Aalborg Universitet AALBORG

UNIVERSITY

Statistical and exact schedulability analysis of hierarchical scheduling systems

Boudjadar, Abdeldjalil; David, Alexandre; Kim, Jin Hyun; Larsen, Kim G.; MikucCionis, Marius;
Nyman, Ulrik; Skou, Arne

Published in:
Science of Computer Programming

DOl (link to publication from Publisher):
10.1016/j.scic0.2016.05.008

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Boudjadar, A., David, A., Kim, J. H., Larsen, K. G., MikucCionis, M., Nyman, U., & Skou, A. (2016). Statistical and
exact schedulability analysis of hierarchical scheduling systems. Science of Computer Programming, 127, 103-
130. https://doi.org/10.1016/j.scic0.2016.05.008

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1016/j.scico.2016.05.008
https://vbn.aau.dk/en/publications/fdfd3fcb-8cca-49db-938d-eb93e9339a6f
https://doi.org/10.1016/j.scico.2016.05.008

Statistical and Exact Schedulability Analysis
of Hierarchical Scheduling Systems™

Abdeldjalil Boudjadar
Computer Science, Aalborg University, Denmark
Alexandre David
Computer Science, Aalborg University, Denmark
Jin Hyun Kim
Computer Science, Aalborg University, Denmark
Kim G. Larsen
Computer Science, Aalborg University, Denmark
Marius Mikucionis
Computer Science, Aalborg University, Denmark
Ulrik Nyman
Computer Science, Aalborg University, Denmark

Arne Skou

Computer Science, Aalborg University, Denmark

Abstract

This paper contains two contributions: 1) A development methodology involving
two techniques to enhance the resource utilization and 2) a new generic multi-
core resource model for hierarchical scheduling systems.

As the first contribution, we propose a two-stage development methodology
relying on the adjustment of timing attributes in the detailed models during the
design stage. We use a lightweight method (statistical model checking) for design
exploration, easily assuring high confidence in the correctness of the models.

*The research presented in this paper has been partially supported by EU Artemis Projects
CRAFTERS and MBAT.

Email addresses: jalil@cs.aau.dk (Abdeldjalil Boudjadar), adavid@cs.aau.dk
(Alexandre David), jin@cs.aau.dk (Jin Hyun Kim), kgl@cs.aau.dk (Kim G. Larsen),
marius@cs.aau.dk (Marius Mikucionis), ulrik@cs.aau.dk (Ulrik Nyman), ask@cs.aau.dk
(Arne Skou)

Preprint submitted to Elsevier 20th November 2018

Once a satisfactory design has been found, it can be proved schedulable using
the computation costly method (symbolic model checking). In order to analyze
a hierarchical scheduling system compositionally, we introduce the notion of a
stochastic supplier modeling the supply of resources from each component to
its child components in the hierarchy. We specifically investigate two different
techniques to widen the set of provably schedulable systems: 1) a new supplier
model; 2) restricting the potential task offsets. We also provide a way to estimate
the minimum resource supply (budget) that a component is required to provide.
In contrast to analytical methods, we prove non-schedulable cases via concrete
counterexamples. By having richer and more detailed scheduling models this
framework, has the potential to prove the schedulability of more systems.

As the second contribution, we introduce a generic resource model for multi-
core hierarchical scheduling systems, and show how it can be instantiated for
classical resource models: Periodic Resource Models (PRM) and Explicit Dead-
line Periodic (EDP) resource models. The generic multi-core resource model is
presented in the context of a compositional model-based approach for schedulab-
ility analysis of hierarchical scheduling systems. The multi-core framework
presented in this paper is an extension of the single-core framework used for
the analysis in the rest of the paper.

Keywords: Hierarchical Scheduling Systems, Schedulability Analysis,
Resource utilization, Embedded Systems, Uppaal, Model Checking, Statistical
Model Checking, Hybrid Automata, Stopwatch Automata.

1. Introduction

In a hierarchical scheduling systems a number of individual components are
integrated into a single system running on one execution platform. Embedded
hierarchical scheduling systems have reached a maturity level that enables their
actual application on automotive and space systems [34, [19]. A class of analy-
tical methods have been developed for hierarchical scheduling systems [41] [39].
Due to the rigorous nature of analytical methods, they are easy to apply once
proven correct. On the other hand proving the correctness of an analytical
method is in itself a research endeavor. They also suffer from the abstractness
of the models; they do not deal with any detail of the system behavior and thus
grossly overestimate the amount of needed resources. Model-based methodolo-
gies for schedulability analysis [14, [T}, 9] allow the modeling of detailed and
complicated behavior of individual tasks, relative to analytical methods. Due to
the complexity and size of the systems, it is not feasible to analyze the complete
system in one model. This leads us to adopt a compositional structure for our
models and the applied analysis.

As part of the compositional description of a hierarchical scheduling system
the resource supply from parent to child component in the hierarchy is des-
cribed using separate resource models. Our resource model is specified in the
form of a transition system, where in contrast to classical resource models we

have several supply states. To each supplying state we assign a specific supply
pattern, thus enabling the description of much more complex supply scenarios.
Unlike previous approaches our method enables the description of supply pat-
terns handling multi-core aspects related to typed resources. Typed resources
can be used to describe, among others, the types of CPU cores on homogeneous
and heterogeneous execution platforms. As an example, two different supply
states could specify the supply of respectively 2 and 4 computation cores to the
child component. The resource supply could be preemptive and/or urgent in
order to model the specific behavior of the execution environment. Our generic
resource model can easily be instantiated for classical single-core resource mo-
dels for hierarchical scheduling systems, such as the Periodic Resource Models
(PRM) [42] and Explicit Deadline Periodic (EDP) [24] resource models.

