
Aalborg Universitet

Sound source localization and speech enhancement with sparse Bayesian learning
beamforming

Xenaki, Angeliki; Boldt, Jesper Bünsow; Christensen, Mads Græsbøll

Published in:
The Journal of the Acoustical Society of America

DOI (link to publication from Publisher):
10.1121/1.5042222

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Xenaki, A., Boldt, J. B., & Christensen, M. G. (2018). Sound source localization and speech enhancement with
sparse Bayesian learning beamforming. The Journal of the Acoustical Society of America, 143(6), 3912-3921.
https://doi.org/10.1121/1.5042222

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1121/1.5042222
https://vbn.aau.dk/en/publications/a48e04a0-c115-4f68-871f-bfc033181441
https://doi.org/10.1121/1.5042222


Downloaded from vbn.aau.dk on: July 04, 2025



Sound source localization and speech enhancement with sparse
Bayesian learning beamforming

Angeliki Xenakia) and Jesper B€unsow Boldt
GN Hearing A/S, DK-2750 Ballerup, Denmark

Mads Græsbøll Christensen
Audio Analysis Lab, AD:MT, Aalborg University, DK-9000 Aalborg, Denmark

(Received 27 October 2017; revised 1 February 2018; accepted 22 February 2018; published online
29 June 2018)

Speech localization and enhancement involves sound source mapping and reconstruction from

noisy recordings of speech mixtures with microphone arrays. Conventional beamforming methods

suffer from low resolution, especially with a limited number of microphones. In practice, there are

only a few sources compared to the possible directions-of-arrival (DOA). Hence, DOA estimation

is formulated as a sparse signal reconstruction problem and solved with sparse Bayesian learning

(SBL). SBL uses a hierarchical two-level Bayesian inference to reconstruct sparse estimates from a

small set of observations. The first level derives the posterior probability of the complex source

amplitudes from the data likelihood and the prior. The second level tunes the prior towards sparse

solutions with hyperparameters which maximize the evidence, i.e., the data probability. The adap-

tive learning of the hyperparameters from the data auto-regularizes the inference problem towards

sparse robust estimates. Simulations and experimental data demonstrate that SBL beamforming

provides high-resolution DOA maps outperforming traditional methods especially for correlated or

non-stationary signals. Specifically for speech signals, the high-resolution SBL reconstruction

offers not only speech enhancement but effectively speech separation.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5042222

[WS] Pages: 3912–3921

I. INTRODUCTION

Talker localization and separation are key aspects in

computational auditory scene analysis, i.e., the segregation

of sources from noisy and reverberant sound mixtures with

signal processing. Multi-microphone processing systems are

able to exploit both the spatial and spectral information of

the wavefield thus have improved performance compared to

single-microphone systems.1,2 Multi-channel speech locali-

zation and enhancement algorithms find several applications

including robot audition,3,4 tele-conferencing,5 and hearing

aids.6,7

The problem of sound source localization in array signal

processing is to infer the direction-of-arrival (DOA) of the

source signals from noisy measurements of the wavefield

with an array of microphones. Beamforming methods based

on spatial filtering have low resolution or degraded perfor-

mance for coherent arrivals, e.g., in reverberant conditions,

or for non-stationary signals, when only a few observation

windows (snapshots) are available.8 In acoustic imaging,

there are usually only a few sources generating the observed

wavefield such that the DOA map is sparse, i.e., it can be

fully described by only a few parameters. Exploiting the

underlying sparsity, sparse signal reconstruction improves

significantly the resolution in DOA estimation.9–12 While ‘p-

norm regularized maximum likelihood methods, with p� 1,

have been proposed to promote sparsity in DOA

estimation9–11,13 and wavefield reconstruction,14,15 the accu-

racy of the resulting sparse estimate is determined by the ad
hoc choice of the regularization parameter.12,16

Sparse Bayesian learning (SBL) is a probabilistic

parameter estimation approach which is based on a hierar-

chical Bayesian method for learning sparse models from

possibly overcomplete representations resulting in robust

maximum likelihood estimates.17,18 Specifically, the

Bayesian formulation of SBL allows regularizing the maxi-

mum likelihood estimate with prior information on the

model parameters. However, instead of explicitly introduc-

ing specialized model priors to reflect the underlying struc-

ture, SBL uses a hierarchical model which controls the

scaling of a multivariate Gaussian prior distribution through

individual hyperparameters for each model parameter. The

hyperparameters are iteratively estimated from the data

selecting the most relevant model features while practically

nulling the probability of irrelevant features, hence promot-

ing sparsity.17,19 Since SBL learns the hyperparameters from

the data, it allows for automatic regularization of the maxi-

mum likelihood estimate which adapts to the problem under

study.17,20 The hierarchical formulation of SBL inference

offers both a computationally convenient Gaussian posterior

distribution for adaptive processing (type-I maximum likeli-

hood) and automatic regularization towards robust sparse

estimates determined by the hyperparameters which maxi-

mize the evidence (type-II maximum likelihood).21

In array signal processing, SBL is shown to improve sig-

nificantly the resolution in beamforming22 and in general the

accuracy of DOA estimation,23–28 outperforming conventionala)Electronic mail: axenaki@gnresound.com
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methods notably at demanding scenarios with correlated

or non-stationary signals. Multi-snapshot26 and multi-

frequency23,24,27,28 SBL inference exploits the common

sparsity profile across snapshots for stationary signals and

frequencies for broadband signals to provide robust estimates

by alleviating the ambiguity in the spatial mapping between

sources and sensors due to noise and frequency-dependent

spatial aliasing, respectively. Accounting for the statistics of

modelling errors in SBL estimation, e.g., due to sensor posi-

tion, sound speed uncertainty or basis mismatch, further

improves support recovery.28,29

We use the SBL framework to solve the sound

source localization problem of speech mixtures in noisy and

reverberant conditions. We employ the multi-snapshot, multi-

frequency SBL algorithm in Ref. 28 to reconstruct simulta-

neously the DOA and the complex amplitude of speech signals.

