intensities during 24 h application reached 3.4 ± 0.3 and 5.5 ± 0.5, respectively (Fig. 2). Subjects were 15 

able to correctly localize the active capsaicin patch site from the vehicle patch in 80.6% of the cases, with 16 

50% being the ‘by chance’. No visible skin reaction or erythema was present when the patches were 17 

removed after 24 h application. Hence, unblinding in a subset of participants was based purely on 18 

localization of the evoked pain during application. Subjects reported that pain subsided within 0.5-2 hours 19 

after removal of the patches.  20 

 21 

3.2. Pain intensities following chemical provocations  22 

There was a significant effect of pretreatment, on both CAP1% and AITC10% mean and peak pain 23 

intensities (lowest test F-value (F1,17 = 30.9, P<0.001; mean pain, Fig. 3A and B)). CAP1%-evoked peak 24 

pain intensity decreased from 22.7 ± 4.7 (VAS0-100) in vehicle-treated areas to 2 ± 0.8 in ablated areas, i.e. 25 

a 92.9 ± 2.5% pain reduction. The very limited CAP1%-evoked pain remaining in the ablated skin areas 26 

in 6/18 subjects indicate an almost complete defunctionalization of cutaneous capsaicin-receptiveness. 27 

For AITC, evoked peak pain decreased from 27.7 ± 5.2 (VAS0-100) observed in vehicle-treated areas, to 28 

5.6 ± 2.4 in ablated areas, i.e. an 86.9% ± 5.0% pain reduction (Fig. 3C and D). Similarly, robust 29 

reductions in the ablated areas were observed for mean pain intensity (Fig. 3E and F).  30 

There was no main effect between type of provocation in mean and peak pain (lowest test F-value: F1,17 = 31 

1.8, P=0.202; peak pain), signifying that the CAP1% and AITC10% provocations evoked similar peak 32 

and mean pain intensities. Moreover, the pretreatment x provocation interaction was insignificant for 33 

mean and peak pain (lowest test F-value: F1,17 = 0.1, P=0.757; peak pain) indicating that the pretreatment-34 
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evoked desensitization inhibited subsequent CAP and AITC-evoked pain to a similar extent. Even with 1 

isolated testing, the ablation-induced pain reductions for AITC10% and CAP1%-exposed areas, were not 2 

different (P=0.508).  3 

 4 

3.3. Thermal sensory sensitivity  5 

There was a significant interaction effect in pretreatment x provocation x time in heat pain thresholds 6 

(HPT) (F1,17=9.4, P=0.007). Subsequent post hoc testing showed that capsaicin-ablated areas had 7 

significantly higher heat pain thresholds (average temperature across all HPT assessments in the 8 

pretreated skin areas: 47.9 ± 0.5°C), than did vehicle-pretreated areas (average temperature across all 9 

HPT assessments in the pretreated skin areas:40.6 ± 0.6°C, P<0.001). This was the case both before and 10 

after provocations (P<0.001), i.e., the 24 h 8% capsaicin-ablation established significant heat hypoalgesia 11 

even after the chemical provocations. In vehicle-pretreated areas, provocation with CAP 1% decreased 12 

HPT more robustly than AITC 10% (P<0.001), while in ablated areas, the HPT values did not differ 13 

between provocations (P=0.8, Fig. 4A), constituting an anti-hyperalgesic effect.  14 

 15 

A pretreatment x time interaction was found for SHPS (F1,17 = 30.4, P<0.001). Post hoc testing showed 16 

lower heat pain sensitivity in ablated areas (avg. NRS0-10; (1.2 ± 0.3) than vehicle-pretreated areas (4.5 ± 17 

0.5) both before and after chemical provocations (P<0.001), indicating heat hypoalgesia. There was a 18 

significant increase in SHPS in vehicle area subsequent to both provocations, signifying development of 19 

heat hyperalgesia, which did not occur in ablated areas (P<0.001). The 8% capsaicin-ablation induced an 20 

average post-provocation decrease in suprathreshold heat pain ratings of 74.9% ± 7.9 for CAP1% and 21 