Profiting from the technological advances in model checking, we provide a
model-based methodology for the schedulability analysis of hierarchical schedu-
ling systems. We model tasks, resources, schedulers and suppliers as Stopwatch
Automata (SWA) [15]. The models can be quickly analyzed using statistical
methods (UppAAL SMC), which provide guarantees with a selected statistical
margin. Once a satisfying model design has been found, the model can be
analyzed using symbolic model checking (UpPAAL). Our approach aims at in-
creasing resource utilization by: 1) providing a new supplier model where the
supply of resources is delayed as much as possible according to task requests,
2) adjusting task offsets relative to the component period. Our methodology
also has the advantage that it is possible to update the system models such
that they fit a specific system. With a dedicated modeling tool it could even
be manageable for the system engineers to update the models in order to have
a more realistic analysis of the system. In this way, they can utilize detailed
knowledge of the system that they are working with; something that cannot be
achieved with a classical analytical approach.

An example of a hierarchical scheduling system is depicted in Fig. It
includes two top level components Controls and Display and Nav.Ctrl scheduled
according to the Earliest Deadline First (EDF) policy. Each component is cha-
racterized by timing requirements consisting of period and execution time (e.g.
(10, 6) for Nav. Ctrl). The attributes of tasks are similar to the ones of compon-
ents. Task deadlines are the same as the task periods.

According to the CARTS tool [39], the hierarchical scheduling system of
Fig. [[] is not schedulable. However using the specific approaches shown in this
paper, this system can be shown to be schedulable using different offset para-
meters and/or a new resource supplier model.

Symbolic model checking offers absolute certainty that the verified properties
are correct with regards to the model. However, it suffers from state space
explosion and undecidability of certain properties (for a given specification),
thus some models might not be feasible to check and others will take a long
time to verify. Statistical model checking provides high confidence but not
absolute certainty, and the results are obtained much faster than with symbolic
model checking.

This paper is an extension of the conference paper [12], where we presented

Avionics

System
Nav. Ctrl Controls and Display
(10, 6) (20, 10)
— & @
Navigation Radar Ctrl HUD Display
(20, 6) (20, 2) T4(526)

MPD Tactical Disp.

[)
@ @ % MPD Tl:(ufiggisplay }
[)

Flight Data Radar Tracking
[T,(55.8)] [T4(80,2)] Tg(ﬁz‘s)
L ! MPD Status Disp.
[Steering] Target Sweetening T,,(1000,2)
T,(80,6) T, (40,2)

Figure 1: A hierarchical scheduling systems.

a methodology for compositional schedulability analysis for hierarchical schedu-
ling systems, together with two techniques to enhance the resource utilization.
Like the conference version we keep using the same methodology, as described
in Section [2| to validate the schedulability of hierarchical scheduling systems,
however in this paper we have more rich and expressive models that enable to
capture more features in terms of resource supply patterns. We also introduce
a new generic resource model for describing multi-core systems.

Besides to the introduction of the theoretical basis underlying our model-
based framework, the new contribution of this paper includes:

e Revised UPPAAL models which vastly improve the size of scheduling sys-
tems that can be handled with symbolic model checking.

e New generic resource model for multi-core hierarchical scheduling systems
that can be instantiated for any periodic resource model.

To bridge the gap between these new contributions, the new generic resource
model will be used as a component supplier at different levels of the hierarchy;
though it can be used as a supplier for the system level (root). Accordingly,
since we do not assume dependency between tasks/components, more than one
child entity (for example Navigation and Radar Ctrl) can run in parallel when

the supplier of their parent component (Nav.Ctrl) is supplying resource with a
parallel pattern. We show how the behavior of such a multi-core resource is
captured in UPPAAL, and how to derive an instantiation of this new model
for 2 classical resource models: Periodic Resource Model (PRM) and Explicit
Deadline Periodic (EDP) resource model. Thereafter, we study the impact of
the new resource model, in particular the parallel supply pattern simulating
multi-core platforms, on the system schedulability and scalability.

As described in Section [2 the general methodology, in both [I2] and this
paper, consists of using a low cost statistical method for the design exploration;
and a costly but absolute certain symbolic model checking method for the final
verification. When the design space exploration is performed using statistical
model checking, one can determine optimal system parameters that could be
impossible to find using classical analytical methods. Our framework is realized
using an extension of Timed Automata (TA) called Stopwatch Automata (SWA)
which enables the description and analysis of detailed task behavior and resource
supply patterns, something which cannot be achieved using classical analytical
methods [42] 25], 24 [43] [3, [14].

Using our framework more systems can be proven to be schedulable, since we
are enhancing the resource utilization using the two techniques; 1) synchronous
periodic resource model and 2) offset manipulation.

Similarly to [I1I], we use the notion of a stochastic supplier model in order
to enable compositional analysis, such that the schedulability of each compon-
ent can be analyzed separately. We evaluate our methodology by comparing
our results to the ones obtained using the state of the art tool CARTS [39].
Our verification results are consistent with the results obtained from CARTS.
When checking the schedulability of a system, our tools can prove the non-
schedulability by means of a counterexample.

The rest of this paper is organized as follows: Section [2| highlights the prob-
lem that we are solving and differentiates between the different aspects of our
proposed solution. Section [3] describes related work. Section [4] presents the
formal basis underlying our model-based framework. Section [5] provides high
level conceptual models of our framework. In Section[6] we give a new generic re-
source model for multi-core hierarchical scheduling systems. Section [7] presents
our modeling and analysis of hierarchical scheduling systems with respect to
both classical and new resource models using UPPAAL and UpPPAAL SMC. Sec-
tion [§] describes two techniques to improve resource utilization as well as an
evaluation of the scalability. Section [9] compares our results with a state of the
art tool and discusses the scalability and performance of our analysis methods.
Section [10| concludes the paper.

2. Methodology and Challenges

The purpose of this section is to describe the methodological contribution
that this paper shares with the conference version [12] and the motivation behind
this methodology.

