UWB MM-Wave Antenna Array with Quasi Omnidirectional Beams for 5G Handheld Devices

Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

Published in:
(ICIUWB), 2016 IEEE International Conference on Ubiquitous Wireless Broadband

DOI (link to publication from Publisher):
10.1109/ICUWB.2016.7790483

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—An ultra-wideband (UWB) millimeter-wave (mm-Wave) dipole antenna array for fifth generation (5G) communications is presented in this paper. The proposed antenna is working in the frequency range of 23-33 GHz (10 GHz bandwidth with more than 35% FBW). Ten compact UWB dipole antenna elements designed on a Rogers RT5880 substrate have been deployed along the edge region of the cell phone PCB. The feature of compact design with UWB characteristic makes them well-suited for 5G cellular devices such as laptops, tablets, mobile phones etc. Input impedance and radiation properties of the proposed antenna array have been discussed. The antenna features quasi-omnidirectional radiation beams at different scanning angles.

II. SINGLE ELEMENT UWB DIPOLE ANTENNA

The configuration of the single element UWB dipole antenna is illustrated in Fig. 1. The antenna is designed on a Rogers RT5880 substrate with dielectric constant (ε_r) and loss tangent (\(\delta\)) of 2.2, and 0.0009 respectively. The dimension of the antenna and array parameters are listed in Table I.

![Configuration of the UWB dipole antenna](image)

Figure 1. Configuration of the UWB dipole antenna, (a) 3D view, (b) top layer, and (c) bottom layer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>W_{sub}</th>
<th>L_{sub}</th>
<th>h_{sub}</th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (mm)</td>
<td>6</td>
<td>5</td>
<td>0.787</td>
<td>2.77</td>
<td>4.1</td>
</tr>
<tr>
<td>Parameter</td>
<td>W_1</td>
<td>L_1</td>
<td>L_2</td>
<td>W_2</td>
<td>L_2</td>
</tr>
<tr>
<td>Value (mm)</td>
<td>2.15</td>
<td>2.1</td>
<td>0.4</td>
<td>0.62</td>
<td>2</td>
</tr>
<tr>
<td>Parameter</td>
<td>W_3</td>
<td>L_3</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Value (mm)</td>
<td>60</td>
<td>5</td>
<td>6</td>
<td>2.7</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Simulated S$_{11}$ characteristic of the designed dipole antenna is shown in Fig. 2. The result shows that the impedance bandwidth of the proposed antenna for -10 dB S$_{11}$ is from 23 GHz to 33 GHz with more than 35% FBW.
Figure 2. Simulated S_{11} of the UWB mm-Wave dipole antenna.

Figure 3. Simulated reflection coefficient (S_{11}) characteristics of the antenna for different values of (a) L_1 and (b) L_2.

The operation band of the designed compact UWB antenna can be controlled by adjusting the values of the antenna parameters such as widths of the antenna arms and length of the feed-line. The simulated S_{11} curves with different values of L_1&L_2 are depicted in Fig. 3. As illustrated in Fig. 3 (a), when the width of the dipole arms increases from 1.7 to 2.5 mm, the upper frequency of the antenna decreases from 35 to 31 GHz. The lengths of feed-line (L_2) is the critical parameter to control the impedance-matching characteristic of the antenna. Figure 3 (b) illustrates the simulated S_{11} characteristics with various lengths of L_2. As can bee seen, in order to have the UWB function with a good impedance matching characteristic, the lengths of L_1 and L_2 must be 2.1 and 0.4 mm, respectively. From this simulations we can conclude that the operation frequency of the antenna can be controlled by adjusting the values of the antenna parameters.

Figure 4. Simulated radiation patterns of the UWB dipole antenna, (a) E plane, and (b) H plane.

Figure 5. Simulated results for antenna gain and efficiencies.

