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High power, medium voltage, series resonant
converter for DC wind turbines

Catalin Dincan, Student Member, IEEE, Philip Kjaer, Senior Member, IEEE, Yu-hsing Chen, Stig Munk-Nielsen,
Claus Leth Bak, Senior Member, IEEE,

Abstract—A new modulation scheme is introduced for a
single-phase series-resonant converter, which permits continuous
regulation of power from nominal level to zero, in presence of
variable input and output dc voltage levels. Rearranging the
circuit to locate the resonant LC tank on the rectifier side
of the high turns-ratio transformer combined with frequency
control and phase-shifted inverter modulation keep transformer
flux constant from nominal frequency down to DC, always in
sub-resonant continuous or discontinuous conduction mode. This
overcomes the principal deficit of series-resonant converters,
and the resulting compact and efficient transformer, and soft-
commutated inverter, present particular advantages in high-
power, high-voltage applications, like DC offshore wind turbines.
With transformer excitation frequency in hundreds of Hz range,
line-frequency diodes can be employed in the high-voltage rec-
tifier valve. Circuit operation and conduction modes, governing
equations and sample waveforms are presented, together with
experiments from a scaled demonstrator.

Index Terms—resonant converter, phase-shifted modulation,
medium voltage DC, medium frequency transformer, offshore
wind farm, high voltage converter

NOMENCLATURE

Cr Resonant (tank) capacitor.
δ Inverter legs phase displacement.
Fsw Switching frequency.
Fr Resonant frequency.
im Transformer magnetizing current.
iout Output current of the converter.
irp Primary resonant current.
irs Secondary resonant current.
ir Rectified current
Lr Resonant (tank) inductor.
Lm Transformer magnetizing inductance.
SRC Series resonant converter.
Vg Inverter output voltage.
V ′
g Inverter reflected voltage on secondary.
Vo Rectifier voltage.
V ′
o Rectifier voltage reflected on primary.
VCr Resonant capacitor voltage.
Vt Resonant tank voltag
∆V Voltage difference between V ′

g and Vo.
Tsw Switching period.
Tr Resonant current pulse period.
Zc Resonant tank characteristic impedance

I. INTRODUCTION

All authors are with the Department of Energy Technology, Aalborg
University , Aalborg,Denmark. Email:cgd@et.aau.dk

PRESENT offshore wind farms use mainly HVAC cables
to transmit the energy collected from wind turbines to

onshore, while other solutions use HVAC up to a large
rectifier and then to the mainland through HVDC cable lines.
According to [1], [5] and [14], HVDC-connected wind farms
could operate with higher efficiency when connected to a
MVDC (Medium Voltage Direct Current) collection grid. A
single line diagram for the wind farm with DC collector grid
is shown in Fig. 1. The motivation stems from the prospect of
reducing LCoE (levelized cost of energy) by as much as 3%,
by improving the efficiency with 2% and reducing the bill of
material (BoM) costs by at least 1% [1]. In the long term, it
is expected that MVDC will compete with MVAC for green
field distribution networks.

The introduction of DC technology for wind turbines has
attracted a lot of interest in both academia and industry, as
it promises many features, compared to classic AC solutions.
First of all, the traditional low frequency transformers will
be replaced with dc/dc converters that incorporate medium
frequency transformers, while DC cables will replace AC
cables. Considerable lower size and weight can be achieved
on the magnetic components and cables losses are decreased.
Second, DC turbines seem to be the preffered candidate for
offshore wind farms located at distances higher then 100 km,
mainly due to higher and more constant wind speed. The
desired, but challenging component of such a DC turbine
would be the MV dc/dc converter, which has to be designed
for challenging requirements.

Following paragraphs will discuss important properties for
such converters, give a short review of proposed topologies and
finally present the proposed dc/dc topology for this application.

A. Important dc/dc converter properties in DC turbine

Various DC turbine concept proposals exist. In [2] a medium
frequency generator is interfaced to MVDC grid through a
simple diode rectifier, while in [3], a non-isolated MMC
topology is discussed. Considering the cost of developing
a new offshore wind turbine, a solution for DC-connection
should preferably maximize the re-use of design from ex-
isting AC-connected turbines. Hence, the starting point for
our work is to maintain the generator and its rectifier which
controls generator power (see Fig. 1), and only change the
electrical circuit from the LV DC bus to the terminals of
the turbine, while keeping the same functionalities. In todays
AC-connected turbines, the DC/AC inverter controls the LV
DC bus voltage by adjusting the output active power and the
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Fig. 1. Single line diagram of DC wind farm
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Fig. 2. Prior art in topology arrangements specific to SRCs: Booster controlled
SRC (a); 3 phase SRC (b); Modular Multilevel SRC (c); per-phase approach
of SRC (d).

transformer steps the voltage up. In a DC-connected turbine,
the DC/DC converter will contain voltage transformation and
control output power, too. To synthesize, the DC/DC converter
should have following properties:

1) Ability to control LV DC bus voltage;
2) LVDC to MVDC voltage transformation ;
3) High efficiency across operational range;
4) Robust and compact design.

