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RESEARCH ARTICLE Open Access

Wolf outside, dog inside? The genomic
make-up of the Czechoslovakian Wolfdog
Romolo Caniglia1*, Elena Fabbri1, Pavel Hulva2,3, Barbora Černá Bolfíková4, Milena Jindřichová4, Astrid Vik Stronen5,
Ihor Dykyy6, Alessio Camatta7, Paolo Carnier8, Ettore Randi9,10 and Marco Galaverni1,11

Abstract

Background: Genomic methods can provide extraordinary tools to explore the genetic background of wild species
and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and
discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a
combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and
inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly
popular across Europe.

Results: Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog
was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental
populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in
the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and
comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between
individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using
genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD
patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300
genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological
features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the
regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene,
which has been described as a candidate gene for the latter trait in dogs.

Conclusions: In this study we successfully applied genome-wide procedures to reconstruct the history of the
Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-
annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical
of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative
markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with
wolves and uncontrolled trades of recent and undeclared wolfdog hybrids.

Keywords: Admixture history, Czechoslovakian Wolfdog, Demographic history, Genome ancestry, Genome-wide
differentiation, Hybridization, Selection

* Correspondence: romolo.caniglia@isprambiente.it
1Area per la Genetica della Conservazione, ISPRA, Ozzano dell’Emilia, Bologna,
Italy
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Caniglia et al. BMC Genomics  (2018) 19:533 
https://doi.org/10.1186/s12864-018-4916-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4916-2&domain=pdf
mailto:romolo.caniglia@isprambiente.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Since the late Pleistocene, humans have indirectly or ac-
tively pursued the domestication of wild animal and
plant species for food and material production, safety
and entertainment purposes [1]. Over time, a growing
number of species was selected through controlled
crossings in order to artificially fix or enhance the de-
sired productive, aesthetic or behavioural traits, resulting
in varieties and breeds more useful for human benefits
but progressively more differentiated from their wild
progenitors [2]. However, an opposite trend is currently
developing in order to obtain more balanced varieties in
terms of nutritive components or individuals with traits
more similar to their ancestors, partially reverting the ef-
fects of domestication [1]. A prominent example of such
a tendency is represented by the growing popularity of
commercialized wolfdog breeds, such as the Saarloos
Wolfdog, the Lupo Italiano, the Kunming Wolfdog, the
American Wolfdog and the Czechoslovakian Wolfdog,
which were created by the deliberate crossing of wolf-like
or ancient breeds (e.g. the German Shepherd, the Siberian
Husky and the Alaskan Malamute) with wild wolves [3],
representing extreme cases of anthropogenic hybridization
[4]. The Czechoslovakian Wolfdog (CWD) is the most
widespread among such breeds, currently accounting
24,982 registered individuals worldwide (CLC-Italia data-
base, http://clc-italia.it). CWDs are the result of a military
experiment carried out in Czechoslovakia during the
1950s. The aim was to create a new breed showing the
temperament and controllability of the German Shepherd
together with the strength and sensorial abilities of the
Carpathian wolf to assist the Czechoslovakian military to
patrol the country’s borders. The first litter was obtained
in 1958 by crossing a female Carpathian wolf (Brita) and a
male German Shepherd (Cézar). The progeny was cross-
bred afterwards, with only four additional crossings with
wolves in 1960 (again with the female wolf Brita), 1968
(male Carpathian wolf Argo), 1974 (male Carpathian wolf
Šarik) and 1983 (female Carpathian wolf Lejdy). At the
end of the military experiment, after a temporary recogni-
tion in 1989, in 1999 the breed was officially recognized
with its own standard by the Fédération Cynologique
Internationale (FCI), which requires a wolf-like morph-
ology but also tameness and loyalty towards the master
(FCI Standard N° 332). Afterwards, any crossing with
wolves or other dog breeds was strictly forbidden and the
animal phenotypes now appear to be steadily consistent
with the breed standards (FCI Standard N° 332).
However, a series of problems can arise from such a

peculiar history since a recent breed that originated from
a very limited number of founders could be expected to
carry reduced genetic variability and high levels of in-
breeding, although such a threat was not documented by
the results from preliminary genetic studies performed

with a restricted number of genetic loci including auto-
somal microsatellites, Y-chromosome and mitochondrial
DNA markers [3, 5–7]. Second, several recessive diseases
or disorders, frequently found in German Shepherds,
can also affect CWDs in cases of high homozygosity,
such as hip dysplasia, a multifactorial disease affecting
the femoral joint, which has been observed in 14.69% of
the CWD individuals, with a heritability of 28.9% (P.
Carnier, personal communication, calculated with the
U-WGI software based on the CLC-Italia database,
http://clc-italia.it). However, a number of other diseases
have been recently described in CWDs. Some of them
have a known genetic basis, such as pituitary dwarfism
(originated by a single mutation on the LHX3 gene; [8])
and degenerative myelopathy (mainly caused by a reces-
sive mutation on the SOD1 gene; [9]), whereas others
have still unknown or multifactorial bases, such as hae-
mangiosarcoma, cryptorchidism, sub-aortic stenosis and
endocrine pancreatic insufficiency (a review can be
found in [10]. A third controversy is represented by il-
legal crossings with wolves aiming to produce animals
with a more wolf-like appearance to be sold at a higher
price than standard CWDs (A. Camatta, personal com-
munication). However, handling those “parlour wolves”
might be far from simple due to their less predictable
temperament likely caused by the disruption of the gen-
etic composition and epistatic interactions established
during several decades of artificial selection of behav-
ioural traits in CWDs, as morphological and behavioural
traits in canids can be tightly linked [11–14]. Moreover,
if such animals are abandoned or escape into the wild,
given their higher similarity, they could more easily
hybridize with wolves than other breeds, contributing to
the introgression of dog alleles into the wolf genome,
which represents a serious conservation concern for sev-
eral wolf populations [3, 6, 15, 16].
Nowadays, genomic tools provide unprecedented op-

portunities to explore the genome-wide genetic back-
ground of a breed, increase the efficiency of selective
breeding practices, monitor and limit the spread of reces-
sive diseases, and discourage illegal crossings [17–19].
However, such possibilities have not been exploited yet in
the case of wolfdogs and only a few studies have so far in-
vestigated the genetic composition of CWDs [3, 5–7].
Therefore, by applying a 170k canine SNP chip and a

combination of multivariate, Bayesian and gene search ap-
proaches, in this study we aim to: 1) compare the
genome-wide diversity of CWDs and their differentiation
from parental populations (Carpathian wolves and German
Shepherds) and from other common breeds [17, 20]; 2)
compare genetic diversity and demographic parameters
assessed from genome-wide markers to those inferred from
registered pedigrees; 3) reconstruct the ancestry of
wolf-derived and dog-derived chromosomal blocks and, 4)
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thanks to the availability of the annotated dog reference
genome, identify candidate genes that could codify for
phenotypical traits typical of the breed.