SBL beamforming assumes a predefined spatial mapping

between the sources and the sensors to infer the DOAs directly

from the reconstructed source vector, as opposed to methods

(including SBL-based7) which infer the DOA of a single target

talker indirectly through the estimation of the relative transfer

function between a pair of microphones.4,6 It is demonstrated

both with simulations and experimental data that SBL beam-

forming offers unambiguous source localization outperforming

traditional beamforming methods especially for correlated sig-

nals and single-snapshot measurements. The high-resolution

SBL reconstruction offers not only speech enhancement over

noise, but also speech separation between competing talkers.

Herein, vectors and matrices are represented by bold

lowercase and uppercase letters, respectively. The super-

scripts T and H denote the transpose and the Hermitian, i.e.,

conjugate transpose, operator, respectively, on vectors and

matrices. The superscript þ denotes the generalized inverse

operator on a matrix. A Q � Q identity matrix is denoted IQ.

The ‘p-norm of a vector x 2 C
Q is defined as

kxkp ¼ ð
PQ

q¼1 jxqjpÞ1=p
. The Frobenius norm of a matrix

X 2 C
Q�R

is defined as kXkF ¼ ð
PQ

q¼1

PR
r¼1 jxqrj2Þ1=2

.

II. ARRAY SIGNAL MODEL

Assuming narrowband processing, the complex-valued

measurements at an M-element array, i.e., the data, are

described by the vector

yl ¼ y1ðf ; lÞ;…; yMðf ; lÞ½ �T ; (1)

where ym(f, l) is the short-time Fourier transform (STFT)

coefficient for the fth frequency and the lth time-frame

(snapshot) of the recorded signal at the mth sensor,

m 2 f1;…;Mg. The frequency index f is omitted from the

vector’s notation for simplicity.

At the far-field of the array, the location of a source is

characterized by the DOA, h, of the associated plane wave,

x. Discretizing the angular space of interest into N directions,

the vector of the complex-valued sound source amplitudes,

i.e., the model parameters, for the fth frequency and the lth
snapshot is

xl ¼ x1ðf ; lÞ;…; xNðf ; lÞ½ �T : (2)

The array measurements are related to the model parameters

with the linear model

Y ¼ AXþ N; (3)

where Y ¼ ½y1;…; yL� 2 C
M�L

is the wavefield measure-

ments at M sensors for L snapshots, X ¼ ½x1;…; xL� 2 C
N�L

is the unknown source amplitudes at N angular directions for

L snapshots and N 2 C
M�L

is additive noise which is

assumed independent across sensors and snapshots. The

sensing matrix,

A ¼ aðh1Þ;…; aðhNÞ½ �; (4)

has as columns the steering vectors a(hn) at each direction

hn, n 2 f1;…;Ng, which describe the acoustic transfer func-

tion from a source at hn to all M sensors on the array. The

sensing matrix A 2 C
M�N is determined either analytically

for simple array geometries, e.g., uniform linear arrays

(ULA),11 spherical arrays baffled on a rigid sphere,30 or

experimentally, e.g., from head-related transfer function

(HRTF) measurements.31

III. DOA ESTIMATION

The problem of DOA estimation and source reconstruc-

tion with sensor arrays32 is to recover the sources X, given

the sensing matrix A and a set of observations Y. Usually,

there are only a few sources K �N generating the acoustic

field such that X is sparse in the angular space, i.e., has only

a few non-zero components. However, precise localization

requires fine angular resolution such that M<N and the

problem in Eq. (3) is underdetermined, i.e., has infinitely

many solutions.

An estimate bX can be obtained by spatial filtering the

array data Y (beamforming), or by solving Eq. (3) with opti-

mization or probabilistic methods for parameter estimation.

For stationary sources, when X has a common row-wise

sparsity profile, snapshots can be combined to improve the

signal-to-noise ratio. Otherwise, the problem should be

solved independently for each snapshot.

A. Spatial filtering

Spatial filtering of the recorded wavefield refers

to applying direction-dependent complex weights wðhÞ
2 C

M�1
to the sensor outputs to allow signals from a specific

look-direction to pass undistorted while attenuating wave-

field contributions from other directions. Applying a set of

spatial weights, one for each look-direction to steer the

beamformer across the angular space yields the DOA

estimate,

bXBF ¼WHY; (5)

where W ¼ ½wðh1Þ;…;wðhNÞ� has as columns the spatial

weight vectors at each DOA hn, n 2 f1;…;Ng.
Accordingly, the beamformer power at direction h is

J. Acoust. Soc. Am. 143 (6), June 2018 Xenaki et al. 3913



PBFðhÞ ¼ wHðhÞSywðhÞ; (6)

where Sy ¼ ðYYHÞ=L is the sample data cross-spectral

matrix from L snapshots. Note that, for broadband signals,

spatial filtering methods are applied to each frequency sepa-

rately according to the narrowband signal model Eq. (3).