Simulated radiation patterns of the UWB dipole antenna for E and H planes at lower, middle, and upper frequencies (25, 28, and 31 GHz) are illustrated in Fig. 4. As seen in Fig. 4 (a), the antenna has sufficient and acceptable gain levels with end-fire mode. Fundamental radiation properties (in terms of antenna gain, radiation and total efficiencies) are described in Fig. 5. As illustrated, the antenna has more than -0.05, -0.03, and 4.6 dB values for radiation efficiency, total efficiency and gain, respectively.
III. QUASI-OMINDIRECTIONAL 5G ANTENNA ARRAY

Figure 6 shows the top and bottom views of the UWB dipole antenna array employed at the edge region of mobile phone PCB for final design. In order to acquire the high gain function and also to cover wide scene of beam-steering, ten elements of UWB dipole antennas have been used in the proposed array. In this study, the gap between antenna elements (d) is calculated as about λ/2, where λ is the guided wavelength of 25 GHz [9].

![Figure 6. Configuration of the UWB dipole antenna array, (a) top layer and (b) bottom layer.](image)

Figure 6. Configuration of the UWB dipole antenna array, (a) top layer and (b) bottom layer.

In this study, the gap between antenna elements (d) is calculated as about λ/2, where λ is the guided wavelength of 25 GHz [9].

Figure 7. Simulated S21 to S101 characteristics of the antenna.

![Figure 7. Simulated S21 to S101 characteristics of the antenna.](image)

The simulated S-parameters (S21 to S101) of the proposed phased array antenna are shown in Fig. 7. As illustrated, the proposed mobile-phone antenna has a good mutual coupling characteristic over its operation frequency range. Figure 8 illustrates simulated S21 characteristics of the antenna for different distances between antenna elements. As illustrated, in order to have a high-gain beams with good beam-steering and low mutual coupling characteristics, the distance between elements should be higher than 6 mm (λ/2 of 25 GHz).

Figure 8. Simulated S21 characteristics of the array for different values of Wsub=d.

![Figure 8. Simulated S21 characteristics of the array for different values of Wsub=d.](image)

The 3D results of the beam steering characteristic with realized gain values at 0° and 40° degrees of scanning angles are illustrated in Fig. 11. As seen, the proposed antenna has a sufficient beam-steering function with quasi-omnidirectional beams at 0° and 40°. For plus-minus (±) angles, the beam-steering property of the antenna are almost the same. As seen, the proposed antenna is highly effective in covering the required spherical beam coverage for 5G cellular handsets.

Figure 9. 3D radiation beams of the array when its beams are tilted to 0° elevation at, (a) 25 GHz, (b) 28 GHz, and (c) 32 GHz.

![Figure 9. 3D radiation beams of the array when its beams are tilted to 0° elevation at, (a) 25 GHz, (b) 28 GHz, and (c) 32 GHz.](image)

3D radiation beams of the compact array at 25, 28 and 32 GHz at 0° scanning angle are illustrated in Fig. 9. As seen, the dipole antenna array has quasi-omnidirectional beams with high realized-gain values in its entire operation band.

The simulated current distributions for the presented 5G antenna array at the lower/upper resonance frequencies (25 and 32 GHz) are presented in Fig. 10. As illustrated, the antenna array has been used at the edge region of the mobile phone PCB with a full ground plane and dimension of Wsub×Lsub=60×120 mm². It can be observed at the lower and upper frequencies the current concentrated on the edges of the interior and exterior of the dipole arms. In addition, the effect of full ground plane to reduce the radiation power and beam forming efficiency is insignificant.

Figure 10. Simulated current distributions for the proposed antenna at, (a) 25 GHz and (b) 32 GHz.

![Figure 10. Simulated current distributions for the proposed antenna at, (a) 25 GHz and (b) 32 GHz.](image)
Figure 11. 3D Radiation beams of proposed mobile phone antenna at, (a) 25 GHz, (a) 28 GHz, and (c) 32 GHz.

Figure 12. Simulated directivity characteristics of the antenna at main scanning angle (0°).

Figure 13. Simulated efficiencies of the antenna at 0° scanning angle.

IV. CONCLUSION

This study presents an UWB array antenna featuring quasi-omnidirectional radiation and high gain characteristics over the broad frequency band from 23 to 33 GHz. The design has been validated by full wave EM simulations and the results show good performance in terms of different antenna parameters such as S parameters, efficiency and realized gain. The design can be used to support multi frequency bands operations in 5G mobile devices.

REFERENCES