Statistical Model Checking (stochasticity)
? ? ?
S(P1)" —>S(P2)" —> ... —> S(Pn)’ -._

Symbolic Model Checking

Classical analysis
methods

- Statistical M.C: Light weight and very expressive.
- Symbolic M.C: Very expressive and costly.
- Classical analysis: Light weight and weak expressive.

Figure 2: Classes of systems that different methods can prove schedulable.

This paper presents a general methodology, which could be instantiated
using any modeling formalism supporting both a lightweight statistical analysis
and a more costly formal verification. In this paper, the methodology is instan-
tiated as a specific approach using Stopwatch Automata (SWA) together with
the verification suite UPPAAL SMC and UPPAAL. Once the methodology has
been instantiated with a specific model and associated tools we say that we have
specific approach.

The paper also presents two concrete techniques for enhancing the resource
utilization, which are described in Section [§] These concrete techniques will not
be discussed further in this section.

The problem that we intend to solve is the following: a complex hierarchical
system is being developed for a safety critical product. It is essential to produce
both a safe system and a system which uses as few resources as possible.

The general principle of the methodology is the following: 1) design space ex-
ploration is carried out using a lightweight simulation based evaluation method
in order to find good candidates for the task division and configuration of the
system; 2) when a good candidate for a system configuration has been found, the
same models can be reused with a different verification technique to establish
with certainty that the system is schedulable.

Fig. |2| shows a graphical conceptual representation of different sets of sys-
tems that different methods can show to be schedulable. Systems that are easily
proven schedulable using classical analytical approaches can also be proven cor-
rect using symbolic model checking. Systems that can be shown, with a high
degree of certainty, to be correct using statistical model checking (SMC) can-
not always be proven to be correct using symbolic model checking due to state
space explosion. In the same way, some complex systems that are analyzable

using model checking cannot be proved correct using analytical approaches [14].
An obvious example is a system having an internal sequencing of tasks due to a
dependency relation between tasks. Another trivial example is a scheduling sys-
tem with different typed resources where the schedulability analysis considers
the different resources together (simultaneously).

Our methodology consists of exploring system models with different sets of
parameters (S(P;)) searching for a realistic configuration that optimally satisfies
the requirements. Basically, a configuration includes a set of tasks together with
their timing attributes, the scheduling algorithm of each level of the hierarchy
and a potential budget (the maximum resource amount to be provided) of each
component. The experiments we have done are performed using SMC with a
high confidence level. In that way, using SMC one can easily and interactively
obtain either a high degree of confidence that the model is correct or a counter-
example showing an error trace. When a satisfying final configuration has been
found the system can be proven to be schedulable using symbolic model check-
ing. In very rare cases an error could be found at this stage, but this is highly
unlikely due to the confidence levels obtained using SMC.

3. Related Work

In an engineering setting, it is very desirable to easily determine parameters
that will make a given system configuration schedulable and realizable. In this
paper, while we explore the schedulability analysis of hierarchical scheduling
systems by profiting from the technological advances made in the area of mo-
del checking, we propose a compositional analysis approach to determine and
increase the potential configurations making much more hierarchical scheduling
systems schedulable.

The concept of hierarchical scheduling systems was first introduced as 2
levels systems in [23], and then generalized as a real-time multi-level system by
[35]. An example of the increasing use of hierarchical scheduling systems is the
standard ARINC 653 [4] for avionics real-time operating systems. The following
sections overview the ideas that our approach relies on.

3.1. Analytical Approaches to Schedulability Analysis

Several compositional analysis techniques [42} 25, 24] [43], 3] [I4] have been
proposed. Lipari et al [32] provide an analytical framework for the formal spe-
cification and Schedulability analysis of hierarchical scheduling systems. They
also present a methodology of how to compute the timing requirements of the
intermediate levels (servers) making a set of tasks feasible. The framework only
considers static priority scheduling (Fixed Priority Scheduling). We generalize
the analysis and such an estimation of the timing requirements to any scheduling
mechanism.

Davis and Burns improve their previous work [22] to analyze the schedulab-
ility of hierarchical scheduling systems where fixed priority scheduling is used
both at the global and the local levels. The authors find that harmonic tasks

linked to the release of their server improve schedulability. We explore tho-
roughly the formal impact of synchronicity between the release of tasks and the
start of the resource supplier, called offset manipulation, in Section. [§]

An analytical compositional framework was presented in [43] as a basis for
the schedulability analysis of hierarchical scheduling systems. Such a frame-
work relies on the abstraction and composition of system components, which
are given by periodic interfaces. The interfaces state the components timing re-
quirement without any specification of the tasks concrete behavior. The authors
of [41] extend their previous work [43] to a hierarchical scheduling framework
for multiprocessors based on cluster-based scheduling. Shin et al used analytical
methods to perform the analysis. However, in both [43] and [41], the proposed
framework is limited to a set of formulas describing an abstraction of the system
entities. The system entities are given in terms of periodic interfaces, without
any specification of the tasks behavior and interaction. CARTS (Compositional
Analysis of Real-Time Systems) [39] is a tool which implements the theory given
in [43], [41]. Compared to our approach CARTS is a mature tool that is easy to
use. On the other hand, we provide a more detailed modeling and analysis.

8.2. Model-based Approaches to Schedulability Analysis

As common traits, analytical approaches assume computations with determ-
inistic Execution Time usually coincident with the Worst Case Execution Time
(WCET), and they provide pessimistic results [I4]. Recent research within
schedulability analysis gives tremendous attention to model-based approaches,
because of their expressiveness which allows for modeling more complicated be-
havior of systems, and also due to the technological advances made in the area
of model-based simulation and analysis tools. Behnam et al [6] analyze the
schedulability of hierarchical scheduling systems using the TIMES tool [3], [40],
and implement their model-based framework in VxWorks [6]. The authors con-
struct an abstract task model as well as scheduling algorithms focusing on the
component under analysis. However, the authors not only consider the timing
attributes of the component under analysis but also the timing attributes of
the other components that can preempt the execution of the current compon-
ent. Thus, the proposed approach is not fully compositional. The authors of
[14] provide a compositional framework modeled as preemptive Time Petri Nets
for the verification of hierarchical scheduling systems using the ORIS tool [37].
Carnevali et al only analyze systems using two specific scheduling algorithms
severely restricting the class of systems they can handle.