B. Wind turbines dc/dc converters

Significant research has investigated various dc/dc converter
topologies for DC turbines. Selecting an optimal topology is
not straightforward, as all the proposed solutions are at an
immature technology level both at system and component
level, and no substantial experience from full scale detailed
design exists.

Candidate circuits can be catalogued into hard-switching vs.
soft-switching and non-isolated vs. isolated topologies. The
advocates of non-isolated topologies claim that the design
and manufacturing of high-frequency transformers with large
turns ratio is difficult, mainly due to core materials costs,
complicated cooling and high impact of stray parameters (such
as stray capacitance and leakage inductance). Other problems
include poor coupling, dielectric losses in insulation, core and
windings losses from nonsinusoidal excitation, while the dis-
tributed capacitance of the winding turns can lower efficiency
and prolonge the pulse transition [11]. A number of works
has been proposed: [12] and [13] suggest a single and three
phase topology, for both uni and bidirectional applications.
They employ low-cost thyristors and use variable frequency
for control. The topology is similar to a parallel resonant
topology, but the high voltage stress across the semiconductors
and resonant tank make it unsuitable for this application. In
the same category, switched capacitor topologies where pro-
posed in [14] and [15], each topology showing soft-switching
capability, but require a large number of semiconductors and
passive components.

In DC turbine application galvanic isolation is preferred,
as it will offer increased personal safety and protection. The
impact of stray parameters should be indeed considered if
switching frequencies are in the range of tens or hundreds
of kilohertz, which are specifications for high frequency pulse
transformers. With MW- and kV-ratings, the transformer ex-
citation is of hundreds of Hz, which may reduce impact of
winding parasitic capacitance.

In one of the first works which have studied DC wind farms
[5], the hard-switched full bridge converter was selected as
preferred topology, but omitted the study of rectifier voltage
overshoot and oscillations caused by transformer parasitic LC
circuitry. [6] attempts a hard-switching 3-level NPC connected
to the medium-frequency transformer via a passive filter, but
efficiency is punished by hard-switching.

Further on, isolated soft-switching topologies like the single
active bridge have been proposed in [1], [8] and [9] and offer a
limited range of soft-switching capability, but suffer also from
high voltage overshoots and oscillations, related to the high
turns ratio of transformers.

C. Review of SRC application in wind turbines

High availability, efficiency and power density should be
design targets for the dc/dc converter and they can be achieved
through the employment of high power resonant converters,
as transformer non-idealities and stray parameters can be
incorporated in the resonant tank, making them well-suited
for high-voltage applications [24], [25].

The inspiration comes from traction and solid-state trans-
former (SST) applications, where demonstrators have been
evaluated. Here, the classic series resonant converter (SRC)
has been investigated in [16]-[20] for traction and in [21]-[23],
for SSTs. Operated at constant frequency and in sub-resonant
mode, the topology is known as the half cycle discontinuous-
conduction-mode series-resonant converter (HC-DCM-SRC).
For these particular applications, the converter basically cou-
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ples two DC link voltages with a fixed voltage transfer ratio,
but has no control possibilities.

For wind turbine application, interesting work was done in
[10], where a three phase topology was introduced and further
compared in [1] to the single and dual active bridge, promising
efficiency above 99%, but without a means of controlling dc-
link voltage (Fig. 2(a)).

There have been attempts of introducing resonant topologies
that could offer control possibility, at this power and voltage
level. A candidate solution (Fig. 2(b)) was proposed in [26]
and it employs a SRC, operated at resonant mode and with
constant frequency, while a front end boost converter controls
the input DC-link, increasing the number of components,
complexity and losses. In [31] a resonant topology consisting
of multiple strings of switch pairs and multiple modules
of resonant circuits (Fig. 2(c)) is proposed. [32] has also
suggested a per phase approach (Fig. 2(d)), based on series
resonant converter, while being operated at constant frequency
and variable duty cycle. On the other hand, it’s not obvious
how high efficiency could be obtained with that particular
mode of operation as no efficiency study was given.