74.5% ± 7.7 for AITC10% (Fig. 4B), signifying very robust antihyperalgesic effects. 22 

 23 

For ∆HPT, a pretreatment x provocation interaction was evident (F1,17=9.4, P=0.007). The ∆HPT was 24 

significantly reduced in vehicle-pretreated (-5.2 ± 0.7°C) compared with the ablated skin (-1.0 ± 0.2°C, 25 

P<0.001), for both types of provocations (CAP1%: P<0.001, AITC 10%: P=0.043), with CAP1% 26 

prompting a more pronounced HPT drop than AITC10% only in vehicle-treated areas (P<0.001, see Fig. 27 

4C). In ablated areas, no differences were found for ∆HPT between provocations with CAP1% and 28 

AITC10% (P=0.932). For ∆SHPS, there was a significant effect of pretreatment (F1,17= 30.4, P<0.001). 29 

Ablated areas showed lower changes in ∆SHPS following provocations (0.2 ± 0.2) than did vehicle-30 

pretreated areas (2.3 ± 0.3, P<0.001, Fig. 4D). For ∆SHPS there were no differences between the two 31 

types of provocations (P=0.534). 32 

 33 
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3.4. Neurogenic inflammatory response  1 

A pretreatment x provocation interaction was found for both mean and peak perfusion (lowest test F-2 

value: F1,17=4.861, P=0.042, mean perfusion). In ablated areas, no significant differences were found 3 

between provocations (mean P=0.435, peak P=0.183), corresponding to almost entirely indiscernible 4 

reactions in most subjects (see Fig. 5). In vehicle areas, CAP1% produced a significantly larger increase 5 

in both mean and peak perfusion compared to AITC10% (mean P=0.023, peak P=0.021). For axon-reflex-6 

flare there was a significant effect of pretreatment (F1,17 = 141.7, P<0.001). The capsaicin-ablation caused 7 

a decrease in flare size from 7.5 ± 0.7 cm2 in vehicle-treated areas to 0.5 ± 0.5 cm2 in ablated areas for 8 

CAP1% and similarly for AITC10% from 8.0 ± 0.8 cm2 to 0.5 ± 0.4 cm2 (P<0.001, see Fig. 6A and B). 9 

No significant effect of provocation was found on axon-reflex flare size (F1,17 = 0.213, P=0.650) 10 

suggesting that the AITC10% and the CAP1% provocations evoked comparable neurogenic inflammatory 11 

responses. The line analysis (Fig. 6C) did not reveal any significant differences in the spatial distribution 12 

of the neurogenic inflammatory reaction, in neither the vehicle- nor capsaicin-ablated areas. However, a 13 

trend towards a more dispersed, but less homotopically intense AITC10%-induced neurogenic flare was 14 

evident (smallest P=0.11). Similarly, an insignificant trend towards slightly increased in perfusion was 15 

observed for AITC10% capsaicin-ablated areas restricted only to the provocation administration area 16 

(Fig. 6C).  17 

 18 

3.5. Sex-related differences  19 

For peak pain, an interaction effect was found between pretreatment x provocation x sex (F1,16 =4,7, 20 

P=0.045). Subsequent post hoc showed that females had significantly higher peak pain scores in vehicle-21 

pretreated areas following CAP1% (34.2 ± 7.3, VAS0-100) than did males (11.2 ± 2.6, P=0.009). This was 22 

not the case for AITC10% (P=0.350). For mean perfusion, a pretreatment x sex interaction was found 23 

(F2,16 =4.703, P=0.046). Post hoc tests showed that in female subjects, vehicle-pretreated areas exhibited a 24 

higher increase in mean perfusion as compared with that of males. This was true both for CAP1% 25 