1. Conventional beamforming

The conventional beamforming (CBF) is the simplest

source localization method. The method uses the steering

vectors as spatial weights, i.e.,

wCBF hð Þ ¼ 1

M
a hð Þ; (7)

to combine the sensor outputs coherently enhancing the sig-

nal at the look-direction from the ubiquitous noise. CBF is

robust to noise and can be used even with single snapshot

data, L¼ 1, but is characterized by low resolution and the

presence of sidelobes.

2. Minimum variance distortionless response
beamforming

The minimum variance distortionless response (MVDR)

beamforming33 weight vector is obtained by minimizing the

output power of the beamformer under the constraint that the

signal from the look direction, h, remains undistorted,

min
w

wHSyw subject to wHaðhÞ ¼ 1; (8)

resulting in the optimal weight vector,

wMVDR hð Þ ¼
Sy þ bIM

� ��1
a hð Þ

a hð ÞH Sy þ bIM

� ��1
a hð Þ

; (9)

where diagonal loading with regularization parameter b is

used to regularize the inverse of the sample covariance

matrix S�1
y whenever it is rank deficient. Note that by replac-

ing the data sample covariance matrix Sy with the noise sam-

ple covariance matrix Sn ¼ ðNNHÞ=L in Eqs. (8) and (9)

results in an equivalent derivation of the MVDR weights.32

However, in practical applications it is more difficult to

obtain a robust estimate of the noise separately from the

measured data. MVDR beamforming offers high resolution

DOA maps but its performance degrades significantly under

snapshot-starved data, L<M, correlated arrivals and low

SNR conditions.

B. Probabilistic parameter estimation

The problem of DOA estimation can be formulated in a

probabilistic framework by considering both the unknowns

X and the observations Y as stochastic processes and solved

with Bayesian inference.16

Bayes’ theorem,

p XjYð Þ ¼ p YjXð Þp Xð Þ
p Yð Þ

; (10)

derives the posterior distribution pðXjYÞ of the model

parameters X, i.e., the complex source amplitudes, condi-

tioned on the data Y, i.e., the sensor measurements, from the

data likelihood pðYjXÞ, the prior distribution of the model

parameters p(X) and the marginal distribution of the data

p(Y). The maximum a posteriori (MAP) estimate,

bXMAP ¼ arg max
X

ln pðXjYÞ

¼ arg min
X
�ln pðYjXÞ � ln pðXÞ½ �; (11)

is used for DOA reconstruction. Here, p(Y) is omitted from

the optimization as it is marginalized over X.

The probabilistic formulation (11) provides a regular-

ized solution to the DOA estimation problem (3) based on

prior information. To demonstrate the effect of prior infor-

mation on the estimate, consider the single-snapshot case.

Assuming that the additive noise is independent and identi-

cally distributed (iid) circularly symmetric complex

Gaussian with variance r2; pðn; r2Þ ¼ CN ðnj0; r2IÞ, the

data likelihood is also complex Gaussian distributed,

pðyjx; r2Þ ¼ CN ðyjAx; r2IÞ / e�ðky�Axk2
2=r

2Þ: (12)

Employing a general expression for the prior p(x) based on

the multivariate generalized complex Gaussian

distribution,34

pðx; �pÞ / e�ðkxkp=�Þ
p

; (13)

where � 2 Rþ is the scaling parameter and p 2 Rþ is the

shape parameter, the MAP estimate (11) is expressed as a

regularized least-squares (R-LS) problem,

bxR–LSðp; lÞ ¼ arg min
x
ky� Axk2

2 þ lkxkp
p; (14)

where l¼r2/�p� 0 is the regularization parameter which

controls the relative importance between the data fit and the

regularization term. The characteristics of the MAP estimate

depend on the choice of the shape parameter p and the regu-

larization parameter l.12

For example, assuming that the model parameters fol-

low an iid complex Gaussian distribution, pðx; �2Þ
¼ CN ðxj0; �2IÞ, problem (14) becomes an ‘2-norm regular-

ized least-squares problem which has an analytic solution,

bx‘2
ðlÞ ¼ arg min

x
ky� Axk2

2 þ lkxk2
2

¼ AHðAAH þ lIMÞ�1
y: (15)

The ‘2-norm regularizer penalizes the energy in the solution

hence the estimate (15) is smooth and robust to noise but has

low resolution. Note that CBF is related to the ‘2-norm esti-

mate for large l,12

bxCBF ¼ lim
l!1

lbx‘2
ðlÞ

� �
¼ AHy: (16)

Contrarily, assuming that the model coefficients follow a

Laplacian-like distribution for complex random variables,35
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pðx; �Þ / e�ðkxk1=�Þ; (17)

the MAP estimate (14) becomes the solution to an ‘1-norm

regularized least-squares problem,

bx‘1
ðlÞ ¼ arg min

x
ky� Axk2

2 þ lkxk1; (18)

which is known as the least absolute shrinkage and selection

operator36 (Lasso) since the ‘1-norm regularizer shrinks the

model coefficients towards zero as the regularization param-

eter, l¼ r2/�, increases.

As opposed to a Gaussian prior, the Laplacian-like prior

distribution encourages sparse solutions as it concentrates

more mass at zero and in the tails. Thus the ‘1-norm estimate

improves significantly the resolution in DOA estimation in

the presence of only a few sources.11,12 The ‘1-norm minimi-

zation problem (18) can be solved with convex optimization

algorithms37 which can be computationally intensive.

Besides, the accuracy of the ‘1-norm estimate (18) depends

on the regularization parameter which determines the degree

of sparsity in the estimate and requires knowledge on the

hyperparameters, i.e., r2 and �, of the underlying probability

distributions (12) and (17).