To achieve high effiency with possibility of LV DC bus
voltage control, this paper proposes the unidirectional series
resonant converter. The topology was developed from the
classic series resonant converter (SRC, Fig. 3(a)) with tank
on inverter side, where if operated with variable frequency
control in sub-resonant mode (as seen in Fig. 3(c)), averaged
output power becomes a function of number of current pulses
sent to the load (Fig. 3(e) and (f)). With an ideal transformer
or very large magnetizing inductance, where magnetizing
current is neglected, inverter and rectifier semiconductor will
experience ZVS at turn-on and ZCS at turn-off. But, for
variable frequency below resonant point of LC tank, the core
magnetic flux Φ will vary with the applied volt-seconds, as
seen in Fig. 3(c), implying two aspects: transformer has to be
designed for lowest frequency, leading to a bulky and heavy
component and saturation will occur below design point. To
overcome this, our work proposes a method of operation for
the SRC, where variable frequency and phase shift control in
sub-resonant conduction mode are applied (as seen Fig. 3(d))
and it is successful only if the resonant tank is placed on
rectifier side side, as seen in Fig. 2(b). The topology will be
referred as SRC# (Fig. 4), with the ratings from Table I and
with a patent application [27] under progress. The suggested
topology has following features:

1) Unidirectional power flow;
2) Provides galvanic isolation;
3) Provides functionality of controlling input LV DC bus

voltage;
4) Maintains state of the art PMSG and its active rectifier;
5) Constant and very high efficiency across entire oper-

ational range due to soft-commutation of inverter and
rectifier devices (ZVS at turn-on and low turn-off current
for IGBTs, ZVS at turn-on and ZCS at turn-off for
rectifier diodes)

6) Low size and weight due to the medium frequency
transformer immersed in oil;
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Fig. 4. Series resonant converter with new method of operation (SRC#);

7) Rectifier based on inexpensive line-frequency diodes,
due to soft commutation and modest conversion fre-
quency.

TABLE I
RATINGS FOR SRC#

Parameter Value
Nominal power, Pn 10 MW

Nominal input voltage, Vin ± 2kV
Nominal output voltage, Vout ± 50kV

Isolation level ± 75 kV
Inverter 4x3 in parallel IGBT(6500V-x-750A)
Rectifier 4x40 in series diode (6500V-x-750A)

Frequency range Fsw 0-1000 Hz
Resonant capacitor Cr 0.250 uF
Resonant inductor Lr 78 mH

Transformer turns ratio, N 1:25
Magnetizing inductance Lm 10 mH

The paper is organized as follows: in Section II, operation
principle of the SRC# is introduced, while its corresponding
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conduction modes are described in section III. In Section IV,
simulation results of steady state operation with the target
converter are shown. Section V provides experiment results
from a 1 kW prototype, confirming SRC# expected behaviour
and Section VI concludes on the results.

II. OPERATION PRINCIPLE OF THE SRC#

The series resonant converter with the new method of
operation (SRC#) is depicted in Fig. 5(a) and comprises
(from left to right) a full bridge inverter, one monolithic 1:N
transformer, resonant LC tank and medium voltage rectifier.
Power flows from Vin to Vout. The switch pairs (S1/S2) and
(S3/S4) as indicated in Fig. 6(e), operate at a 50% duty cycle.
Commutation of switches on the leading leg (S1/S2) is phase
shifted with respect to the conduction of switches on the
lagging leg (S3/S4), with a duration δ, equal to half of LC tank
resonant period, resulting in a quasi-square excitation voltage
as seen in Fig. 6(a). The applied square wave voltage passes
through the transformer and excites the tank and a resonant
tank current irs starts to flow. After rectification and filtering
it is fed into the medium voltage network, Vout. Up to this
point there is no operational difference compared to a constant
frequency phase shift control, which is normally applied for
operation in super resonant mode, to achieve ZVS at turn on.

Considering the high power and medium voltage application
in this case, 6.5 kV IGBTs will be employed on the inverter
side, while 6.5kV line frequency diodes are used on rectifier
side. As the main contributor to the overall losses with IGTB
applications are the turn-off losses, sub-resonant mode is
preferred as it allows ZCS or a small current at turn-off (see
Fig. 5(b) and regardless of switching frequency, during every
switching period a full resonant pulse is sent to the load. This
mode facilites ZVS at turn-on and ZCS at turn-off for the
rectifier diodes, as seen in Fig. 5(c). Further on, if frequency
control is implemented, output power is dependent on the
amount of energy transfer to the output stage, making it a
function of number of energy pulses transferred to the output.
Low frequency operation means low power output, while
high frequency operation will deliver a high power output.
On the other hand, the disadvantage of operating the SRC
with resonant tank on inverter side in sub-resonant mode and
frequency control, is that the transformer needs to be designed
for the lowest frequency point and the magnetizing inductance
needs therefore to be considered.