Methods
Sample collection, DNA extraction and SNP genotyping
Using a DNeasy Tissue Kit (Qiagen Inc., Hilden, Germany)
and following the manufacturer’s instructions, we extracted
DNA from blood samples of 12 unrelated CWDs and from
muscular tissue samples of 12 unrelated Carpathian wolves.
No animal was sacrificed for the purposes of this study.
CWD blood samples were collected from 2003 to 2013 in
the Czech Republic by veterinaries, from animals in healthy
conditions, with the permission and assistance of the
owners, minimizing any possible stress. The dog owners
also authorised the genetic data obtained from their
animals to be used in this study, while maintaining their
identity confidential. However, two owners did not gave
their permission to use the pedigree data associated to their
dogs, therefore the individual pedigree-based analyses were
based upon the 10 remaining CWDs. Wolf tissue samples
were collected from eight Western Ukrainian, three
Slovakian and one Polish wolves [21], randomly sampled
from different packs in order to avoid inbreeding or sam-
pling bias and to be as much as possible representative of
the Carpathian population. Tissues were collected, for
purposes other than this project, from animals found dead
or legally harvested by hunters with special permission
under legal hunting quota limits. No ethics permit was re-
quired since wolf sample collection involved only dead an-
imals. All samples were collected by specialized technician
personnel.
CWD and Carpathian wolf DNA samples were geno-

typed at c. 170k SNPs using the CanineHD BeadChip
microarray (Illumina, Inc., San Diego, California, USA),
following the Infinium HD Ultra Assay protocol and
calling genotypes with GenomeStudio (http://www.il-
lumina.com/documents/products/datasheets/datasheet_
genomestudio_software.pdf ).
For comparative purposes, we then added publicly

available genotypes from 355 dogs belonging to 30
breeds that were genotyped with the same 170k SNP
microarray in the LUPA project, realized for the genetic
mapping of a number of canine diseases [17, 20]. In par-
ticular, this dataset included also 12 German Shepherds
that, thanks to their limited within-breed variation [20]
and stable breeding practices, can represent a very good
proxy of the original dog founders of the Czechoslovak-
ian Wolfdog breed.

Data filtering
The genotypes from these 379 individuals were filtered
in the SNP&Variant Suite 8.0.1 (SVS, Golden Helix Inc.,
Bozeman, MT) discarding samples and SNPs with call

rates ≤ 95% and all loci mapping on chromosomes X
and Y (quality-pruned dataset). Genotypes were further
filtered to discard loci in linkage disequilibrium (LD) by
PLINK 1.07 [22], using the –dog option in order to man-
age the correct number of chromosomes and removing
SNPs with pairwise genotypic associations r2 > 0.2 calcu-
lated along sliding windows of 50 SNPs (LD-pruned
dataset).

Summary statistics, assignment and admixture tests
A pairwise FST matrix of genetic distance [23] among
groups, values of observed heterozygosity (Ho) and the
inbreeding coefficient (F) within groups were estimated
from the quality-pruned dataset in SVS. To visualize the
distribution of genotypes in the genetic space, an ex-
ploratory principal component analysis (PCA; [24]) was
performed in SVS using the quality-pruned dataset and
the additive genetic model [25].
We then ran assignment tests in ADMIXTURE 1.23 [26]

on the LD-pruned dataset of CWDs, Carpathian wolves
and German Shepherds, assuming K values from 1 to 5,
to assign each sample to its population of origin and to
evaluate the level of admixture in CWDs. The most
likely number of clusters was identified based on the
lowest cross-validation error [26] and results were plot-
ted in R 3.0.2 (www.r-project.org).
A more accurate reconstruction of the parental pro-

portions of ancestry in CWDs was achieved by the
PCA-based admixture deconvolution approach imple-
mented in PCADMIX 1.0 [27, 28], which was run with
blocks of 10 consecutive, non-overlapping SNPs. For
each CWD, we calculated the average genome-wide pro-
portion of blocks assigned to each reference population.
We then compared it to the percentage of wolf ancestry
estimated from the CWD pedigrees with the software
BREEDMATE PEDIGREE EXPLORER (www.breedmate.com).

Runs of homozygosity, linkage and relatedness
The quality-pruned dataset was also used in SVS to as-
sess the mean number and the mean length of runs of
homozygosity (ROH) within groups to provide estimates
of the inbreeding levels due to autozygosity, expecting
proportionally longer ROHs in more recently inbred
populations, given that recombination had less time to
reduce their length [29, 30]. We then compared the dis-
tribution of ROHs for each individual CWD, Carpathian
wolf and German Shepherd, and estimated their fre-
quency of ROHs (FROH), calculated as the proportion of
ROHs on the genome length spanned by the analysed
SNPs, which are a better proxy of the inbreeding levels
of an individual since FROH are less prone than F statis-
tics to underestimate inbreeding in populations with re-
cently reduced effective sizes [31–33].
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Values of FROH in CWDs were then compared to the
values of inbreeding estimated from their pedigrees as co-
efficient of inbreeding (COI) with the software U-WGI in
order to evaluate the concordance of such approaches in
quantifying inbreeding. Similarly, we assessed the levels of
relatedness by computing the pairwise identity-by-descent
(IBD) scores between individuals in CWDs, Carpathian
wolves and German Shepherds using SVS, representing
genome-wide levels of relatedness. IBD values found in
CWDs were then compared to the coefficient of related-
ness (COR) computed from pedigree data (CLC-Italia
database, http://clc-italia.it) with the software BREEDMATE

PEDIGREE EXPLORE.
We also assessed the LD patterns by estimating the

physical distance at which the r2 coefficient decayed
below a threshold of 0.1.

Demographic trends and admixture time in
Czechoslovakian Wolfdogs
We reconstructed the trends in the Czechoslovakian
Wolfdog effective population size (NE) using the equation
E(r2) = [1/(1+4 NE c) + 1/n], where r2 is the squared correl-
ation of genotypic association between autosomal SNPs
(representing the extent of LD), c is the genetic distance be-
tween SNPs in Morgans (assuming 100 Mb = 1 Morgan)
and 1/n is the correction factor for small sample sizes[34,
35]. In this way we estimated demographic changes that
occurred 1 to 20 generations ago that, considering a dog
generation time of 3 years [36], correspond to 3–60 years in
the past and thus include the whole history of the breed. We
expected NE to increase at every crossing with additional
wolves, then to decrease steadily, since only a portion of the
individuals were used for breeding and the time since the
breed formation, given the current population size, is not
significant in accumulating new variants (p = mu × n. gen. ×
NE = 1 × 10-8 × 20 × 20,000 = 0.004).
We reconstructed chromosomal haplotypes for CWDs,

Carpathian wolves and German Shepherds in SHAPEIT

2.837 [37] using the quality-pruned dataset, standard pa-
rameters and dog recombination maps derived from
[38], referred to the canFam2 dog genome assembly
(namely the same build the SNP array was designed on).
We then estimated the average timing of the admixture
events between the parental populations of CWDs using
ALDER 1.03 [39], which exploits information derived
from the haplotype structure and the extent of LD decay
among neighbouring loci, assuming a generation time of
3 years [36]. Moreover, we assessed the number of gen-
erations since the admixture for each individual also
using the number of switches from German Shepherd to
Carpathian wolf ancestry blocks (or vice versa) and the
formula developed by [40], modified according to the
dog genome length, conditional on the proportion of ad-
mixture estimated from PCADMIX. Summary plots across

all samples were then compared with those obtained
from ALDER, with the demographic trajectories estimated
from LD and with the known history of the breed.