1. Sparse Bayesian learning beamforming

The SBL framework uses a hierarchical approach to

probabilistic parameter estimation. Instead of employing

specialized prior models, e.g., Eq. (17), to explicitly promote

sparse maximum likelihood estimates, e.g., Eq. (18), SBL

uses a Gaussian prior, pðx; nÞ ¼ CN ðxj0;NÞ, with diagonal

covariance matrix N ¼ diagðnÞ and controls the sparsity in

the estimate by scaling the model parameters, x, with indi-

vidual hyperparameters, n. The hyperparameters n are esti-

mated from the data and control the variances of each

coefficient in x, i.e., the source powers. Given that the model

parameters are independent across snapshots, the multi-

snapshot prior distribution is

pðXÞ ¼
YL

l¼1

CN ðxlj0;NÞ: (19)

Similarly, assuming that the noise is zero-mean complex

Gaussian, independent both across sensors and snapshots

such that pðNÞ ¼
QL

l¼1 CN ðnlj0;RnÞ with covariance matrix

Rn ¼ r2I, the multi-snapshot data likelihood is

pðYjXÞ ¼
YL

l¼1

CN ðyljAxl; r
2IÞ: (20)

Given the Gaussian prior (19) and likelihood (20) for

independent snapshots, the posterior distribution for X is

also Gaussian,

pðXjYÞ / pðYjXÞpðXÞ ¼
YL

l¼1

CN ðml;RxÞ; (21)

where

ml ¼ NAHR�1
y yl; l 2 f1;…; Lg; (22)

Rx ¼ N� NAHR�1
y AN (23)

is the posterior mean and covariance, respectively, and

Ry ¼ Efyly
H
l g ¼ ANAH þ r2I (24)

is the data covariance matrix. Given the hyperparameters N,

or simply n since N is considered diagonal, and r2, the MAP

estimate (11) is the posterior mean (22), bXMAPðn; r2Þ
¼ ½m1;…;mL�. Note that the sparsity of bXMAP is dictated by

the sparsity profile of the hyperparameters n, i.e., xn¼ 0 if

nn ¼ 0; n 2 f1;…;Ng.
In SBL the hyperparameters n and r2 are estimated from

the evidence, i.e., the unconditional probability distribution of

the data marginalized over the model parameters X,

pðYÞ ¼
ð

pðYjXÞpðXÞdX

¼
ðYL

l¼1

CN ðyljAxl; r
2IÞCN ðxlj0;NÞdX

¼
YL

l¼1

CN ðylj0;RyÞ: (25)

First, the hyperparameters bn are estimated with a type-II

maximum likelihood, i.e., by maximizing the evidence,

bn ¼ arg max
n�0

log p Yð Þ ¼ arg max
n�0

log
e�Tr YHR�1

y Yð Þ

pMdet Ry

� �� �L

¼ arg min
n�0

L log det Ry

� �
þ Tr YHR�1

y Y
� �n o

; (26)

where Tr(�) and detð�Þ denote, respectively, the trace and

determinant operators on a matrix. The objective function of

the resulting minimization problem (26) is non-convex.37

However, problem (26) can be solved approximately by dif-

ferentiating the objective function to obtain the fixed point

updates,26,28

bni

n ¼ bni�1

n

a hnð ÞHR�1
y SyR�1

y a hnð Þ
a hnð ÞHR�1

y a hnð Þ
; (27)

where bni

n is the estimated variance of the nth model parame-

ter, i.e., the estimated source power of a source at direction

hn, at the ith iteration.

Then, the estimation of the hyperparameter r2 is based

on a stochastic maximum likelihood procedure,26

br2 ¼ 1

M � K
Tr IM � ANAþN

� �
Sy

h i
; (28)

where N ¼ fn 2NjK largest peaks in nig ¼ fn1;…; nKg is

the set of the active indices indicating the position of the K
largest peaks in bni

such that AN ¼ ½aðhn1
Þ;…; aðhnK

Þ�.
To this point, the derivation is based on the narrowband

model (3). For broadband signals, we can exploit the com-

mon sparsity profile across frequencies to enhance the spar-

sity of the estimate bn. The narrowband estimates bnðf Þ Eq.

(27) can be either combined incoherently for F frequencies,
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bn1:F ¼
1

F

XF

f¼1

bn fð Þ; (29)

or coherently assuming a prior with common covariance

N across frequencies, p½Xðf Þ� ¼
QL

l¼1 CN ðxlðf Þj0;NÞ; 8f
2 f1;…;Fg which results to a unified update rule for all

frequencies,28

bni

n;1:F ¼ bni�1

n;1:F

XF

f¼1

a hn; fð ÞHR�1
y fð ÞSy fð ÞR�1

y fð Þa hn; fð Þ

XF

f¼1

a hn; fð ÞHR�1
y fð Þa hn; fð Þ

:

(30)

Table I summarizes the algorithm for SBL DOA estima-

tion. The beamformer power spectrum is readily given by

the hyperparameters bn which represent source power. For

amplitude reconstruction, the unbiased estimate,bXSBL;N ¼ AþNY, is used instead of the MAP estimatebXMAPðbn; br2Þ ¼ ½m1;…;mL� as it provides more accurate

estimates.38 Nevertheless, highly correlated steering vectors,

e.g., at very low frequencies, will increase the condition

number of AN and, consequently, the error in the corre-

sponding matrix inversion. For narrowband estimation set

F¼ 1, in which case the update rules (29) and (30) are equiv-

alent, i.e., they reduce to Eq. (27). The details of the deriva-

tion of the hyperparameter update rules Eqs. (27) and (28)

and of the algorithm for the implementation of the SBL

beamformer are in Refs. 26 and 28.