(P=0.007) and to a lesser extent for AITC10% induced reactions (P=0.05) .  26 

 27 

3.6. Correlations  28 

A positive correlation was found between 8% capsaicin-ablation evoked pain and CAP1%-evoked pain in 29 

vehicle-pretreated skin (r=0.676, P=0.027, see Table 1). Similarly, both 8% capsaicin-ablation evoked 30 

pain and CAP1%-evoked pain correlated strongly with baseline SHPS (lowest: r=0.702, P=0.001), which 31 

was not the case for AITC10%-evoked pain and SHPS (P=0.29). No significant correlation was found 32 

between mean capsaicin-ablation evoked pain (24 h) and the obtained difference between SHPS in 33 

vehicle and ablated areas at baseline (∆SHPS2, r=0.577, P=0.094). In vehicle areas, a strong positive 34 
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correlation was found for neurogenic flare between CAP1% and AITC10% (mean r=0.756, P<0.001, peak 1 

r=0.704, P=0.001). No correlation was found between heat sensitivity or CAP1% and AITC10%-evoked 2 

pain (r=0.475, P=0.282), suggesting that sensitivity to provocations by CAP1% does not confer sensitivity 3 

to AITC10%.  4 

 5 

3.7. Z-scores  6 

Fig. 7 provides a comparative overview of the capsaicin-ablation evoked changes when accounting for the 7 

natural variability within each variable. When assessing the efficacy of the different sensory and 8 

vasomotor responses for CAP1%, the inhibition of heat hyperalgesia (∆HPT) showed the highest Z-score, 9 

indicating that this parameter most robustly detected the ablation responses. Notice that compared to 10 

AITC10%, this effect of the ablation was exclusively driven by CAP1%’s more robust elicitation of heat 11 

hyperalgesia (as assessed by HPT) in the vehicle-pretreated areas. For AITC10%, changes in mean axon-12 

reflex flare size exhibited the highest Z-score and this parameter was the 2nd most robust for CAP1%.  13 

 14 

4. Discussion  15 

High-concentration capsaicin ablation almost completely abolished both AITC- and capsaicin-evoked 16 

pain, heat hyperalgesia, and neurogenic inflammation. For both AITC10% (TRPA1 agonist) and CAP1% 17 

(TRPV1 agonist) provocations, the pain intensities were similarly reduced by around 90% by the ablation 18 

of capsaicin-sensitive nociceptors. Hence, no differences in the desensitization efficacy of the capsaicin-19 

ablation were observed for the two different TRP-provocations, suggesting that TRPA1-nociceptors in 20 

human skin are uniformly TRPV1+.  21 

 22 

4.1. Capsaicin ablation 23 

Topical high-concentration capsaicin causes defunctionalization of capsaicin-sensitive fibers resulting in 24 

profound reduction of contact and laser-evoked heat pain sensitivity 9,35,43,54,61 properties ascribed to the 25 

function of superficial TRPV1+ nociceptors 4,21,62. It is unclear whether nociceptor activation per se is a 26 

crucial aspect of this desensitization process. Some clinical studies have asserted that the use of local 27 

anesthetics do not reduce the efficacy of the capsaicin-ablation 44,68,83. Experimental studies have found an 28 

association between the pain experienced during patch application and the efficacy of the desensitization 29 

9,57,79. The present study did not show a positive correlation between capsaicin ablation-induced pain and 30 

∆SHPS2 (difference between vehicle and ablated areas) although a trend was evident (corrected P=0.09) 31 

suggesting that the vigorousness of the nociceptive barrage during the ablation and the resultant 32 

desensitization are not strictly aligned. 33 

 34 
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4.2. Capsaicin 8% pre-treatment inhibits both TRPV1 and TRPA1-evoked responses 1 

Previous studies using similar chemical provocation techniques have found pain intensity curves and 2 

neurogenic inflammation for both AITC and capsaicin, which were comparable to the present findings 3 