Estimating wolf and dog local genome ancestry
Regions with an excess of wolf or dog contributions were
first identified based on PCADMIX results, searching for
chromosomal regions where all the analysed CWDs pre-
sented only wolf-like or only dog-like haplotypes (corre-
sponding to 100% wolf or dog ancestry 100%, respectively).
Second, we identified genomic regions that in all CWDs

were included within a ROH, likely indicating strong se-
lective pressures acting on the genomic surroundings.
Third, we identified the SNPs most differentiating German

Shepherds from Carpathian wolves (FST(GSh-WCA) = 1, calcu-
lated in SVS), indicative of sharp genetic differences between
the two groups. Among them, we retained the 1% with the
lowest FST differentiation between CWDs and Carpathian
wolves (‘wolf-like SNPs’) and between CWDs and German
Shepherds (‘dog-like SNPs’), which correspond to genomic
positions where CWDs present a strong similarity to only
one of the two parentals. The same reasoning was applied to
blocks of 10 consecutive SNPs, which should identify posi-
tions where differentiation involves chromosomal segments
instead of single SNPs.
After removing all sites with any missing data from

the LD pruned dataset, a fourth set of outliers was se-
lected by exploiting the ability of the software BGC
(Bayesian Genomic Cline analysis; [41]) to identify SNPs
with an excess of ancestry in one of the two parental
populations compared to random expectations [41].
Specifically, we retained as outliers the SNPs falling in
the 1st lower or upper percentile of the alpha parameter
distribution and whose confidence intervals (CI) did not
include the value 0, indicating an excess of either wolf or
dog alleles.
The fifth and last panel of outliers was composed of all

the SNPs identified as significant at p < 0.05 by BAYESCAN
[42], a software that detects loci whose allele frequency
differs between two populations significantly more than
their average genome-wide distance, comparing CWDs vs.
German Shepherds and CWDs vs. Carpathian wolves.

Gene search and gene ontology
Subsequently we selected the genomic intervals sur-
rounding each outlier SNP or block by including 50 Kb
on each side [20, 43]. We then translated their coordi-
nates from canFam2 to canFam3 reference assembly
using the liftover tool in the UCSC Genome Browser
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and re-
trieved the genes included in each genomic interval from
the in Ensembl gene annotation 87 in BIOMART (http://
www.ensembl.org/biomart/martview/).
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The two lists of genes obtained (wolf-like genes,
dog-like genes) were then analysed for their possible en-
richment towards any category included in the Gene
Ontology (GO) - Biological Processes (BP) and in the
Human Phenotypes (HP) ontology databases. Enrich-
ment was tested in gProfiler [44], only retaining categor-
ies having a size domain of at most 500 terms and being
significant after Benjamini-Hochberg correction for mul-
tiple testing.
Gene names were also searched against the most rele-

vant canine and human literature to look for possible ev-
idences of their functional role in determining key
phenotypical traits.
Finally, a subset of hits was selected retaining only the

genes identified as outlier by: 1) multiple methods; 2) a single
method, but falling in a significantly enriched ontology cat-
egory; or 3) a single method, but being described in the lit-
erature to have a significant role in phenotypic development.

Results
Data filtering and marker selection
After removing loci mapping on chromosomes X and Y
and following genotyping and quality cleaning steps per-
formed in SVS, both per sample and per locus, we
retained the 379 samples that were all successfully geno-
typed with call rate > 0.99 at 126,848 autosomal SNPs
(73%, hereafter referred to as the 126k dataset). These
samples included the 12 CWDs and the 12 Carpathian
wolves, plus the 12 German Shepherds and the additional
343 dog genotypes from 30 breeds obtained from the
LUPA project dataset. A subset of 57,020 SNPs (33%) was
retained after LD pruning at threshold r2 = 0.2 (the 57k
dataset). Finally, a smaller set of 9,063 SNPs (5.2%) was
obtained after discarding all sites with any missing data
(the 9k dataset).

Summary statistics
In a pairwise FST matrix of the genetic distances among
groups (Additional file 1: Figure S1) computed from the
126k dataset, CWDs were relatively divergent from
Carpathian wolves (FST = 0.33) but, as expected, the breed
least differentiated from German Shepherds (FST = 0.19).
We found considerable genome-wide variability within

groups (Additional file 2: Fig. S2a). Overall, heterozygos-
ity was generally higher in dogs (Ho = 0.265 ± 0.032)
than in wolves (Ho = 0.231 ± 0.025. However, a direct
comparison between wolves and dogs should be treated
with caution due to the possible ascertainment bias from
the SNP array, mostly designed on dogs, although it is
expected to be minimal when considering closely related
taxa [30]. CWDs showed heterozygosity levels (Ho = 0.249)
lower than most breeds but, as expected, slightly higher
than in German Shepherds (Ho = 0.234, p-values < 0.05 ;
t-test) and also than Carpathian wolves (Ho = 0.231,

p-values < 0.05 ; t-test), which showed values coincident
with those described in other wolf studies based on SNP
chip genotyping (Ho = 0.210-0.240; [21, 30, 45]).

Assignment and admixture tests
In an exploratory PCA performed considering CWDs
and their parental populations (Fig. 1), the first two axes
of the PCA clearly discriminated the three groups,
explaining more than the 90% of the whole genetic vari-
ability, with Czechoslovakian Wolfdogs plotted along the
first axis (which explains 68% of variability) between
wolves and dogs, though closer to the latter in accord-
ance to the history of the breed. When we considered
the whole 126k dataset (Additional file 3: Figure S3),
Czechoslovakian Wolfdogs were located intermediate
between German Shepherds and Carpathian wolves
along the PC1 axis, which explained more than 30% of
the entire genetic variability, and well separated from
the other dog breeds overall. Along axis 2, CWDs and
German Shepherds clustered close to one another, likely
for the higher number of individuals sharing common
genetic components compared to those belonging to
other breeds, as it occurs when regrouping these same
taxa in a neighbor-joining tree [20].
Results from ADMIXTURE, run with the 57k dataset and

including only CWD, Carpathian wolf and German
Shepherd genotypes, showed that the first main decrease in
CV error was observed at K = 2 (Fig. 2a), when Carpathian
wolves (mean estimated membership of population to the
assigned cluster Q1 = 1.00) were clearly separated from the
two dog breeds (Fig. 2b), which clustered together (mean
Q2 = 0.987), although several CWDs (Q2 = 0.975) presented
limited but clear traces of wolf components (individual qi
ranging from 0.940 to 1.00). However, the optimal number
of genetic clusters corresponded to K = 3 (Fig. 2c), when
CWDs (Q3 = 0.994) were clearly separated from both
Carpathian wolves (Q1 = 1.00) and German Shepherds (Q2

= 0.995).
In CWDs, the average genome-wide proportion of

blocks assigned by PCADMIX to the reference wolf
population was 0.30±0.03, with individual assignment
values ranging from 0.27 to 0.34, significantly higher
(p-values = 1.75 × 10-10; t-test) than the mean propor-
tion of membership to the wolf cluster (qw) estimated
from ADMIXTURE at K = 2. Conversely, PCADMIX as-
signment values were not significantly different
(p-values = 0.09, t-test) from the percentage of wolf
ancestry estimated from the pedigrees, whose mean
proportion was 0.28±0.01, with individual scores ran-
ging from 0.27 to 0.30 (Fig. 3a).