Note that the descritization of the problem (3) to a pre-

defined angular grid may affect the accuracy of the SBL esti-

mate. This is either due to basis mismatch for grids that are

too coarse to capture the true DOAs of the signals or due to

high correlation of adjacent steering vectors for dense grids.

Such uncertainty can be incorporated to the model as addi-

tive or multiplicative noise and the effect of modelling error

can be mitigated by tuning the hyperparameters that control

its statistics.28,29 In the interest of algorithm simplicity for

practical applications, modelling errors are neglected herein.

Moreover, we assume K known in step 5 of the algorithm in

Table I, otherwise it can be determined with model order

identification methods.23

C. Comparison of beamforming methods

Figure 1 compares the DOA power spectra of CBF,

MVDR, and SBL beamformer [Eq. (6) and bn, respectively]

on a simple configuration with a ULA. For a ULA with M
sensors, the sensing matrix (4) is defined by the steering

vectors,32

aðhnÞ ¼ ej2pðd=kÞ 0;…;M�1½ �T sin hn ; (31)

where d is the uniform inter-sensor spacing, k is the wave-

length and hn is the nth direction of arrival with respect to

the array axis. To demonstrate the resolution capabilities of

the beamformers, two sources are introduced with equal

deterministic amplitude and random phase uniformly distrib-

uted in [0, 2p) on a grid with angular spacing 5	. Note that

the DOA spectrum is limited within [�90	, 90	] due to the

left-right ambiguity of ULA [i.e., sin h ¼ sinðp� hÞ].32 The

noise variance is determined by the SNR given the average

source power across snapshots, r2 ¼ 10�SNR=10kXk2
F=L.

For uncorrelated sources, high SNR and sufficient

snapshots, all beamforming methods indicate the presence

of the two sources as peaks in the power spectrum, albeit

CBF with low-resolution and a prominent sidelobe at

around �50	, Fig. 1(a). The high-resolution performance of

the MVDR beamformer, which involves the inverse of the

sample covariance matrix, degrades significantly for single-

snapshot data and correlated sources, Figs. 1(b) and 1(c).

Regularization of the MVDR weights Eq. (9), here b¼ r2,

smooths the MVDR estimate towards the low-resolution

CBF estimate. The sparsity promoting SBL beamformer

offers high-resolution reconstruction, with single-snapshot

data and correlated arrivals invariably, even at low SNR

Fig. 1(d). The spurious peaks (e.g., around �45	) at the

SBL power spectrum, bn, for low SNR, Fig. 1(d), do not

affect the unbiased amplitude estimate, bXSBL;N ¼ AþNY, as

TABLE I. Algorithm for SBL beamforming.

Inputs: A, Y, Sy; 8f ; f 2 f1;…;Fg
Initializations: i¼ 0, �¼ 1, bn i

¼ 1; br2 ¼ 0:1; 8f
Parameters: Niter, �min, K

1: while i < Niter and � > �min

2: Update i¼ i þ 1

3: Compute Ry using (24), 8f

4: Update bn i
using

ð27Þ; ð29Þ; or

ð30Þ

�
5: FindN ¼ fn 2NjK largest peaks in bn i

g
6: Update br2

using (28), 8f

7: Update � ¼ k
bn i
� bn i�1

k1

kbn i�1
k1

8: end

Output: bn; br2; N
Signal estimate: bXSBL;N ¼ AþNY

Beamformer power: PSBLðhnÞ ¼ bnn; n 2 f1;…;Ng

FIG. 1. (Color online) CBF, MVDR, and SBL power spectra from L snap-

shots for two equal-strength sources at 0	 and 30	 as the clean signal with a

uniform linear array with M¼ 4 sensors and spacing d/k¼ 1/2 for (a)

SNR¼ 20 dB, L¼ 2 M, uncorrelated sources, (b) SNR¼ 20 dB, L¼ 1,

uncorrelated sources, (c) SNR¼ 20 dB, L¼ 2 M, correlated sources, (d)

SNR¼ 0 dB, L¼ 2 M, uncorrelated sources.
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the sparsity level is set to K¼ 2 at step 5 of the algorithm in

Table I.

The results in Fig. 1 indicate that the SBL beamformer

offers robust DOA estimation, particularly in case of

snapshot-starved data, e.g., for non-stationary signals, and

reverberant environments. Opposed to the CBF and MVDR

beamformers which are implemented as spatial filters, the

SBL beamformer involves an iterative estimation of the like-

lihood and prior hyperparameters. Figure 2 shows that the

convergence rate, e, decreases rapidly with the number of

iterations while the CPU time on an Intel Core i5 increases

linearly. The computational time for a single SBL iteration

is ca. 3 ms compared to ca. 0.07 ms for CBF and ca. 0.1 ms

for MVDR. Nevertheless, the reconstruction accuracy of

SBL is significant. Notably, the computational time per num-

ber of snapshots is almost constant.26

In the following, the parameters of the SBL algorithm in

Table I are set to Niter¼ 20 and �min¼ 0.001. These values

offer adequate estimation accuracy and computational effi-

ciency (see Fig. 2) for problems of small dimensions, e.g.,

M¼ 4, N¼ 37, which are typical31,39 for the speech process-

ing applications in focus. More iterations might be required

for the SBL algorithm to converge for larger problems.26

The sparsity K is set to the number of sources in each case.