10,49,65,77. Currently, profound reductions in both mean and peak pain were seen in capsaicin-ablated areas 4 

when subsequently exposed to AITC10% or CAP1% with no significant differences between the two 5 

provocations. This suggests that the defunctionalization of TRPV1-expressing cutaneous fibers robustly 6 

abolishes TRPA1-evoked nociceptive responses and implies that no functionally significant 7 

subpopulation of nociceptors in human skin are TRPA1+/TRPV1-. These functional human data support 8 

animal studies suggesting that TRPA1 receptors are almost completely co-expressed with TRPV1 9 

receptors 41,46,81 (see section 4.3). Strong correlations were present between heat pain sensitivity and 10 

capsaicin-evoked pain in vehicle-treated area. On the contrary, a complete lack of correlations was 11 

observed between AITC-evoked pain versus heat or capsaicin-evoked pain. With our main conclusion in 12 

mind, AITC thus produces pain in a distinct manner compared to heat or capsaicin. Since the prolonged 13 

capsaicin pretreatment is thought to defunctionalize and ablate fiber branches and this practically 14 

abolished AITC-reactivity, it is highly conceivable that AITC-evoked pain is distinct at the receptors level 15 

(i.e. engaging TRPA1) while it appears to rely on TRPV1+-fibers. 16 

Mechanistically, development of primary heat hyperalgesia involves sensitization of both Aδ- and C-17 

fibers 78 and it is well documented to occur following topical application of capsaicin 61 and AITC 10,77. 18 

Notably, and distinct from e.g. allodynia, primary heat hyperalgesia can be evoked without spontaneous 19 

preceding or ongoing pain (e.g. following UVB irradiation) 35. In the present study both short-term topical 20 

AITC10% and CAP1% provocations generated substantial heat hyperalgesia in vehicle-pretreated skin. 21 

However, following a prolonged high-concentration capsaicin ablation, the development of heat 22 

hyperalgesia was entirely abolished and replaced by stabile heat hypoalgesia. This signifies that no 23 

sensitization of heat-sensitive nociceptors occurred and that no sensitization of a potential heat-insensitive 24 

TRPA1+/TRPV1- nociceptor subpopulation resulted in de novo heat pain receptiveness. In this context, it 25 

has been suggested that rodent TRPV1- heat-insensitive nociceptors may develop heat pain sensitivity 26 

during partially TRPA1-mediated inflammation 30 , but these fibers alone are insufficient for the 27 

establishment of heat hyperalgesia 47. This notion is corroborated by the present study. It is very likely 28 

that TRPA1-mediated heat hyperalgesia is caused by peripheral sensitization of nerve fibers co-29 

expressing TRPV1, although the exact molecular mechanism(s) for such heat sensitization is unclear 30 

26,36,86. Presently, the defunctionalization of such nerves markedly inhibited the effect of AITC. The 31 

stronger heat hyperalgesia observed for HPT in vehicle-pretreated skin following CAP1% could signify 32 

preferential effect on a subset of heat-sensitive nociceptors, which express TRPV1, but not TRPA1. 33 
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Based on evidence from primate microneurography it could be speculated that the drastic HPT decreases 1 

observed in vehicle-pretreated skin is mediated predominantly by CMH-fibers while a more considerable 2 

contribution from additional sensitized heat-nociceptor populations likely contributes to the elevated 3 

SHPS 23,40,50,84,89. Following ablation, essentially all heat sensitive units (CMH, CMi and Aδ-fibers) 4 

activated in the TRPV1 activation range would be defunctionalized and thus the heat pain sensitivity 5 

diminishes (HPT and SHPS) and no heat hyperalgesia following AITC10% or CAP1% can be mounted. 6 

The axon-reflex-flare response is mediated predominantly by CMi-fibers through release of vasoactive 7 

peptides 73–75. In vehicle-pretreated skin, AITC10% and CAP1% induced similar neurogenic flare 8 

reactions suggesting that the same substrate is engaged by both provocations and that differences in 9 

transdermal penetration were reasonably well accounted for. At the receptor-level, AITC has been 10 

proposed to induce neurogenic inflammation in a TRPV1-independent manner in rodents 15. However, 11 

there are notable differences between neurogenic inflammatory characteristics in human and rodent skin 12 

75. Presently, the 24 h capsaicin ablation resulted in an almost complete inhibition of the axon-reflex-flare, 13 

and robustly reduced increases in mean and peak perfusion after chemical provocations. The inhibitory 14 

effect of capsaicin-induced defunctionalization on neurogenic flare evoked by various irritants is well 15 

established 25,33,35,55,73. As the inhibition of the axon-reflex-flare caused by the ablation was similar for 16 

both areas treated with CAP1% and AITC10%, the induced flares presumably depend entirely on 17 