Runs of homozygosity, linkage and relatedness
Analyzing the whole 126k dataset, CWDs showed a mean
number of ROHs (117 ± 33), intermediate between that of
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German Shepherds (124 ± 16) and that of Carpathian
wolves (71 ± 31) (Fig. 4a). As expected according to recent
the history of the breed, which allowed a very short time
for recombination to break up segments that were
identical-by-descent, CWDs showed a mean ROH length
(3.234 ± 400 kb) longer than both German Shepherds
(2.971 ± 501 kb) and Carpathian wolves (2.699 ± 1.398
kb) (Fig. 4b). This was due to the fact that, although the
mode of the ROH length in CWDs and German
Shepherds was similar (with most of their ROHs around
2000 kb-long), and much longer than in Carpathian
wolves (about 1000 kb), CWDs also showed a second peak

of ROHs of 7000 kb length, suggesting that inbreeding
events also occurred in the few generations after the breed
creation (Fig. 4c).
CWDs showed a mean value of the inbreeding coefficient

FROH (0.17 ± 0.02) similar to German Shepherds (0.16 ±
0.02; p-value = 0.10 ; t-test) but significantly higher than
Carpathian wolves (0.08 ± 0.03; p-value < 0.05 ; t-test) with
individual, FROH values ranging from 0.14 to 0.21 (Fig. 3b).
FROH was significantly correlated with the inbreeding coeffi-
cient estimated from the genotype information F (R2 >
0.395; p < 0.01; Additional file 2: Figure S2b, c) and also
with the pairwise coefficient of inbreeding calculated on the

Fig. 1 PC1 vs. PC2 results from an exploratory principal component analysis (PCA) computed in SVS on the 126k SNP dataset and including
Carpathian wolves (WCA; black dots), German Shepherds (GSh; light grey dots), and Czechoslovakian Wolfdogs (CWD; dark gray dots). The two
axes are not to scale, in order to better distinguish individuals along PC2

ba

c

Fig. 2 ADMIXTURE results obtained running the 57k SNP dataset with with K from 1 to 5 and including genotypes from Carpathian wolves (WCA),
German Shepherds (GSh) and Czechoslovakian Wolfdogs (CWD). a Cross validation plot showing the most likely number of genomic clusters. b
ADMIXTURE results at K = 2 show how Carpathian wolves are clearly separated from the two dog groups that cluster together. c ADMIXTURE results at
K = 3 show that the three groups are well differentiated from one another
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basis of pedigree data (COI), that ranged from 0.19 to 0.23
(R2 > 0.369; p < 0.01; Additional file 4: Figure S4).
Looking at identity-by-descent between individuals,

the highest mean values of pairwise IBD scores (p-values
< 0.05 ; t-test), as expected according to the low number
of founders used in the first steps of the breed creation,
were observed in CWDs (0.477 ± 0.049, ranging from
0.426 to 0.738), followed by German Shepherds (0.362
± 0.054, ranging from 0.000 to 0.451) and then by
Carpathian wolves (0.112 ± 0.034, ranging from 0.000
to 0.403). The IBD values found in CWDs were
highly concordant (R2 = 0.584; p < 0.01) with the co-
efficients of relatedness (COR) estimated from the
pedigrees (mean 0.431 ± 0.040, ranging from 0.380 to
0.607), though the pairwise scores between individuals
detected from the two approaches in some cases
showed marked differences (Fig. 5).
The mean LD in CWDs was intermediate (r2 = 0.26)

between German Shepherds (r2 = 0.30) and Carpathian

wolves (r2 = 0.13). Similarly the LD decreased to values
of r2 < 0.10 at a smaller distance in Carpathian wolves
(18 kb) than in CWDs (76 kb) and German Shepherds
(110 kb; Additional file 5: Figure S5).

Demographic trends and admixture timing in
Czechoslovakian Wolfdogs
The demographic trajectory estimated from LD well-
reflected the history of the breed, which experienced a
continuous population decline begun 20 generations
ago, thus in the late 1950s’, ranging from a maximum of
418 individuals in 1959 to a minimum of 21 individuals
in 2010 (Fig. 6). The only four growth peaks in NE were
observed in periods corresponding to the deliberate
crossings with wolves performed for the creation of the
breed, plus another moderate one in more recent times
not matching any registered crossing.
The software ALDER [39] identified significant admixture

between the parental populations (p-values = 1.0 × 10-17)
in our CWDs, with successful decay rates (meaning that
both the parentals could have been fully sampled; [39]).
Hybridization was estimated to have occurred about 12.91
± 1.47 generations before sampling, which, assuming a
wolf generation time of 3 years [36], corresponded to a
period ranging from 1967 to 1976, centred around 1971
(Fig. 6).
Results from PCADMIX, used to estimate individual ad-

mixture times, showed that the individual number of
switches from German Shepherd to Carpathian wolf an-
cestry blocks ranged from 165 to 367 (mean value 196 ±
55), indicating that the admixture likely occurred from
7.8 to 10.1 generations before individual sampling.
Considering the same value of 3 years per generation
[36], when converted into years these values indicated
that the oldest individual hybridization event likely
traced back to 1975, whereas the most recent one traced
to 1990, highlighting slightly more recent times than
those provided by the software ALDER.

Estimating wolf and dog local genome ancestry, gene
search and gene ontology
The analysed CWDs revealed a complex genomic mo-
saic of wolf and dog ancestry, as reconstructed by PCAD-

MIX (Additional file 6: Figure S6).
From the 10-SNP blocks found to be fixed for wolf

or dog haplotypes in all CWDs by PCADMIX, we iden-
tified 14 “wolf-like” blocks, including 31 protein-cod-
ing genes significantly enriched for metabolic and
enzymatic processes and for HP categories related to
aortic and renal disorders, and 1784 “dog-like” blocks,
including 2238 annotated protein-coding genes, significantly
enriched for GO categories mainly related to brain and heart
development (Table 1 and Additional file 7: Tables S1a-S1d).

b

a

Fig. 3 Wolf ancestry proportions and inbreeding rates. a
Comparison between individual wolf proportions estimated from
the analysis of blocks of 10 consecutive, non-overlapping SNPs
performed in PCADMIX (in light grey) and individual wolf ancestry
rates obtained from pedigrees using BREEDMATE PEDIGREE EXPLORER
(in dark grey). b Comparison between the individual frequency
of ROHs (FROH), calculated in SVS as the proportion of ROHs on
the genome length spanned by the analysed SNPs (in light
grey), and the individual Wright’s inbreeding coefficient (COI)
estimated from the pedigrees with the software U-WGI (in
dark grey)
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a

b

c

Fig. 4 Runs of homozygosity (ROH) analysis. a Mean number of ROHs per breed. Czechoslovakian Wolfdogs (CWD) show a mean number of
ROHs intermediate between values from parental populations. German Shepherds (GSh) are closer to the breeds with the highest values whereas
Carpathian wolves (WCA) to breeds with the lowest values. Bars indicate standard deviations. b Mean ROH length (kb) per breed. The mean
length of ROHs in Czechoslovakian Wolfdogs (CWD) is wider than parental populations suggesting a high recent inbreeding rate. Bars indicate
standard deviations. c Distribution of ROH lengths in the three groups. Carpathian wolves (WCA; black line) show most of ROHs of 1000 kb length
whereas German Shepherds (GSh; light grey line) and Czechoslovakian Wolfdogs (CWD; dark grey line) exhibit similar patterns, both with most of
ROHs around 2000 kb length. However, Czechoslovakian Wolfdogs also show a second peak of ROHs of about 7000 kb length suggesting a
stronger inbreeding in more recent generations. Bar plots indicate the 38 Czechoslovakian Wolfdog autosomal chromosomes which show a quite
uniformly distributed number of ROHs
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When we considered ROHs that were shared by all
Czechoslovakian Wolfdogs, we identified a genomic region
of about 15 Mb on Chr24 that was always assigned
as dog-derived by PCADMIX. This region hosted 29
annotated protein-coding genes, including the coat

color regulating genes ASIP and RALY [20, 46], and
genes significantly enriched for a high number of HP
categories linked to amino acid metabolism (Table 1
and Additional file 7: Tables S2a-S1b).
Based on the lowest FST between Czechoslovakian