Sun et al introduce a component-based framework [44] for the analysis of
hierarchical scheduling systems encoded using hybrid automata. The authors
prove the correctness of their models and study the decidability of the reachabil-
ity (schedulability) analysis for the case of periodic tasks. Unlike our framework
where we restricted guard and update statements so that they depend only on
discrete variables, Sun et al exploit the whole expressiveness capability of the
UPPAAL language. However, making guards and updates depending on conti-
nuous variables leads the analysis, using model checking, to be undecidable for

timed automata and pessimistically over-approximating in case of stopwatch
automata.

Bggholm et al introduce a model-based approach for the verification of safety
critical hard real-time systems implemented in safety critical Java [9]. This work
focuses on modeling the actual behavior of the execution platform, but does not
use the concept of a hierarchical scheduling system. The concepts from this work
could be combined with the current paper as the lowest level in a compositional
approach.

The authors of [I9] introduced a model-based framework using UPPAAL for
the schedulability analysis of single layered scheduling systems, modeling the
concrete task behavior as a sequence of timed actions. We have been inspired
by the work in [I9] but generalizing and lifting it to a compositional approach
for hierarchical scheduling systems.

3.3. Resource models for Hierarchical Scheduling Systems

Resource efficiency constitutes one of the most important factors in the per-
formance evaluation of hierarchical scheduling systems. Such resources are often
represented by either periodic [42] or explicit deadline periodic [24] resource mo-
dels. The resource models represent an interface between a component and the
rest of the system. In [3I], the authors introduce the Dual Periodic Resource
Model (DPRM) and present an algorithm for computing the optimal resource
interface, reducing the overhead suffered by the classical periodic resource mo-
dels. The authors of [38] introduce a technique for improving the schedulability
of real-time scheduling systems by reducing the resource interferences between
tasks.

In this paper, we propose a model-based framework for the modeling of
hierarchical scheduling systems with a generic resource model, while we use
UprpPAAL and UpPAAL SMC to analyze the schedulability of components in a
compositional manner. We show how such a generic resource model can be
instantiated for any classical periodic resource model. Moreover, we introduce
two novel techniques for improving the resource efficiency, and computing the
minimum resource supply of system components. In our model-based framework
we can also model the detailed behavior of specific tasks, specific arrival patterns
and potential dependencies between tasks.

4. Background

This section presents the formal basis underlying our model-based frame-
work.

4.1. Parameterized Stopwatch Automata

The modeling formalisms used in this paper range from classical timed auto-
mata to hybrid automata with algorithmic support from the various branches
of the tool UPPAAL. The classical version of UPPAAL offers support for efficient
symbolic verification of timed automata [I] and over-approximate verification

of stopwatch automata (SWA) [I5]. The branch UpPAAL CORA extends the
symbolic verification engine of UPPAAL to support cost-optimal reachability for
priced timed automata [7, 2, [30].

Most recently the branch UppaaL SMC [20, 2I] provides highly scalable
verification engine for statistical model checking (SMC) for not only the three
formalisms above but stochastic hybrid automata in general. In essence, statist-
ical model checking is based on stochastic semantics allowing for the probability
of linear time properties to be estimated (or tested) with arbitrary precision and
confidence through simulations.

UppAAL SMC thus supports the analysis of stochastic hybrid automata
(SHA) [I8] that are timed automata whose clock rates can be changed to be
constants or expressions depending on other clocks, effectively defining Ordin-
ary Differential Equations (ODEs). This generalizes the model used in previous
work [20, 2I] where only linear priced automata were handled. The release
UprpraaL SMC 4.1.133 supports fully hybrid automata with ODEs and a few
built-in functions (such as sin, cos, log, exp and sqrt).

4.2. Hybrid Automata

Intuitively, a hybrid automaton H [27] is a finite-state automaton extended
with continuous variables that evolve according to dynamics characterizing each
discrete state (called a location). Let X be a finite set of continuous variables.
A wvariable valuation over X is a mapping v : X — R, where R is the set of reals.
We write RX for the set of valuations over X. Valuations over X evolve over
time according to delay functions F : R>g x RX — RX | where for a delay d and
valuation v, F(d,v) provides the new valuation after a delay of d. As is the case
for delays in timed automata, delay functions are assumed to be time additive
in the sense that F(dy, F(da,v)) = F(dy 4 dz2,v). To allow for communication
between different hybrid automata, we assume a set of actions ¥, which is
partitioned into disjoint sets of input and output actions, i.e. ¥ =3%; ¥ X,.

Definition 1. A Hybrid Automaton (HA) H is a tuple H = (L, 4y, X, %, E, F,
I), where: (i) L is a finite set of locations, (ii) by € L is an initial location,
(i1i) X is a finite set of continuous variables, (iv) ¥ = X, W3, is a finite set
of actions partitioned into inputs (3;) and outputs (X,), (v) E is a finite set of
edges of the form (£,g,a,¢,¢'), where ¢ and ¢’ are locations, g is a predicate on
RX, action label a € ¥ and ¢ is a binary relation on RX, (vi) for each location
¢ e L F(¢) is a delay function, and (vii) I assigns an invariant predicate I(¢)
to any location £.

The semantics of a HA H is a timed labeled transition system, whose states
are pairs (f,v) € L x RX with v = I(f), and whose transitions are either
delay transitions (¢,v) N (¢,v') with d € R>¢ and v/ = F(d,v), or discrete
transitions (£,v) —%+ (¢',v') if there is an edge (¢, g,a,,¢') such that v |= g

Lyww . uppaal.org.

10

and ¢(v,v'). We write (£,v) ~ (¢/,V') if there is a finite sequence of delay and
discrete transitions from (¢,v) to (¢/,v').