Since speech is broadband, the multi-frequency update rule

(30) is used for the SBL reconstruction.

IV. SIMULATION RESULTS

A listening scenario of interest where speech enhance-

ment and separation is beneficial for speech intelligibility

involves focusing at a reference talker in the presence of

noise, competing talkers and reverberation. The performance

of CBF, MVDR, and SBL beamforming in such conditions

is demonstrated, herein, with simulations.

For the simulations, a ULA (31) is considered with

M¼ 4 sensors. The inter-sensor spacing is d¼ 28.6 cm to

avoid spatial aliasing, i.e., d/k< 1/2, for frequencies up to

6 kHz which is the upper frequency for high speech quality,

assuming airborne propagation with sound speed c¼ 343 m/s.

The sources are speech excerpts from the EUROM1 English

corpus40 including both male and female talkers of 1 s dura-

tion resampled at fs¼ 16 kHz. The speech excerpts, due to

their short duration, have constant voice activity without

silent intervals. Hence, the root-mean-square value of the

target source, rmsðxtargetÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=T

PT
t¼1 xtargetðtÞ2

q
where T is

the total number of samples, is used to determine the noise

variance in relation to the SNR, r2 ¼ 10�SNR=10rmsðxtargetÞ2.

A DOA grid [�90	: 5	: 90	] is considered.

The signals are processed in 40 ms frames with 10%

overlap. Each frame is further divided in 8 ms snapshots

with 50% overlap resulting in L¼ 9 snapshots per frame.

This way, the signal per frame can be approximated as sta-

tionary while having enough snapshots L> 2 M for a statisti-

cally robust sample data cross-spectral matrix Sy (as in Ref.

41). A Hanning window is applied to each snapshot followed

by a STFT. The resulting narrowband signals, for each fre-

quency in the resulting spectrum ranging 0�8 kHz, are proc-

essed with steered beamforming methods for DOA

estimation as detailed in Sec. III. Finally, for each direction

on the resulting DOA map, an inverse STFT is applied to the

reconstructed signals which are resynthesized to the time

domain with the overlap-and-add procedure.42

Figure 3 depicts the DOA maps for the simple case of a

single talker in the presence of additive noise at

SNR¼ 15 dB, along with the spectrograms of the recon-

structed signals at selected directions, calculated over frames

of 40 ms duration, Hanning weighting and 50% overlap.

Specifically, Fig. 3(a) indicates the actual source distribution

across time and DOA. There is a single source of male

speech at h¼ 50	 with frequency spectrum per time frame

shown in the spectrogram in Fig. 3(b). The CBF, MVDR,

and SBL estimates are depicted in Figs. 3(c), 3(f), and 3(i),

respectively. In this case with a single source, additive noise

at high SNR and sufficient snapshots, all methods

FIG. 2. (a) Convergence rate � and (b) computational time of the SBL beam-

former algorithm per number of iterations, at SNR¼ 20 dB (solid line) and

0 dB (dashed line).

FIG. 3. DOA maps for a single source (male talker) at 50	 with additive

noise at SNR¼ 15 dB for (a) the original signal, (c) CBF, (f) MVDR, and (i)

SBL reconstruction. Spectrograms of the (b) clean signal, (d) CBF, (g)

MVDR, and (j) SBL estimates at h¼ 50	. Spectrograms of the (e) CBF and

(h) MVDR estimates at h¼�50	.
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reconstruct accurately the target signal at h¼ 50	 as shown

in the corresponding spectrograms, Figs. 3(d), 3(g), and 3(j).

However, the low resolution CBF spreads the energy

across the whole angular spectrum making DOA estimation

very difficult. For example, there is a lot of energy at

h¼�50	, especially at low frequencies, due to the single

source at h¼ 50	; see Fig. 3(e). This is explained by the

coherence of the steering vectors (31) at different frequen-

cies as indicated by the Gram matrices, 1/M(AH A), in Fig.

4. Note that each row of the Gram matrix, 1/M[aH(h) A], is

the CBF beampattern for a unit source at h. At low frequen-

cies the array aperture is too small to detect phase differ-

ences of the recorded wavefield across sensors and the CBF

estimate is almost omnidirectional, Fig. 4(a). The CBF

estimate becomes more directive for higher frequencies, Fig.

4(b), while for d/k> 1/2 grating lobes appear in the estimate

due to spatial aliasing Fig. 4(c). The directionality character-

istics of CBF depicted in Fig. 4 indicate that processing only

higher frequencies (e.g., above 2 kHz for the particular con-

figuration) could improve the corresponding DOA estimates.

However, this is not a suitable option for short-time process-

ing of speech signals which have only a few energy (if any)

at high frequencies as DOA estimation would fail due to

absence of signal.

MVDR improves the resolution, Fig. 3(h), while SBL

offers very accurate DOA estimation. Note that the spectro-

grams for the signal at h¼�50	 in the clean and SBL DOA

map are omitted since their energy is below the plotted

dynamic range.

Figure 5 demonstrates the DOA estimation performance

of CBF, MVDR, and SBL beamforming in the case of two

sources, namely, a male talker at 0	 and a female talker at 30	

as shown in Fig. 5(a), and additive noise at SNR¼ 15 dB. The

low resolution CBF offers smooth DOA reconstruction, Fig.

5(d), which results in poor localization hence poor signal sep-

aration. For example, the CBF estimate at 0	 [Fig. 5(e)] con-

tains energy not only from the source at 0	 [Fig. 5(b)] but also

from the source at 30	 [Fig. 5(c)] and vice versa [Fig. 5(f)].