Wolfdogs and Carpathian wolves, we identified 15
wolf-like SNPs and one 10-SNP block on chr24 that
hosted 1 gene included in significantly enriched GO and
HP categories principally related to regulation of
catabolic processes, response to external stimulus,
locomotory and learning disability (Table 1 and
Additional file 7: Tables S3a-S3b; S4a-S4b). When we
considered the lowest FST between Czechoslovakian
Wolfdogs and German Shepherds, we identified 241
dog-like SNPs and 9 dog-like blocks of 10 consecutive
SNPs that included 25 annotated protein-coding
genes, significantly enriched for BP category mainly re-
lated to palate development and GO categories principally
related to regulation of ion transmembrane transport
(Table 1 and Additional file 7: Tables S3c-S3d; S4c-S4d).
BGC results detected 78 SNPs with an excess of wolf

ancestry (significantly negative values of α) and 62 SNPs
with an excess of dog ancestry (significantly positive
values of α), with overall higher absolute values in the
latter (Additional file 8: Figure S7a). The 50-kb regions
surrounding the SNPs with excess of wolf ancestry con-
tained 109 coding genes enriched for HP categories mainly
related to cerebral atrophy (Table 1 and Additional file 7:

Fig. 5 Relatedness analyses. Chromatograms represent pairwise Isolation-by-distance (IBD) scores between Czechoslovakian Wolfdog (CWD),
Carpathian wolf (WCA) and German Shepherd (GSh) individuals computed using SVS and CWD coefficient of relatedness (COR) estimated from
their pedigrees using the software BREEDMATE PEDIGREE EXPLORE. Interestingly, a comparison between the two approaches shows marked differences
in some Czechoslovakian Wolfdogs

Fig. 6 Estimates of demographic trends. The effective population
size NE estimated from LD (squares on black line) shows a
decreasing trend over time, though it shows four growth peaks that
are concordant with the deliberate crossings with wolves that
occurred in the history of the breed (triangles on the dark grey line).
The temporal distribution of the admixture events deduced from
PCADMIX (squares on light grey horizontal bars) and the time
intervals reconstructed by ALDER (diamonds on grey horizontal bars)
are also described. Square, triangle and diamond symbols represent
mean values whereas vertical sticks represent confidence intervals
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Table 1 Subset of wolf-like (a) and dog-like (b) outlier genes detected in Czechoslovakian Wolfdogs analysed in this study which
have been previously described in the canid literature

Gene name Methods Chr Start (bp) End (bp) Reference Association

a

CRHBP BAYESCAN 3 29,726,312 29,738,001 [60] Social behavior and maternal aggression

NPHP4 PCADMIX, GO 5 59,805,955 59,936,808 [64] Bone and retinal disorder

ENO1 PCADMIX 5 62,301,164 62,312,161 [57] Related to mRNA transcript variants, genes
responsible for bone and cartilage tissues

ASTN2 BGC 11 70,248,612 70,977,896 [57] Related to mRNA transcript variants, genes
responsible for bone and cartilage tissues

PCDH15 BGC, GO 26 33,962,360 34,571,935 [63] Vision regulation and hearing abilities

BMP3 BGC 32 5,207,833 5,231,966 [58] Morphological features: paws and bones

b

ARID1B PCADMIX 1 46,370,636 46,799,104 [68] Cellular responses, DNA repair

URI1 BGC, GO 1 121,528,137 121,612,185 [57] DNA-binding

RPE65 FST SNP 6 76,887,399 76,911,146 [64, 67] Dog diseases (Leber congenital amaurosis)

EPAS1 PCADMIX, GO 10 48,551,410 48,634,643 [77] Environmental adaptation

ASCC3 PCADMIX, GO 12 58,592,025 58,932,720 [68] Cellular responses, DNA repair

GRIK2 PCADMIX, GO 12 59,590,231 59,992,091 [68] Lipid metabolism

SMARCD3 PCADMIX, GO 16 15,279,418 15,289,275 [77] Muscle cell differentiation, heart morphogenesis

ZMAT4 FST SNP, PCADMIX 16 24,561,867 24,889,045 [57] DNA-binding

ADAM9 PCADMIX , GO 16 26,410,907 26,551,122 [64] Dog diseases (cone-rod dystrophy)

STRN FST SNP 17 29,273,978 29,365,239 [78] Dog diseases (arrhythmogenic right
ventricular cardiomyopathy)

MGST2 PCADMIX 19 3,067,163 3,070,563 [68] Cellular responses, DNA repair

NOCT PCADMIX, GO 19 3,589,720 3,607,191 [65] Circadian rhythms, body weight and digestion

SLC7A11 PCADMIX 19 4,289,915 4,371,635 [68] Lipid metabolism

CNTN5 PCADMIX 21 1,128,048 1,614,989 [20] Nervous system differentation

OXT PCADMIX 24 18,193,429 18,194,002 [69] Learning and memory processes

CBDs PCADMIX 24 20,614,030 20,971,219 [68] Immune system

DEFB119 PCADMIX 24 20,905,210 20,918,355 [68] Immune system

HM13 PCADMIX, GO 24 21,026,827 21,067,920 [68] Cellular responses, DNA repair

RALY ROH 24 23,211,141 23,262,511 [46] Coat color

ASIP ROH 24 23,354,642 23,393,918 [20, 46] Coat color, social behavior

NCOA6 ROH 24 23,802,887 23,866,792 [68] Co-activation of several hormone-dependent
receptors

ACSS2 ROH 24 23,928,670 23,972,633 [68] Lipid metabolism

TMEM132D FST SNP, PCADMIX 26 2,074,728 2,662,470 [68] Oligodendrocyte differentiation, metabolism

CUX2 PCADMIX, GO 26 8,730,082 8,996,271 [68] DNA-binding

SEZ6L PCADMIX, GO 26 19,889,395 20,079,319 [70] Social behavior

ARVCF BGC, PCADMIX, GO 26 29,314,144 29,534,294 [70] Polydactyly and morphological features

COMT PCADMIX, GO 26 29,360,372 29,366,006 [70] Social behavior (aggression and attention
regulation)

PCDH15 BAYESCAN, PCADMIX, FST SNP, GO 26 33,962,360 34,571,935 [63] Polydactyly and morphological features,
vision and hearing abilities, communication
and behavior

BMPR1B PCADMIX, GO 32 17,819,265 17,978,113 [66] Polydactyly and morphological features

UNC5C FST SNP, PCADMIX, GO 32 17,987,785 18,332,959 [66] Tumor suppression

BANK1 PCADMIX, GO 32 23,281,315 23,603,279 [67] Regulation processes of calcium ions
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Tables S5a-S5b). Conversely, regions surrounding the
SNPs with excess of dog ancestry contained 79
protein-coding genes that were mostly enriched for a
GO biological process related to granulocyte regula-
tion, and HP categories linked to earlobe morph-
ology and skeletal, aortic or parathyroid disorders
(Table 1 and Additional file 7: Tables S5c-S1d).
Finally, comparing CWDs with German Shepherds,

BAYESCAN identified 29 outlier SNPs with positive α
values (suggestive of diversifying selection) hosted in re-
gions including 29 protein-coding genes, significantly
enriched for GO categories mainly linked to biological
processes such as maternal aggressive behavior and cortico-
tropin secretion, and HP categories principally related to
abnormal proportions of face and hands (Table 1 and
Additional file 7: Tables S6a-S6b). When we compared
CWDs to Carpathian wolves, BAYESCAN identified 7 outlier
SNPs with positive α values that were hosted in regions in-
cluding 7 annotated protein-coding genes, significantly
enriched for GO categories mostly linked to tRNA regula-
tion (Table 1 and Additional file 7: Tables S6c-S6d).