In the above definition, we have deliberately left open the concrete syntax for
the delay function F' as well as guards g, update predicate ¢ and invariant I. For
timed automata (TA) [I], the continuous variables are simple clocks « where the
delay update F'({) is given by an implicit rate 2’ = 1. For stopwatch automata
(SWA), the rate in a location ¢ may be either 2’ = 1 or 2’ = 0 (the latter
to be annotated explicitly). For both TA and SWA, guards g and invariants
I are restricted to conjunctions of simple integer bounds on individual clocks,
and the update predicate are simple assignments of the form x = e, where e
is an expression only depending on the discrete part of the current state. This
restriction ensures decidability and efficiency of model checking in the case of
TA and permits efficient over-approximate analysis of SWA.

For priced timed automata (PTA) [7, 2, B0], the continuous variables are
either simple clocks as in TA or cost-variables for which the delay update is
given by an explicit rate 2’ = e appearing in the invariant of ¢, where e again
is an expression only depending on the discrete part of the current state. PTA
guards, updates and invariants may only refer to discrete part or simple clocks
— thus the cost-variables cannot affect the behavior of the models but are simple
observers. Under these restrictions, cost-optimal (minimal or maximal) reach-
ability is decidable and may be computed exactly and efficiently using symbolic
techniques [30].

In the most general case of a hybrid automaton (HA), the delay function F'
may need to solve a set of ODEs. It is important to note that in specifying the
delay function F' and the invariant I, the full syntax of UPPAAL expressions —
including user-defined functions — is at the disposal. For this class of models
only simulation-based techniques are supported.

The colors used in different figures throughout this paper are the UPPAAL
patterns as follows: blue statements are clocks reset and variables update; green
statements are transition guards; pink statements are location invariants; and
brown statements are location names.

Example 4.1. The various extended automata of Figl3 model various quant-
itative aspects of a simple Switch with two modes On and Off. Fig. s a
timed automaton model of the Switch using a clock x to enforce that the time-
separation between mode-switches is between 2 and 4 time-units. In addition an
integer variable ¢ counts the number of times the Switch has been in location On.
Using the model checker of UPPAAL it can be verified that the total time until
¢ becomes 3 is between 10 and 20 time-units as confirmed by the simulation in

Fig.

Fig.|3(c) introduces a stopwatch y which is running only in location On, thus
effectively measuring the accumulated residence-time in On. Using the over-
approzimate verification offered by UPPAAL for stopwatch automata, it can be
concluded that within 11 time-units the Switch cannot have been in On for more
than an accumulated time of 10 time-units. This is confirmed by the simulation

m Fig. .

11

x>=2 x=0, c++ 5.2|

339 [switchx
2,4 (=3

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
time

(b) Simulation

Simulations (1)

- [switch2.x
e = switch2.y

37 7.4 1.1 14.8 18.5 222 259 29.6
time

(d) Simulation

] switch3.x
=13
He
22 4.4 6.6 8.8 1.0 132 154 176
time
(f) Simulation
11
10
9
2 0]
X>= x=0, c++ 7|
f o N]
5 ~_/ - switcha.x
3 / - E switcha.T
3 /
5 /
O O :

0 2.2 4.4 6.6 8.8 11.0 13.2 15.4 17.6
time

(g) Hybrid Automaton (h) Simulation

Figure 3: Timed, Stopwatch, Priced and Hybrid Automata for Switch

Fig. is a priced timed automaton model of the Switch with a (single)
cost-variable E measuring the total accumulated energy consumption during the
behavior. Here the rate of E is 0.5 in the OFf location and 1.1 in the On location.
The most energy-efficient way of having the counter variable ¢ reaching 3 is 7.4.
This could also have been calculated using the cost-optimal scheduling algorithm
of UpPAAL CORA, but UrPAAL CORA can only handle integer values on the
cost rates so the values would have to be scaled up before the verification. Again
this finding is confirmed by the random simulation of Fig. .

Finally, Fig. is a hybrid automaton model of the Switch with the conti-
nuous variable T modeling the temperature. Here the invariants in the locations
0on and OFf are simple linear differential equations describing the evolution of T.
Fig. provides a random simulation of the model. For this type of model no

12

exact model checking is offered.

4.3. Stochastic Hybrid Automata

The stochastic semantics of HAs refines the non-deterministic choices that
may exist with respect to delay, output and next state. For each state s = (¢,v)
of a HA A, we shall assume that there exist probability distributions for delays,
output as well as next-state:

o the delay density function, js over delays in R>q, provides stochastic in-
formation for when the component will perform an output, thus [p5(¢)dt =
L

e the output probability function ~ys assigns probabilities for resolving what
output o € ¥, to generate, i.e. > ~vs(0) =1;

o the next-state density function n¢ provides stochastic information on the
next state s’ = (¢/,1') € RX given an action a, i.e. [, ni(s') = 1.

For outputs happening deterministically at an exact time point d (or determin-
istic next states s'), us (n?) becomes a Dirac delta function dq4 (58/)|ﬂ

In UpPAaAL SMC, uniform distributions are applied for states where delay is
bounded, and exponential distributions (with location-specified rates) are ap-
plied for the cases, where a component can remain indefinitely in a location.
Also, UppAAL SMC provides syntax for assigning discrete probabilities to dif-
ferent outputs as well as specifying stochastic distributions on next-states (using
the function random(b) denoting a uniform distribution on [0, b]).