The MVDR estimate has improved resolution [Fig. 5(g)],

attenuating more effectively signals from directions other than

the focusing one [Figs. 5(h) and 5(i)]. SBL offers great spatial

selectivity hence source separation [Figs. 5(j)–5(l)].

Finally, Fig. 6 shows the corresponding results to

Fig. 5 when the source at 30	 is a replica of the source at

0	. In this case, the sources are correlated, e.g., in the

presence of strong reflections due to reverberant listening

FIG. 4. Gram matrices 1/M(AH A) indicating the coherence pattern of the

steering vectors (31) for a ULA with M¼ 4 sensors and d¼ 28.6 cm uniform

spacing at (a) f¼ 1 kHz, (b) f¼ 5 kHz and (c) f¼ 7 kHz.

FIG. 5. (Color online) DOA maps for a source (male talker) at 0	 and a

source (female talker) at 30	 with additive noise at SNR¼ 15 dB for (a) the

original signal, (d) CBF, (g) MVDR, and (j) SBL reconstruction.

Spectrograms of the (b) clean signal, (e) CBF, (h) MVDR, and (k) SBL esti-

mates at h¼ 0	. Spectrograms of the (c) clean signal, (f) CBF, (i) MVDR,

and (l) SBL estimates at h¼ 30	. The blue box indicates an example of a

time-frequency region where there is significant energy from the source at

0	 and almost no energy from the source at 30	 and vice versa within the red

box.

FIG. 6. The respective DOA maps and spectrograms as in Fig. 5 replacing

the signal at 30	 with a replica of the signal at 0	.
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environments, and the MVDR estimate degenerates, merg-

ing the two sources into one and localizing it in between

the true source directions [Figs. 6(g)–6(i)]. The SBL beam-

former, localizes the two coherent sources accurately

[Figs. 6(j)–6(l)].

A. Performance metrics

The results in Figs. 3 and 5 and 6 indicate qualitatively

the performance of CBF, MVDR, and SBL DOA estimation

in the presence of both uncorrelated and correlated sources

under high-SNR listening conditions. To evaluate the perfor-

mance of CBF, MVDR, and SBL beamforming quantita-

tively as a function of SNR, the following performance

metrics are introduced:

(1) The relative root-mean-square error at the focusing

direction,

rrmsehf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

X
t2T

jx hf ; t
� �

� bx hf ; t
� �

j2

1

Nt

X
t2T

jx hf ; t
� �

j2

vuuuuuut ; (32)

which indicates the relative noise level of the recon-

structed signal bxðhf ; tÞ at the focusing direction hf with

respect to the clean signal x(hf, t), such that dSNRhf

¼ �20 log10ðrrmsehf
Þ dB. The rrmse for the unprocessed

data, e.g., the recorded signal at the mth microphome

ym(t), indicates the relative noise level in the measure-

ments, yielding the SNR. Hence, the SNR improvement

due to the beamforming estimate is ðdSNRhf
� SNRÞ dB.

(2) The beamformer’s directivity

D ¼

1

Nt

X
t2T

jbx hf ; t
� �

j2

1

Nt

X
t2T

1

N

X
h2H
jbx h; tð Þj2

; (33)

or equivalently the directivity index DI ¼ 10 log10D dB,

which indicates the ratio of the power of the recon-

structed signal bxðhf ; tÞ at the focusing direction hf to the

mean power of the reconstructed signal bxðh; tÞ over all N

directions on the angular grid. Thus, for an omnidirec-

tional signal xomniðhf ; tÞ ¼ xomniðh; tÞ; 8 h 2 H, i.e., the

mean power over all directions on the grid is equal to the

power at the focusing direction and D¼ 1 or DI¼ 0 dB.

The more a beamformer suppresses the signal from

directions other the focusing one, the larger is its

directivity and the more accurate the DOA estimate.

For a superdirective beamformer, such that bxðh; tÞ ¼ 0;
fh : h 2 Hjh 6¼ hfg, the directivity is maximized, D¼N.

(3) The short-time objective intelligibility (STOI) mea-

sure43 which is used to predict the speech intelligibility

of the beamformed signal, hence evaluate perceptual

consequences of the beamforming algorithm. STOI

receives as inputs a clean reference signal and a

degraded version of it due to noise and/or distortion

and outputs the correlation coefficient (0 for unintelli-

gible speech, 1 for fully intelligible speech) between

the temporal envelopes of the input signals in short-

time (384 ms) segments. STOI correlates well with

subjective evaluation of speech intelligibility, i.e., from

listening experiments.

The performance of CBF, MVDR, and SBL beamform-

ing in reconstructing a target source at 0	 in the presence of

additive noise at a range of [�5:5:15] dB SNR is evaluated.

Two noise types are examined, broadband white noise and

babble noise constructed by overlapping speech from six

talkers in the EUROM1 English corpus.40 For each noise

type and at each SNR, beamforming estimates are obtained

for 100 random realizations of speech and noise. The mean

statistics of the performance metrics, namely, the rrmse at

the focusing direction (32), the directivity (33), and the

STOI score, are shown in Fig. 7.

All beamforming methods improve the SNR when

focused at the direction of the target source compared to

the SNR of the omnidirectional data for both noise types,

Fig. 7(a). Consequently, the speech signal at 0	 is enhanced

over noise as indicated by the STOI scores in Fig. 7(c).

However, the conventional CBF and MVDR beamformers

have low directivity, Fig. 7(b), resulting in low resolution

DOA maps with energy across the whole angular spectrum;

e.g., see Figs. 3(c) and 3(f). Only the superdirective SBL

beamformer, Fig. 7(b), offers unambiguous DOA estimation.