Discussion
The fast-growing number of registered Czechoslovakian
Wolfdogs worldwide demonstrates the elevated econom-
ical value of this breed and the need of a deeper compre-
hension of the genetic bases of its morphological and
behavioural traits, as well as of the causative mutations
of some common diseases. In this study we provide the
most complete genomic description of the breed to date
by genotyping 12 individuals at 170k SNPs and comparing
their genome-wide diversity to samples as representative
as possible of their parental populations (Carpathian
wolves and German Shepherds) and to genomic profiles
from 30 other common breeds publicly available from the
LUPA project [17, 20].
From a preliminary genomic screening, based on pair-

wise FST values, multivariate and assignment procedures,
CWDs appeared highly differentiated from all the other
analysed breeds and were also well-distinguished from
both parental populations. In particular, despite our lim-
ited sampling, the Bayesian clustering analysis performed
in ADMIXTURE revealed the presence of three optimal
clusters clearly separating CWDs from both parental

populations, consistent with previous findings based on
a few autosomal microsatellites [3, 5–7].
Compared with the LD-based approach of ADMIXTURE

(K = 2), the PCA-based admixture deconvolution ap-
proach implemented in PCADMIX [27], which reflects
the ancestry proportions of an individual better than AD-

MIXTURE [28], identified larger wolf components (> 25%)
in the genome of the analysed CWDs. These proportions
compared well with the pedigree-based estimates, con-
firming that such a haplotype block-based approach is
an appropriate and reliable tool to assess real admixture
proportions from genomic data [28].
Our results on the observed genome–wide heterozy-

gosity levels in CWDs were consistent with other stud-
ies, based on different types and number of markers [5,
7, 20]. In particular, values of autosomal heterozygosity
in our small sample of CWDs were slightly higher than
those observed in the parental populations, consistent
with the recent admixture occurred in the creation of
the breed [3, 5, 6] that is still visible in the large genomic
regions hosting both dog and wolf haplotype blocks,
thus representing islands of high heterozygosity, even
after c. 30 generations since the breed foundation and c.
11 generations since the last official outcrossing, con-
trasting the expected decay in heterozygosity due to
inbreeding.
On the contrary, the lower heterozygosity observed in

Carpathian wolves, which was expected to be higher
than in dogs for genomic sequences [47], should be
treated with caution, since it could be partially attribut-
able to a possible ascertainment bias linked to the ori-
ginal SNP chip design, mostly based on dog variation
[30, 48], although such event is unlikely for closely re-
lated taxa diverging less than one million years [30].
However, our estimates of observed heterozygosity in
Carpathian wolves well compare with those from other
Central-Eastern European wolf populations reported in
previous studies using the same SNP chip approaches
[21; 30; 45] and certainly did not affect the ability of our
methods to discriminate between wolf-like and dog-like
haplotype blocks in CWDs.
The analysis of ROHs allowed us to better reconstruct

the breed history and clarify its dynamics. Czechoslovak-
ian Wolfdogs showed a higher number of long ROHs (>

Table 1 Subset of wolf-like (a) and dog-like (b) outlier genes detected in Czechoslovakian Wolfdogs analysed in this study which
have been previously described in the canid literature (Continued)

Gene name Methods Chr Start (bp) End (bp) Reference Association

TGIF1 PCADMIX 32 32,950,116 32,950,934 [66] Nervous system differentation

IGF2BP2 PCADMIX 34 18,368,131 18,522,156 [75, 76] Lipid metabolism

MARCH7 BGC 36 5,499,129 5,531,823 [43] Cellular responses, DNA repair

NHEJ1 PCADMIX, GO 37 25,633,562 25,719,307 [80] Dog diseases (Collie eye anomaly)

SLC4A3 PCADMIX 37 26,136,624 26,149,312 [64, 79] Dog diseases (progressive retinal atrophy)
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5 Mb) than the progenitors, reflecting the recent in-
breeding events [49–51] that occurred during and after
the origin of the breed. Moreover, coherently with the low
number of founders utilized in the breed creation, CWDs
showed inbreeding coefficient values (FROH) higher than
both parental populations [3], and also higher values of re-
latedness between individuals, on average.
Though a direct comparison between genomic data

and pedigree information should be treated with caution
given the different methodologies these two types of
computations rely on [33], estimates of inbreeding levels
calculated from the frequency of homozygosity regions
(FROH) were comparable with those calculated from the
coefficient of inbreeding (COI) derived from the avail-
able pedigree data. Such a concordance confirms the re-
liability of several proxies in identifying inbreeding,
which is crucial for breeders since matings among
closely related individuals can affect their offspring fit-
ness due to the increased probability of deleterious al-
leles being expressed in their phenotypes. Conversely, in
several cases the coefficient of relatedness (COR) be-
tween individuals estimated from the pedigrees underes-
timated the IBD (identity-by-descent) scores determined
from genetic profiles. Such discrepancies could be due
to the higher ability of genome-wide methods to identify
random segregation effects compared to pedigree-based
methods [33], or to the uncertainties of pedigree re-
cords, in which breeders might deliberately not report
some crossings between related individuals, since the
possible negative effects on health could reduce the mar-
ketability of dogs [51], even if this latter possibility ap-
pears very unlikely given the strict breeding control
operated by the military during the early years of breed
establishment.
Therefore, genomic reconstructions represent a useful

tool to implement carefully planned mating strategies
among breeders in order to predict and contrast possible
deleterious effects such as lethal genetic disorders, re-
duction of fertility, and lower adaptive potential [52, 53].
For these reasons, genomic pairwise IBD values and
ROH-based metrics could provide breeders with add-
itional information that could be evaluated for the selec-
tion of lineages to reduce the levels of inbreeding per
generation, taking into account not only the blood lines
but also the stochastic effects of recombination [31, 33].
Our genome-wide characterization allowed us to verify

the timing of the admixture in the cohort of the analysed
CWDs, which compared well with the key steps of the
breed selection, namely the repeated insertion of wolf al-
leles that officially continued until 1983. When applying
ALDER, hybridization was estimated to have occurred
from 1967 to 1976, roughly corresponding to the mid-
point of the known crossing events, whereas PCADMIX

better identified the most recent ones. These findings

show that genomic-based dating methods can be effect-
ive and complementary in tracing recent hybridization
events both in hybrid breeds such as CWD and in
wild-living populations [16].
The NE trends estimated from the LD patterns showed

that, despite the growing number of registered individ-
uals, NE overall declined from the breed origin to the
present. This decreasing trend is likely due to the pro-
gressive artificial selection and to the so-called “popular
sire effect”, namely the overrepresentation of the genetic
contribution of popular dogs (e.g. small number of win-
ner individuals at dog shows) in subsequent generations
of the breed [54]. Conversely, NE fluctuations, with four
main peaks around years 1959, 1968, 1974 and 1986, are
consistent with the official wolf x dog registered cross-
ings (1960, 1968, 1974 and 1983). However, we unex-
pectedly detected an additional slight increase in NE

around 1995, which could be due to the genetic contri-
bution from a distinct lineage [54] of CWDs (e.g. from
the Slovakian to the Czech lineage), or might be the signal
of an undeclared wolf contribution that occurred after the
official breed recognition. Should this second hypothesis
be confirmed, it would value genomic investigations also
as a tool to identify illegal crossings of wild species pro-
tected under the CITES Convention with commercialised
domestic breeds [55, 56]. Nonetheless, this overall, fast de-
cline in NE did not erode all the additional variation pro-
vided by the wolf founders, since the heterozygosity levels
appear to be still currently slightly higher in the analysed
CWDs than in German Shepherds.
Looking at the genomic landscape of Czechoslovakian