Example 4.2. Under the above stochastic interpretation of timed automata, all
of the extended timed automata models of the Switch will have the delays in Off
and 0On being determined by a uniform distribution on the interval [2,4]. The
various simulations illustrated are obtained using this stochastic semantics. Now
using the statistical model checking engine of UPPAAL SMC, we may establish a
number of interesting performance properties. Using the timed automata model
Fig. we find that the probability that ¢ becomes 3 before 15 time units
is estimated to be in the confidence interval [0.419126,0.518993] with confidence
0.95 in Fig.[3 after some 402 simulation runs. Using the priced timed automaton
model of the Switch, we may estimate the expected energy consumption before
¢ becomes 8 to be in the interval [11.0389 — 0.34824,11.0389 + 0.34824] with
confidence 0.95 within 36 runs. Finally, using the hybrid automaton model, it
may be established that the probability that the temperature drops below 5 degrees
after 10 time-units is in the interval [0.104583,0.204489].

In general a model comes as a network of HAs. For networks, the stochastic
semantics is based on the principle of independence between components under

2which should formally be treated as the limit of a sequence of delay density functions with
decreasing, non-zero support around d.

13

the assumption of input-enabledness. Repeatedly, each component decides on
its own — based on a given delay density function and output probability function
— how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be
determined by the component that has chosen to output after the shortest delay:
the output is broadcast and all other components may consequently change
state.

For more in-depth description of the semantic foundation of UpPAAL SMC
we refer the reader to [I8]. For concrete syntax of models and queries we refer
to the home-page of UPPAAL.

4.4. Statistical Model Checking

Statistical Model Checking (SMC) is a simulation-based analysis approach
used to give a probabilistic estimate of a certain property being satisfied by a
given model. SMC [13] is a widely accepted analysis technique in many research
areas such as industrial applications in software engineering [5l [33] and systems
biology [16].

UpprAAL SMC analyses a network of timed automata and a probabilistic
property specification, similar with CTL but including a probability quanti-
fier. Differently from Model Checking, SMC returns a probability regarding a
property with a specific certainty. UPPAAL SMC supports five different analysis
methods: Hypothesis testing, Probability evaluation, Probability comparison, Fx-
pected value, and Sitmulations. Below we use N to denote a natural number, P
to denote a probability, and expr to denote an expression.

e Statistical evaluation: SMC estimates the probability of the state prop-
erty being satisfied. For instance, the following query computes a prob-
ability confidence interval where simulation time is limited up to N time
units:

Prl<=N] (<> expr) (1)

e Hypothesis testing: SMC checks if the property is satisfied within a
certain probability. For instance, the query

Pr[<=N] (<> expr) >= P (2)

asks whether the probability of meeting the state property “expr” is
greater than or equal to given probability value P while checking (sim-
ulating) the system under analysis up to N time units. This type of query
yields less information than an estimated confidence interval above, but
it is more efficient as it requires fewer simulation runs.

e Statistical comparison: SMC compares the satisfaction possibilities
over two properties. For instance, the query can be in the form of

Pri<=N_1] (<> exprl) >= Pr[<=N_2](<> expr2) (3)

14

e Expected value: SMC computes the maximal or minimal value of a
certain variable while checking the system. For instance, the query

E[<=N; M](min: expr) (4)

asks what the average of the minimal values of the variable in “expr” is
when simulating the system up to N time units by M rounds.

e Simulations: SMC simulates a system multiple times and computes tra-
jectories of specified expressions over time. Query

simulate M [<=N] {expr_1, expr_2} (5)

requires UPPAAL SMC to show the values of “expr_1,” and “expr_2” ex-
pressions over time when running M simulations up to N time units.

In order to estimate the probability of a property, SMC generates a number
of stochastic runs and checks the property on each of the runs. The property
is checked up to a certain confidence level (using confidence coefficient ¢) and
with a certain maximum error limit (e distance from the center). Since many
natural properties are monotone, the truth at length & of a run implies truth
on the entire run [29], therefore we only check runs up to a certain bound of a
run. In UpPPAAL SMC the length of runs can be specified either as a number of
discrete transitions or as a simulation time or cost bound. In our work we use
a constant time bound timeBound. The confidence level, error limit and run
length are all user parameters in our framework.

In theory, the maximum number of runs n required to achieve the needed
confidence level § and precision € can be derived from Hoeffding’s inequality
Pr(|p — p| > €) < 2e~2"<'[28], which says that the probability of the wrong
result (when the estimated p probability differs from the real probability p by
more than €) is no greater than 2¢27¢’ | The probability of the wrong result
is called the level of significance o = 1 — §, and hence n > —In(e/2)/(2€?)
runs is enough. Hoeffding’s inequality implies that the number of runs is sub-
linear in terms of confidence and quadratic in terms of precision. Moreover, the
complexity does not depend on the structure of the model, but merely on the
simulation performance. Therefore, it is not prohibitively expensive to get a very
high degree of confidence even on the models which are prohibitively difficult to
solve analytically. In practice, we can exploit the fact that our samples follow
binomial distribution and hence the probability estimation is even more efficient
by using sequential methods [26], which adapt to the actual probability value
and the confidence interval is computed by more precise methods [17].

Besides the statistical check of property satisfaction, UPPAAL SMC can eval-
uate the modeled process performance by estimating the mean value of an ex-
pression over the model variables. In this case we cannot assume any distribu-
tion, hence the value estimation is based on the Central Limit Theorem which
says that the distribution of means of sufficiently large samples follows Normal
distribution, while the small sample means follow Student’s ¢-distribution [36].

15

Therefore the confidence interval with level § and significance a« = 1 — ¢ is
estimated using mean and t-distribution with standard error:

PR Yrz? — (802;)2/n
+ tf’f/z,n—l
n n(n—1)

where z; are the measured samples and ta/, ,,_; is the @/2-quantile of ¢-distribution
with (n — 1) degrees of freedom.

In order to estimate the mean of maximum (minimum) value over the run
of an expression V', the following syntax is used: E[time<=TimeBound; RunCount
] (max: V).

The size of the estimated interval depends on the variance of the measured
samples, therefore there is no generic way to limit the error and hence the user
has to specify the number of runs in the query (RunCount) while « is still the
level of significance and confidence level is § = 1 — a. The confidence interval
can be made arbitrary tight by increasing the number of runs.