TRPA1+/TRPV1+ CMi-fibers neurons. This is corroborated by microneurography studies in humans 18 

showing that CMi-units are almost always capsaicin-sensitive 72,76. Lastly, considering the different 19 

quantification methods, the observed neurogenic inflammatory reactions (7.35 cm2; AITC10% and 20 

CAP1% averaged) correspond well with previously reported receptive field sizes for human CMi-fibers 21 

assessed by microneurography (range: 1.1–14.2 cm2, median; 5.34 cm2) 71.  22 

  23 

4.3. TRPV1 and TRPA1 co-expression 24 

Story et al. (2003) found TRPA1 mRNA expressed in all TRPV1+ rodent DRG neurons 81. Likewise, 25 

when functionally assessed, TRPA1+ rat trigeminal neurons were shown to be TRPV1+ too, i.e., 26 

responding to AITC as well as capsaicin 41. Similar findings have been reported in several studies 18,46. 27 

Contrasting these initial studies, Malin et al. (2011) demonstrated that skin afferents express TRPV1, 28 

TRPA1 or both more rarely than previously assumed, i.e., 22% expressed TRPV1 mRNA, 6% expressed 29 

TRPA1, but only 10% expressed both TRPV1 and TRPA1 56. Another study on mice DRG-neurons 30 

showed that 49.7% of units solely expressed TRPV1, 43% TRPA1, but only 99 of 149 TRPA1+-neurons 31 

co-expressed TRPV1 82 which is aligned approximately with recent results from rat trigeminal neurons 37. 32 

Finally, RNA-sequencing in mice DRG-neurons have shown a subpopulation of nociceptors expressing 33 
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TRPA1 and MrgprD, but not TRPV1 85,90. Distinct innervation of various tissues and differences in DRG 1 

and axonal mRNA expression may, in part, explain the contradictory findings 24,56. The present study used 2 

a capsaicin-ablation intervention to estimate the functional co-expression of TRPA1 and TRPV1 in 3 

human epidermal nerve fibers and findings support the notion of TRPA1 being expressed in a subset of 4 

TRPV1+ fibers as described in early rodent studies. In this context, it should be highlighted that 5 

substantial interspecies differences are well documented within somatosensory afferent neurophysiology 6 

and transducer expression 29,52. This study adds information about the interdependency of TRPA1 and 7 

TRPV1-evoked responses in humans, where prior evidence is scarce. in vitro responses of sensory 8 

neurons indicate transient homologous and heterologous desensitization mechanisms for TRPA1 and 9 

TRPV1 when stimulated with AITC and capsaicin 1, while some in vivo data contradict this notion 15. 10 

Data by Simons et al. (2003) using administration to the oral mucosa of capsaicin and AITC in humans, 11 

also suggested rapid self- and cross-desensitization between the two agonists 80. However, AITC-evoked 12 

responses following a prolonged capsaicin-induced desensitization have not previously been studied in 13 

humans and TRPA1-agonists do not appear to induce desensitization in human skin. The discrepancies 14 

between data from oral mucosa and skin probably are related to different study designs, including diverse 15 

concentrations and exposure times, as well as tissue-related differences in  e.g.  sensory sensitivity, 16 

penetration, and clearance (all of which are remarkably higher in the oral mucosa compared to the skin). 17 

Notably, many of the pain and itch conditions where TRPA1 and TRPV1 antagonists have been proposed 18 

to be of potential clinical utility, involve skin targeting (e.g. inflammatory skin diseases and peripheral 19 

neuropathies 12,30,34,48).    20 

 21 

4.4. Clinical implications  22 

Development of systemic and topical antagonists for TRPA1 and TRPV1 is currently ongoing and several 23 

lead compounds have been, and are being, tested in clinical trials 42,58,66. The efficacy of selective TRP-24 

antagonists have unfortunately so far not shown strong clinical effects in chronic pain and, e.g., TRPV1 25 

antagonists have shown considerable adverse effects such as hyperthermia 58. To achieve better efficacy 26 

developing dual TRP-antagonists (e.g. targeting both TRPV1 and TRPA1) might be an option to increase 27 

the therapeutic window. Just as selective activation of TRPV1 and TRPA1 is performed in animal drug 28 

profiling studies, it is possible to test, e.g. TRPV1-antagonists for effect and target engagement in early 29 

clinical drug trials 13,34 but this requires reliable provocation models. The profound responsiveness 30 

observed for FLPI-measured neurogenic inflammation supports monitoring this outcome in response to 31 