Wolfdogs, PCADMIX results showed a variegated chromo-
somal ancestry mosaic, ranging from fully dog-derived to
mostly wolf-like regions. A gene search based on
ancestry-outlier regions obtained from multiple methods,
which was possible thanks to the availability of the
well-annotated dog reference genome, allowed us to iden-
tify more than 300 genes with an excess of wolf ancestry
and more than 2000 genes with an excess of dog ancestry
in Czechoslovakian Wolfdogs compared to random
expectations.
The key wolf-like genes we identified were mainly re-

lated to body size and shape traits, which could explain
the overall morphological similarity of CWDs with
wolves. In particular, we detected two wolf-excess genes,
ASTN2 and ENO1, which were described in the human
genome to be adjacent to loci putatively responsible for
bone and cartilage tissue production and that were earl-
ier found to be under selection in European wolves [57].
Another 9 wolf-like genes were related to key morpho-
logical features, such as prominent occiput (ITCH) and
prominent nasal bridge (CLIP1, WDPCP), narrow face
(AP4M1, CLIP1), short ears (CAMTA1), narrow and small
mouth (KCNAB2, CAMTA, AP4M1, CLIP1), pointed chin
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(CLIP1, AP4M1), strong facial musculature (CLIP1,
AP4M1, HNRNPA2B1), robust paws and bones (AGGF1,
BMP3; [58]), all typical of the breed. However, other
wolf-excess genes were described to be associated with
communication and behaviour. In particular, CRHBP, cod-
ing for Corticotropin Releasing Hormone Binding Protein,
is a gene expressed during pregnancy [59], involved in the
anomalous maternal aggressive behavior against puppies
observed both in mice and in Australian Working
Kelpie female dogs [60]. Such peculiar behaviour is well
known also in Czechoslovakian Wolfdogs, where
mothers killing their offspring shortly after parturition
have often been observed (A. Camatta, personal com-
munication). PCDH15 has been identified as a candi-
date gene related to echolocation in mammals [61, 62]
and has been described to be under selection in differ-
ent ecological contexts in wolves [63]. Similarly, other
wolf-excess genes were related to cardiac (KCNAB2,
WDPCP), pancreatic (PLCG2), bone and retinal
(NPHP4) disorders that have been widely described in a
number of dog breeds [64], but not yet in wolves, and
that could provide a higher resistance of CWDs to such
disorders compared to German Shepherds.
Conversely, a number of behavioral traits desired by

the breeders could be hosted in a large set of dog-like
genes, often involved in brain development, which has
been demonstrated to be a pivotal target of domestica-
tion [65]. In particular, two genes were related to neural
differentiation and formation of the nervous system
(TGIF1 and CNTN5; [20, 66]) and the gene TMEM132D
was involved in oligodendrocyte differentiation that was
previously identified in dog and wolf selection scans [57,
67, 68]. Similarly, we identified a number of dog-like
genes playing important roles in learning and memory
processes, such as OXT, which can affect canine cogni-
tion, tolerance, adaptation and maternal behaviour [69],
in vision and hearing abilities, such as PCDH15 [63],
and in the regulation of circadian rhythms, body weight
and digestion, such as NOCT [65, 68], which could be
crucial in adapting the physiological activity of CWDs to
that of their human owners.
Interestingly, we also detected genes described to be

correlated with sociability: COMT, a gene involved in
dopamine catalysis and in regulating aggressive behav-
iors and attention in many breeds, and SEZ6L, both
mapping on chr26 and described as significantly associ-
ated with the time dogs spend in close proximity of
humans [70], reinforcing the hypothesis that the trans-
formation of negative defensive reactions toward
humans into positive responses could have been a pri-
mary step in early dog domestication [70] and that delib-
erate artificial selection on tameness may been have
further reinforced[65]. Direct or indirect artificial selec-
tion for tameness or sociability played a key role on the

evolution of a number of other domesticated and wild
taxa: the possibility of a strong artificial selection on
tameness was demonstrated also in the rat (Rattus
norvegicus; [71]) and in the red junglefowl (Gallus gallus;
[72]), showing that a number of other traits were influ-
enced by their sole selection on tameness, as already re-
vealed in the keystone study by Balyaev and colleagues
on silver foxes [11], leading to the concept of General
Domestication Syndrome to indicate a set of phenotypic
traits common to a number of domesticated species [73].
However, the long-lasting presence of human-dominated
landscapes can indirectly affect the genetic bases of tame-
ness also in wild-living populations, such as the Apennine
brown bear (Ursus arctos marsicanus), which shows re-
duced aggressive behaviours compared to other popula-
tions reflected in a unique genomic signature [74].
Another set of dog-excess genes were involved in the

regulation of calcium ions (BANK1), in the co-activation
of several hormone-dependent receptors (NCOA6) and
in DNA-binding (CUX2, URI1, ZMAT4), which were
also identified to be under selection in previous canid
studies [57, 67, 68].
Additionally we identified other dog-like genes known

to be involved in immune functions, such as those coding
for the immunity-related beta-defensins (CBDs and
DEFB119) and those responsible for cellular responses
and DNA repair (ARID1B, ASCC3, HM13, MGST2,
MARCH7), and tumor suppression (UNC5C), that were
identified to be hosted in key-differentiating regions for
dog domestication [68]. We detected another four
dog-excess genes, IGF2BP2 [75, 76] and SLC7A11, ACSS2,
GRIK2 [68], which were related to lipid metabolism and
to the synthesis of energy that could indicate the import-
ance of dietary modifications during the domestication
process, especially during the phase of breed creation [68].
We also found two genes (ASIP and RALY) involved in

regulating coat coloration by the synthesis of the yellow
pigment known as pheomelanin, that could confer the
typical color to the breed [20, 46]. Interestingly, recent
evidences demonstrated that variations in ASIP, found to
be under selection also in ancient Asian dog breeds [77],
can influence social behavior too, most likely through its
antagonistic effects on melanocortin receptors or
α-melanocortin stimulating hormone [68, 77], confirm-
ing that morphological and behavioral characteristics in
canids can be strongly linked [11, 14].
However, we identified also a series of dog-excess

genes previously described in the literature to be linked
to a number of common dog disorders such as arrhyth-
mogenic right ventricular cardiomyopathy (STRN; [78]),
progressive retinal atrophy (SLC4A3; [64, 79]), Collie eye
anomaly (NHEJ1; [80]), cone-rod dystrophy (ADAM9;
[64]), and canine Leber congenital amaurosis, previously
known as congenital stationary night blindness (RPE65;
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[64]), that are typical of the parental population German
Shepherd and that could be retained during the strong arti-
ficial selection that occurred during the CWD creation.