In this paper, we use both SMC and classical symbolic model checking tech-
niques to analyze the schedulability of hierarchical scheduling systems. The
UPPAAL verification suite provides both symbolic and Statistical model check-
ing. The models which in practice can be analyzed statistically, using the Up-
PAAL SMC verification engine, are larger and can contain more features.

Meanwhile, SMC provides much faster responses. The speed of such res-
ponses depends entirely on the degree of certainty that one wants to obtain.
The reason is that SMC consists of running a sufficiently high number of simu-
lations of the system under analysis. The advantage of SMC resides in: 1) SMC
provides a quick response in terms of less than a minute. This is also true in
the case of non-schedulability were SMC produces counter-example witnesses;
2) SMC enables quantitative performance measurements instead of the Boolean
(true, false) evaluation that symbolic model checking techniques provide.

5. Design of Hierarchical Scheduling Systems

In this section, after introducing the formal basis of our model-based frame-
work we provide a conceptual description of our models and show the conform-
ance of our framework with the classical analytical theory for analyzing the
schedulability of hierarchical scheduling systems.

5.1. Classical compositional framework

This section provides the formal basis of our model-based compositional
analysis approach and show that our theory conforms with the formal basis
given in the compositional framework [42] for hierarchical scheduling systems.

A scheduling unit C' is defined as a tuple (W, A) where W is a workload,
consisting of a set of tasks T; = (p;, e;), and a scheduling policy A. Each task
T; = (pi, e;) has timing attributes in the form of a period p; and an execution

16

I(1,0)

C

T,(,.c)

w={

Tipe,)

T,(p,.e,)

}

Figure 4: Component and tasks in a compositional framework

time e;. Task deadlines are the same as periodﬂ The scheduling unit C (Fig.
is given a collective timing requirement I(II, ©) called interface, where II is a
period and © is a budget for the component. The collective timing require-
ment I is a representative of all timing requirements of tasks constituting the
workload . A task that is responsible for resource supplying of resources is
called a resource model (T'), which is request to satisfy an interface of its child
component.

A hierarchical scheduling system is organized in a parent-child relationship
in a hierarchical manner. A parent (scheduling) component has one or more
tasks, each of which is connected to a child component. A child component in
turn is also a scheduling unit and additionally given an interface I, which states
the collective timing requirement that is requested by its workload. An interface
can be viewed as a contract between a parent component and its child compon-
ent in that the amount of resource described in the interface is guaranteed by
the parent component. Tasks in a child component (resource-demanding) rely
on the execution of a task (resource-supplying) at the corresponding parent level
component in that they can execute only when that task runs. The execution
of a resource-supplying task does not necessarily synchronize with the potential
execution of tasks of the resource-demanding component. Hence, the total exe-
cution time of the parent task might not always be available to the tasks of the
corresponding resource-demanding components.

The schedulability test for an HSS may be performed in a compositional way.
Basically, a parent component is checked to see whether its tasks always provide
the required amount of resources of the interface (T') to the child components,
and each of the associated child components is checked to see whether each of its
tasks always meets the deadline. In the classic compositional framework[42] [41],
the schedulability is checked using both the demand bound function (dbf) and

3In this paper, we use the implicit deadline that is the same as the period for a given task
unless a specific deadline d; is specified for T;.

17

the supply bound function (sbf) as follows:
V0 < t < 2% LCMy, dbf4(W,t) < sbfr(t) (6)

where ¢ is a time interval and LCMyy is the least common multiplier of the
periods of all the tasks.

An interface I of a resource-demanding component is characterized by the
demand bound function dbf4(W,t). A resource model I', an instance of the
interface instantiated by a resource-supplying task, is characterized by the sup-
ply bound function sbfr(t). For the scheduling policies EDF (Earliest Deadline
First) and RM (Rate Monotonic), the demand bound functions are respectively
defined by:

abfppr(W,t) = Y VJ “e; (7)

T, eW Pi

afpy (Witi) =e;+ Y jﬂ-ek (8)

TkEpr(i Pk

where HP(i) is a set of tasks whose priorities are higher than T;.

As a resource model, we use Periodic Resource Model (PRM) proposed by
Shin et al. [42, 41]. The PRM assigns a required amount of resources every
specific period. It consists of two components, IT and ©, which are a period and
a budget, respectively. It provides child tasks with the amount © of resources
every II time-unit. The beginning time of its supplying resource is not prior
determined, thus does not synchronize with child tasks.

For a given time interval ¢, the supply bound function sbfpgps(t) of PRM
is formulated as:

sbf pri(t) = V_(HH_@)J -0+ € (9)
. zmax(t—2(H—@) —HV_(HH_@)J@ (10)

where €, is the amount of resources that can gained by the last resource supply
overlapped with the window of a given time interval ¢.

5.2. Conceptual Models of our Approach

In our model-based approach, we realize the compositional framework in
the form of SWA models. We implemented the dbf as a set of tasks together
with a scheduling algorithm, while the sbf is implemented by a supplier model
(resource model). Our supplier model (Rswa4) is an implementation of the
conceptual resource model I'. The schedule when workload can use resources
follows a scheduling algorithm, and a task is scheduled to use a resource and is
constrained by the supplier model.

18

supply = true
and isSched()

supply = false
or lisSched()

y>d

Figure 5: Task model in SWA

Figure 6: Resource allocations of Periodic Resource Model

SWA supports stopwatches, which are clocks that can be stopped and re-
sumed without a reset. The modeling formalism allows for having different rates
of progression for stopwatches, but we only utilize the values 1 (running) and 0
(stopped). In our SWA models, the stopwatch is used to express the preemption
of a task’s execution. The execution of a task is preempted, i.e. the associated
clock stops, in two cases: when it is preempted by a higher priority task or when
any of the needed resources is not provided by the supplier.