TRPA1 or TRPV1 agonist provocation as a suitable and sensitive target engagement biomarker in 32 

humans 13,20,34. Chemical activation of TRPV1 and TRPA1 may also be used for sensory profiling 33 

purposes in patients with, e.g., peripheral neuropathic pain conditions and adds to the existing QST 34 
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platforms as a way to translate pre-clinical findings into patients 16. Such receptor profiling may provide 1 

additional information on loss- or gain-of-function for these specific receptor populations and similar 2 

mechanistic phenotyping has been shown to predict the effect of certain analgesics 27. The current 3 

receptor-specific provocation models may also be used for testing, e.g., novel TRPA1-antagonists and 4 

recently clinical studies have been initiated provoking TRPA1/TRPV1-responses in patients with, for 5 

instance allergies or inflammatory dermatoses, to investigate itch, pain and inflammatory responses 2,5,6,39.  6 

 7 

4.5. Limitations and future perspectives 8 

While topical high-concentration capsaicin could potentially evoke effects on non-neuronal tissues, such 9 

as endothelial cells or unspecifically desensitize nerve terminals independently of TRPV1, for instance 10 

through mitochondrial respiratory distress or off-target effects related to the induced inflammation, such 11 

effects are probably marginal. TRPA1-modulation by inflammation generally appears to enhance TRPA1-12 

expression and function 31,38,60, while capsaicin-induced ablation is thought to rely on Ca2+-influx overload 13 

through TRPV1 as well as mismatch between high energy expenditure (given the prolonged vigorous 14 

firing induced by TRPV1-activation coupled with dysfunctional mitochondrial metabolism) 4,62. This 15 

relative TRPV1-specificity of the applied ablation, is supported by the fact that no lingering inflammation 16 

is present when 8% capsaicin patches are removed, and the endothelial reactivity assessed by wheal 17 

responsiveness (an entirely non-neurogenic reflex) is normal in ablated skin 9. Moreover, psychophysical 18 

evidence suggests that only warmth and heat sensitivity are very robustly decreased in skin following 8% 19 

capsaicin pretreatment 35,54. The fact that unblinding occurred in a subset of subjects, has limited impact 20 

both because testing occurred 24 h after identification (which was never revealed to the subject) but also 21 

because the primary analyses simply compared the achieved relative inhibition for the two chemical 22 

provocations. A key premise was TRPV1 and TRPA1 activation by capsaicin and AITC, respectively. 23 

The selectivity of the two TRP-agonists, AITC in particular, has been questioned 3,32,56, but overall a large 24 

amount of evidence support their relative specificity 11,14,17,41,53,71. More importantly in this context, even if 25 

a proportion of the nociceptive response of AITC was mediated by direct TRPV1-activation, the basic 26 

result interpretation would have remained unchanged. Similarly, even if prolonged capsaicin exposure 27 

causes heterologous desensitization of TRPA1-channels that would still only apply to fibers expressing 28 