V. EXPERIMENTAL RESULTS

The high-resolution DOA estimation and speech sepa-

ration capabilities of SBL are validated with experimental

data in multi-talker, noisy, reverberant listening conditions.

The measurement prototype comprises a workshop safety

helmet circularly perforated above the cap and 8 micro-

phones, which are adjusted on the front part of the helmet

on a semicircular configuration with a uniform angular

spacing 22.5	. The sensing matrix A for this array configu-

ration is determined experimentally through the HRTFs.

To obtain the HRTFs, the helmet is fitted on a Knowles

electronics mannequin for acoustics research (KEMAR)

and placed on a turning-base in the anechoic chamber at

GN Hearing A/S, Ballerup, Denmark. Impulse responses

are recorded for all microphones at a sampling frequency

fs¼ 24 414 Hz, sequentially while rotating KEMAR by 2	

FIG. 7. (Color online) Mean values of (a) the dSNRhf
at hf¼ 0	, (b) the direc-

tivity index DI, and (c) the STOI score for CBF, MVDR, and SBL beamform-

ing reconstruction of a target source at 0	 in the presence of white (solid

lines) or babble noise (dashed lines) as a function of SNR from 100 random

realizations. For comparison, the corresponding values for the data, i.e., the

unprocessed signal from the first microphone on the array, are depicted.
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until completing a full-circle rotation (h¼ 0	: 2	: 360	,
N¼ 181).

The measurement setup involves two speakers, the first

exactly in front of KEMAR, at 0	, playing 2 s of male speech

and the other towards the left ear, at �90	, playing 2 s of

female speech. Both speakers were elevated to the plane of

the array and placed at a radial distance of 1 m from

KEMAR; see Fig. 8. The arrangement is set in an anechoic

chamber and measurements are taken considering the full

array as shown in Fig. 8(a) as a reference scenario, as well as

in a populated canteen considering only the four micro-

phones that are lying above the ears as shown in Fig. 8(b), as

a challenging listening environment. All locations are at the

facilities of GN Hearing A/S, Ballerup, Denmark. The sig-

nals are processed in single-snapshot, 20 ms frames with

50% overlap. A Hanning window followed by a STFT is

applied to each frame and the resulting narrowband signals

are beamformed with CBF and SBL. MVDR beamforming

is omitted here due to the single-snapshot processing. The

resulting steered responses are resynthesized with the over-

lap-and-add procedure.42

Figure 9 shows the DOA maps of the clean and the

recorded signal in anechoic conditions and the CBF and

SBL DOA estimates along with the corresponding spectro-

grams (calculated over frames of 40 ms duration, Hanning

weighting and 50% overlap) at the speaker locations, i.e., at

0	 and �90	, respectively. The two speech signals, Figs.

9(b) and 9(c), are mixed in the unprocessed single-

microphone recording, Figs. 9(e) and 9(f), which does not

offer directional information, Fig. 9(d). CBF attributes direc-

tivity to the microphone array by attenuating wavefield con-

tributions from directions other than the focusing one, Figs.

9(h) and 9(i), but has low resolution, Fig. 9(g). The high-

resolution SBL beamformer not only localizes accurately the

two speakers, Fig. 9(j), but also separates the corresponding

speech signals, Figs. 9(k) and 9(l), validating the simulation

results, e.g., compare with Fig. 5. Similarly, Fig. 10, demon-

strates the corresponding results for measurements in a popu-

lated canteen with reverberation time T60¼ 0.9 s, at

SNR¼�6 dB. In this case, the recorded signal is very noisy

due to babble, clinking cutlery, reverberation, etc., thus, both

CBF and SBL DOA estimates deteriorate accordingly.

Nevertheless, the SBL beamformer suppresses noise more

effectively.

FIG. 8. (Color online) Measurement setup and microphone positions for the

considered array configurations.

FIG. 9. (Color online) DOA maps obtained with the array configuration in

Fig. 8(a) for a source (male talker) at 0	 and a source (female talker) at

�90	 in anechoic conditions for (a) the original signals, (d) the recorded sig-

nal from the front left microphone, (g) CBF, and (j) SBL reconstruction.

Spectrograms of the (b) clean signal, (e) recorded signal, (h) CBF, and (k)

SBL estimates at h¼ 0	. Spectrograms of the (c) clean signal, (f) recorded

signal, (i) CBF, and (l) SBL estimates at h¼�90	. The blue box indicates

an example of a time-frequency region where there is significant energy

from the source at 0	 and almost no energy from the source at �90	 and

vice versa within the red box.

FIG. 10. (Color online) The respective DOA maps and spectrograms as in

Fig. 9 for signals recorded with the array configuration in Fig. 8(b) in a

canteen.
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VI. CONCLUSION

We use a probabilistic sparse signal reconstruction

approach to solve simultaneously the sound source localiza-

tion and speech enhancement problem within the SBL frame-

work. The SBL formulation offers sparse robust DOA

estimates by auto-regularizing a hierarchical Bayesian model

with adaptive selection of the hyperparameters from the data.

Contrary to established spatial filtering methods, SBL

beamforming provides high-resolution acoustic imaging

even with correlated arrivals and single-snapshot measure-

ments. Both simulation results with a ULA and experimental

measurements with a semi-circular prototype array show

that SBL beamforming offers simultaneous sound source

localization and separation offering speech enhancement

over noise, reverberation and competing talkers.
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