Fig. [f] is a conceptual model of a task, which we will realize using SWA in
Section [7] The clock z stops progressing in the locations where its derivative x’
is set to 0. The clock = keeps progressing at other locations. The task starts at
the initial location Rdy and moves to Run when the two following conditions
hold: the task is scheduled to use a resource pid, (isSched(pid)) and there is
a supply of necessary resources (supply = true). The clock x measures the
execution time of the task while it is in the location Run. If either of the two
conditions is false at the location Run, the task moves back to the location Rdy.
The task stays at location Run until the stopwatch x reaches the execution time
e, and then jumps to location Done delaying until the next period. A task joins
the error location Err when its deadline d is missed (y > d). Throughout this
paper we keep the assumption that e < d < p.

In the following, we relate the analytical view of the supply bound function
bound to the PRM, a resource model, with the way they are implemented as a
supplier model in our approach. Fig. [6] shows the of the resource allocations of

19

y=0

supply = false
y'::O y1=0 yS@ y’::();
x<I1-0 x <1II

Figure 7: Conceptual PRM model in SWA notation

the PRM which guarantees the resource requirement I(II, ©) where II is 5 and
O is 2.

One can remark that our resource model supplies the whole budget non-
preemptively in one chunk, however according to [42] if one considers only worst
cases, both preemptive and non-preemptive resource models provide the same
analysis results. Thus we will use a non-preemptive supplier model (Fig. [7)
both in this conceptual description as well as in the computation models. Fig.[7]
shows the conceptual model of SWA resource model. In this model, the variable
supply represents the resource allocation, which is a shared variable with the
task model. Thus the supply is only enabled for © time units within the period
II. The location Rdy of Rgw a corresponds to the delay A in PRM of Fig.[6] the
delay A is a delay where a new period has started but the resource allocation has
not. The location Sup corresponds to © where the resource is being allocated,
and Done corresponds to X where the resource model waits for the next period.

In order to realize a compositional approach, our resource model Rgy 4 of
PRM does not synchronize with the execution of tasks similarly to the resource
allocation of PRM either. Thus the resource model can stay at the location Rdy
up to II — © or immediately move to the location Sup. This resource model
is designed to generate all possible resource allocations including the maximum
duration of no resource allocation W.

6. Generic Resource Model for Multi-core Hierarchical systems

In this section, we first characterize what traits a general resource model
concept would need in order to be able to specify any particular resource model,
namely: urgency, preemptiveness and single/multi-core supply patterns. After
introducing the different characteristics that a resource model can be specified
with, we formally define the class of potential resource models that we believe
can be instantiated for any relevant resource model.

In any hierarchical scheduling context, the behavior of the resource model
does not depend at all on the resource demanding component, i.e. child compon-
ent served by the resource model. Any resource model behaves in the way that
it supplies resource for an amount of time then stops supplying for a given time
interval. In that way, we define the behavior of any resource model by a trans-
ition system consisting of a sequence of transitions over a set of states, that may
have different supply patterns, and at least one of the states is non-supplying.

20

We use resource models to describe the interface between different levels
of the hierarchy, in such a way that the system can be analyzed composition-
ally. Accordingly, a resource model abstracts the scheduling behavior of the
parent task. It describes all potential ways in which resources can be supplied
to the level below it. For exactly this reason non-determinism is needed to
model a concrete resource model. Classical examples of a resource model that
can be instantiated from our resource model concept are Periodic Resource Mo-
del (PRM) [42] and Explicit Deadline Periodic (EDP) [24], which guarantee a
certain amount of the computation time per period.

Generally, a resource of a scheduling system is characterized by the following
properties:

e Regularity: a resource allocation may be given according to a strict
period or a loosen (quasi) period.

e Time-wise: a resource allocation may be given according to a time sched-
ule.

e Event-triggered: a resource allocation can be initiated by an event.

e Availability: the availability of resource at the moment may be interes-
ting.

e Amount: the amount of resource to be assigned within a time bound
may be interesting.

In order to make our schedulability analysis technique compositional, we add
non-determinism on the assignment of resources as follows:

e Non-deterministic preemption: The resource assignment can be pree-
mpted at any time as long as it is not accomplished according to a resource
assignment contract.

Roughly speaking, our resource model can be seen as a specialization of
timed automata. We identify four different types of locations that can be part
of a resource model. Each of these types has distinctively different semantic
interpretation.

e Non-urgent (non-deterministic) and preemptible resource sup-
ply (NP). The resource allocation can be delayed and preempted.

e Urgent (deterministic) and non-preemptible resource supply (UN).
The resource allocation must start immediately as soon as the correspon-
ding state is reached. Since urgent supply cannot delay, we assume that
it cannot be preempted.

e Non-urgent and non-preemptible supply (NN). The start of re-
source allocation can be delayed, but cannot be preempted once it begins.

e Non-supply (V). No resource is allocated.

21

In Table [1}, we summarize the three supplying location types. Notice that an
urgent supply location cannot be preemptible because the whole supply must
be done without delay.

Table 1: Supplying location types in resource models.

Preemptible | Non-preemptible
Urgent - UN

Non-urgent NP NN

As the resource model is quite independent from the resource demanding
(child) component, one can explore the state space and show the different be-
haviors of the resource model regardless of the scheduling system.

Given a set of resources R, a buffer B : R — N is a function that specifies the
amount of resource that a given resource model guarantees to provide at each
supply, i.e. from each supplying state. The guaranteed resource amount will be
supplied according to a supply pattern sPattern. In fact, the supply pattern
states how the different resource units, of the resource model, collaborate to
provide the whole amount of the resource guaranteed for each individual supply.
For example, if only one resource unit is used then the supply time of that unit
must be equal to the resource amount guaranteed in B. Whereas if two resource
units supply the resource in parallel, the supply time of the resource model could
be half of the resource usage time specified in B because each unit provides half
of that amount. Formally, we specify the supply patterns of each resource model
by the following grammar:

an=oala|atalr

whereas r € R is a resource unit, that could be for example a core of a multi-core
execution platform. Resource uni