TRPV1 and would thus leave a potential population of TRPV1- and TRPA+-fibers unaffected. Because a 29 

robust correlation was present between SHPS or HPT and CAP1%-induced pain but not AITC10% pain, 30 

such unspecific ATIC-engagement of TRPV1 seems unlikely. Lastly, the present study did not assess to 31 

which extent capsaicin-sensitivity is maintained following a TRPA1-assoicated nerve fiber 32 

defunctionalization and thus cannot evaluate the significance and function of TRPV1+, but TRPA1- 33 

cutaneous nociceptors. Such a subpopulation is uniformly reported in rodents and thus likely exists in 34 
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human skin 46,85. Unfortunately, a parallel method for TRPA1-associated defunctionalization in human 1 

skin does not yet exist and prolonged topical application of TRPA1-agonists is generally associated with 2 

more prolonged and extensive skin inflammation than TRPV1-agonists 10. 3 

 4 

5. Conclusion  5 

Ablation of capsaicin-sensitive cutaneous fibers using high-concentration capsaicin strongly inhibited 6 

both AITC and capsaicin-evoked responses, including spontaneous pain, heat hyperalgesia, and 7 

neurogenic inflammation. The inhibition was consistent across all parameters and of similar 8 

efficaciousness for both chemical provocations. Thus, normal nociceptive AITC-responses are robustly 9 

inhibited when capsaicin-sensitive cutaneous nerve fibers are defunctionalized. This suggests that in 10 

human skin, TRPA1+ primary cutaneous afferents belong to a subpopulation of TRPV1+ nociceptors.  11 

 12 
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 3 

Figure legends 4 

 5 

Figure 1: Flowchart of study procedures and treatment areas. A) Sensory and vasomotor responses 6 

were conducted according to the sketch. Heat pain thresholds and suprathreshold heat pain sensitivity for 7 

all areas (A1-A4) were measured before provocation, while assessments were made individually after 8 

each provocation. Notice that both the order of the 8% capsaicin and vehicle patches (pretreatment) and 9 

compound application (provocation) (AITC 10% and capsaicin 1%) were randomized. B) Illustration of 10 

treatment areas on the volar aspects of the forearms (example). Note that areas were randomized. 11 

Abbreviations: AITC = Allyl isothiocyanate, CAP = Capsaicin, FLPI = Full-Field Laser-speckle 12 

Perfusion Imaging, HPT = Heat pain threshold, NRS = Numerical rating scale (pain intensity), SHPS = 13 

Suprathreshold heat pain sensitivity, VAS = Visual analogue scale (pain intensity). 14 

 15 

Figure 2: Evoked pain during administration of 8% capsaicin patch. Evoked pain during the first 6 h 16 

of application is shown for each forearm. Dashed lines indicate 24 h retrospectively rated average (lower) 17 

and peak (upper) pain intensities. Abbreviations: NRS = Numerical rating scale. Means ± SEMs are 18 

shown.  19 

 20 

Figure 3: Pain evoked by provocations with CAP 1% and AITC 10%. Mean pain intensities are 21 

shown over time for A) CAP 1% and B) AITC 10%. Dashed lines represent mean and peak pain 22 

intensities. 8% capsaicin induced sensory desensitization for CAP 1% and AITC 10% on C) peak, and E) 23 

mean pain intensities. %-changes in D) for peak pain and F) for mean pain intensities following 24 

capsaicin-ablation for CAP 1% and AITC 10%. Individual subjects (white dots) and mean (grey dots). 25 

Notice that C-F share legends. Abbreviations: AITC = Allyl isothiocyanate, CAP = Capsaicin, VAS = 26 

Visual analog scale. Means ± SEMs are shown. Asterisks: *** P < 0.001.  27 

 28 

Figure 4. Heat pain sensitivity before and after provocation by CAP 1% and AITC 10% in vehicle- 29 

and capsaicin-ablated areas. A) Heat pain thresholds in capsaicin-ablated (grey) and vehicle-pretreated 30 

(white) skin area for both CAP 1% and AITC 10%. B) Suprathreshold heat pain sensitivity in capsaicin-31 

ablated (grey) and vehicle-pretreated (white) skin area for both CAP 1% and AITC 10%. C) Change in 32 

HPT following application of CAP 1% and AITC 10%. D) Change in SHPS following application of 33 