Conclusions
Our study provides the first genome-wide characterization of
the Czechoslovakian Wolfdog, highlighting how the breed,
despite the declared low number of founders, currently
shows relatively high levels of heterozygosis thanks to its hy-
brid ancestry. Our genome-wide approach confirmed to be a
valid method in reconstructing the breed history and dating
its dynamics, to assess the actual wolf ancestry proportions
of single individuals, as well as their relatedness. Therefore it
could provide a valid instrument also for forensic applica-
tions in order to unmask possible trades of individuals sold
as purebreds but that originated from illegal crossings with
wild wolves, which would be difficult to identify through
multivariate and Bayesian assignment procedures based on a
limited number of loci or on their morphology alone. More-
over, our gene search approach, made possible by the avail-
ability of a well-annotated reference genome, allowed us to
identify a first set of genes whose expression and interaction
would likely determine the typical wolf-like appearance of
the breed. Interestingly, most of the genes associated with
brain functions, behaviour, metabolism and disorders we de-
tected are clearly dog-derived, as expected in a breed that,
despite its recent hybrid origins, mostly shows typical
dog-like phenotypes. The best example is represented by the
COMT gene, which has been described as the candidate gene
for sociability in dogs [70] and only its dog alleles have been
retained in the gene pool of the analysed CWDs.
However, finding the causal mutations for single traits

needs further research, in particular for polygenic traits
[81]. Future genotyping of a larger number of individuals
with certified pedigrees from different lineages sampled
worldwide will contribute to a deeper comprehension of
many genetic, morphological, and behavioural character-
istics of this breed. The optimization of a small and
rapid marker panel, for example of 96 SNPs, including
also mutations for common diseases or particular behav-
iours, could help to monitor the health of all the com-
mercialized captive-born individuals and to allow their
genomic identification, contrasting unreported crossings
and illegal trading of wild wolves.

Additional files

Additional file 1: Figure S1. FST heat plot matrix of the genetic
distances among groups computed from the 126k dataset in SVS. The
most distant breed to Carpathian wolves (WCA) is the English Bulldog
(EBD) while the closest one is the ancient breed Shar-Pei (ShP). As
expected the least differentiated breed from the Czechoslovakian
Wolfdog (CWD) is the German Shepherd (GSh). (PDF 200 kb)

Additional file 2: Figure S2. Genetic variability indexes computed in
SVS using the 126k SNP dataset. a Mean values of observed

heterozygosity (Ho) within groups. Czechoslovakian Wolfdogs (in dark
gray) show higher levels of heterozygosity than parental populations
(Carpathian wolves in black and German Shepherds in light grey), as
expected from the recent crossings that originated the breed, but lower
than most breeds. Bars indicate standard deviations. b Plots of the mean
inbreeding coefficient F per breed. Czechoslovakian Wolfdogs show a
mean F value intermediate among the other breeds but lower than both
parental populations. c: from left to right: individual F values for
Carpathian wolf (black histograms), German Shepherd (light grey
histograms) and Czechoslovakian Wolfdog (dark gray histograms) groups.
Bars indicate standard deviations. (PDF 94 kb)

Additional file 3: Figure S3. PC1 vs. PC2 results from an exploratory
principal component analysis (PCA) computed in SVS on the 126k SNP
dataset and including dogs from 30 pure breeds (extrapolated from the
available LUPA project dataset; top side of the graph, in grey inside the
circle), Carpathian wolves (WCA; black dots to the left), German
Shepherds (GSh; light grey dots in the bottom), and Czechoslovakian
Wolfdogs (CWD; dark gray dots in the bottom). The two axes are not to
scale, in order to better distinguish individuals along PC2. (PDF 202 kb)

Additional file 4: Figure S4. Comparison between the individual
frequency of ROHs (FROH), calculated in SVS as the proportion of ROHs on
the genome length spanned by the analysed SNPs (on the horizontal
axis), and the individual Wright’s inbreeding coefficient (COI), estimated
from the pedigrees with the software U-WGI (on the vertical axis). The
two inbreeding indexes are significantly (p < 0.01) correlated. (PDF 71 kb)

Additional file 5: Figure S5. Linkage disequilibrium (LD) decay plot. The
vertical axis indicates the mean Estimated R-squared (r2), and the horizontal
axis indicates the distance in kb at which LD decays. (PDF 220 kb)

Additional file 6: Figure S6. Graphical representation, for each
chromosome of each analysed Czechoslovakian Wolfdog, of the ancestry
components identified by PCADMIX based on the analysis of 10-SNP
haplotype blocks. Each horizontal bar represents the two homologous
chromosomes of an individual showing in black the genomic regions
assigned as wolf-like and in light grey those assigned as dog-like.
(PDF 10810 kb)

Additional file 7: Table S1a. Wolf-excess genes surrounding outlier
wolf-like SNPs (OWS) from PCAdmix. Table S1b. Enrichment in gene
ontology categories (EGO) of wolf-excess genes surrounding the OWS
from PCAdmix. Table S1c. Dog-excess genes surrounding outlier dog-like
SNPs (ODS) from PCAdmix. Table S1d. EGO of dog-excess genes sur-
rounding ODS from PCAdmix. Table S2a. Dog-excess genes included in
genomic regions within ROHs. Table S2b. EGO of the dog-excess genes
included in genomic regions within ROHs. Table S3a. Wolf-excess genes
surrounding OWS from the lowest FST between CWDs and Carpathian
wolves. Table S3b. EGO of wolf-excess genes surrounding OWS from the
lowest FST between CWDs and Carpathian wolves. Table S3c. Dog-excess
genes surrounding ODS from the lowest FST between CWDs and German
Shepherds. Table S3d. EGO of dog-excess genes surrounding ODS from
the lowest FST between CWDs and German Shepherds. Table S4a. Wolf-
excess genes surrounding the outlier wolf-like 10-SNP blocks identified
from the lowest FST between CWDs and Carpathian wolves. Table S4b.
EGO of the wolf-excess genes surrounding the outlier wolf-like 10-SNP
blocks identified from the lowest FST between CWDs and Carpathian
wolves. Table S4c. Dog-excess genes surrounding outlier dog-like 10-
SNP blocks from the lowest FST between CWDs and German Shepherds.
Table S4d. EGO of dog-excess genes surrounding outlier dog-like 10-
SNP blocks from the lowest FST between CWDs and German Shepherds.
Table S5a. Wolf-excess genes surrounding OWS from BGC alpha param-
eter. Table S5b. EGO of wolf-excess genes surrounding OWS from BGC
alpha parameter. Table S5c. Dog-excess genes surrounding ODS from
BGC alpha parameter. Table S5d. EGO of dog-excess genes surrounding
ODS from BGC alpha parameter. Table S6a. Wolf-excess surrounding
OWS from BayeScan. Table S6b. EGO of wolf-excess genes surrounding

OWS from BayeScan. Table S6c. Dog-excess genes surrounding ODS

from BayeScan. Table S6d. EGO of dog-excess genes surrounding ODS

from BayeScan. (XLSX 781 kb)

Additional file 8: Figure S7a. BGC alpha parameter outlier SNPs. Values
lower than 0 indicate excess of wolf alleles, values higher than 0 indicate
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excess of dog alleles. BGC significant outliers are indicated by blue
crosses (top or bottom 1% of the empirical distribution of values) and by
red dots (95% credibility intervals of 10,000 iterations not including 0).
Figure S7b. BAYESCAN outlier SNPs detected comparing differences in
allele frequency between Czechoslovakian Wolfdogs and German
Shepherds (right) and between Czechoslovakian Wolfdogs and
Carpathian wolves (left). The vertical axis indicates mean FST values
between populations, and the horizontal axis indicates the logarithm of
posterior odds (log(PO)). The vertical line indicates the log(PO) value
corresponding to the false discovery rate threshold of 0.05. Loci on the
right of this line are putatively under selection. (PDF 312 kb)
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