CAP 1% and AITC 10%. Abbreviations: AITC = Allyl isothiocyanate, CAP = Capsaicin, NRS = 34 
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Numerical rating scale. Means ± SEMs are shown (A and B) and means (C and D). Asterisks: ** P < 0.01 1 

and *** P < 0.001.  2 

 3 

Figure 5. Representative superficial blood perfusion readouts. Four images from 5 different subjects 4 

following provocation by CAP 1% and AITC 10% in vehicle- and capsaicin-ablated skin areas. Notice 5 

almost complete inhibition of neurogenic inflammation, with only very slight increases in perfusion 6 

corresponding to the Finn chamber application area in two subjects shown in the upper panels. Black 7 

quadrant in lower left corner marks the treatment area while the black circle marks the provocation 8 

administration area. Abbreviations: AITC = Allyl isothiocyanate (10%), Arb. = Arbitrary, CAP = 9 

Capsaicin (1%). 10 

 11 

Figure 6. Neurogenic inflammation and axon-reflex-flare evoked by CAP 1% and AITC 10% in 12 

vehicle- and capsaicin-ablated skin areas. A) Mean and peak superficial blood perfusion in capsaicin 13 

pretreated (grey) and vehicle-pretreated (white) skin areas. B) Axon-reflex-flare size. C) Spatial extent of 14 

of superficial blood perfusion following chemical provocations in capsaicin-ablated (dark grey and black) 15 

and vehicle-pretreated skin (white and light grey). X-axis depicts the longitudinal distribution of the flare 16 

reaction. Abbreviations:  AITC = Allyl isothiocyanate, CAP = Capsaicin, arb = Arbitrary, cm = 17 

Centimeter. Means ± SEMs are shown. Asterisks: * P < 0.05 and *** P < 0.001.  18 

 19 

Figure 7. Z-score plot for mean and peak evoked pain, heat pain, antihyperalgesia, and axon-reflex 20 

flare size for CAP 1% and AITC 10%. Negative values represent desensitization effect (i.e. reduced 21 

responses in treated skin). Note that the two chemical provocations only differ with respect to HPT 22 

(driven by differences in vehicle-treated skin area). HPT = Heat pain threshold, SHPS = Suprathreshold 23 

heat pain sensitivity. Means ± SEMs are shown.  24 

 25 

Table legends 26 

 27 

Table 1. Correlational analysis. Significant correlations are marked in grey. V= vehicle area, A= ablated 28 

area. P-values are multiplicity corrected by the Holm-Sidak method. An isolated correlational analysis of 29 

mean perfusion data was performed to retain power. Asterisks: * P < 0.05, ** P < 0.01, *** P < 0.001.  30 

 31 

 32 
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1. Mean pain 

cap 8% (24h) 

2. Mean pain 

CAP 1% (V) 

3. ΔCAP 1% 

pain (V – A) 

4. Mean pain 

AITC 10% (V) 

5. ΔAITC 10% 

pain (V – A) 

6. Mean pre-

SHPS (V)  

8. Mean perf. 

CAP 1% (V) 

2. Mean pain 

CAP 1% (V) 

r = 0.676 

* P = 0.027 
     

9. Mean perf. 

AITC 10% (V) 

r = 0.756 

*** P < 0.001 
     

3. ΔCAP 1% 

pain (V – A) 

r = 0.665 

* P = 0.029 

r = 0.989 

*** P < 0.001 
    

  

    
  

4. Mean pain 

AITC 10% (V) 

r = 0.367 

P = 0.293 

r = 0.475 

P = 0.284 

r = 0.441 

P = 0.293 
   

  

   
  

5. ΔAITC 10% 

pain (V – A) 

r = 0.369 

P = 0.293 

r = 0.470 

P = 0.284 

r = 0.433 

P = 0.293 

r = 0.984 

***P < 0.001 
  

  

  
  

6. Mean pre-

SHPS (V) 

r = 0.849 

*** P < 0.001 

r = 0.702 

* P = 0.016 

r = 0.669 

* P = 0.029 

r = 0.386 

P = 0.293 

r = 0.435 

P = 0.293  

  

  

7. ΔSHPS  

(V – A) 

r = 0.577 

P = 0.094 

r = 0.642 

* P = 0.040 

r = 0.625 

* P = 0.049 

r = 0.416 

P = 0.293 

r = 0.427 

P = 0.293 

r = 0.722 

** P = 0.01 
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