The question is now, how can the transformer be operated
with variable frequency and be designed at highest operating
frequency, while avoiding saturation at lower frequency. One
possible way and with reference to Fig. 6(a), is to make
Vg a function of square wave pulses, meaning a pulse with
determined length is applied to the inverter, but the distance
between pulses varies as a function of output power. As
the length of every voltage pulse is fixed, the amplitude of
magnetizing current im will be constant, as seen in Fig. 6(d).
Further on and with ref. to Fig. 6(b), if the applied voltage Vg
has the same length as the resonant pulse irs, then frequency
control in sub-resonant mode becomes possible, allowing the
design of the transformer for highest operating point. This

implies that LC tank resonant frequency Fr will be equal or
slightly higher then the maximum switching frequency Fsw,
otherwise operation in sub-resonant mode is not possible.
Power to frequency function is described in eq. (1):

Pout = 4 · Fsw ·N · Cr · Vin · Vout (1)

III. SRC# CONDUCTION MODES

Considering that SRC# is operating in sub resonant mode,
four modes of conduction (two discontinuous and two con-
tinuous) will appear under steady state operation: DCM1,
DCM2, CCM1-hybrid and CCM1. Switching frequency Fsw

and voltage difference ∆V between primary reflected voltage
Vg’ (where Vg’ = Vg · N ) and Vo will determine whether
the converter operates in one conduction state or another.
Discontinuous modes are characterized by the number of half
resonant cycles that appear during a half switching period,
while continuous modes are characterized by the number
of full resonant cycles that appear during a half switching
period, according to [28]. A one-cycle operation of SRC# is
(regardless of conduction mode) composed of a sequence of
linear circuits (T1, T2, D1, D2, Q1, Q2 and X, see Fig. 7(h)),
each corresponding to a particular switching interval. Every
linear circuit is determined by switching certain switch pairs,
as described in Fig. 7(a) to (g).

A. Equations for subintervals

The time domain approach is used to investigate the be-
haviour of the SRC# operated with variable frequency and
phase shift modulation. From the equivalent circuits, steady
state equations of resonant inductor and capacitor voltage for
every mode are derived by Laplace transform. Considering
the half wave symmetry of tank variables, the analysis is
performed for half cycle of switching period for every mode
of operation. Similar to the work of [33] the circuit behaviour
of the SRC# under each topological mode can be described
using the following differential equations, for subintervals T1,
D1, T2, D2, Q1, Q2, P1, P2 and X, where Vt is the resonant
tank voltage:

Lr
dirs
dt

+ VCr = Vt (2)

Cr
dVc
dt

= irs (3)

Vt =



V ′
g − Vo , for T1

V ′
g + Vo , for D1

+Vo , for Q1

−V ′
g + Vo , for T2

−V ′
g − Vo , for D2

−Vo , for Q2

VCo, for X

(4)

(5)
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For subinterval X:

Lr
dirs
dt

= 0 (6)

Cr
dVc
dt

= 0 (7)

By solving these differential equations, expressions for irs
and VCr in each subinterval can be derived, with application
of the consistent initial conditions for each subinterval:

irs =
Vt − VCr(0)

Zc
sinωrt+ irs(0) cosωrt (8)

VCr = Vt − (Vt − VCr(0)) cosωrt+ irs(0)Zc sinωrt (9)

B. DCM1

With reference to Fig. 8(a), DCM1 mode can appear in the
full switching range and it’s possible only if ∆V ≈ 0. Fig. 8(a)
shows on top the applied inverter voltage V ′

g , rectifier voltage
Vo and secondary resonant current irs. Middle graph describes
resonant capacitor voltage VCr, primary resonant current irp
and magnetizing current im, while lower graph indicates the
transistors (S1 to S4) switching pattern. During this conduction
mode, only one half resonant cycle appears during a half
switching period. This is the ideal situation for SRC#, as the

power to frequency function is linear. This mode is composed
of following subintervals: T1-X-T2-X. For example, during T1
subinterval [0 to t1] (see Fig. 7(a)), transistors S1 and S4 are
conducting and a full resonant cycle is allowed to pass. During
subinterval X [t1 to t2], all rectifier diodes are reversed biased,
as resonant capacitor voltage VCr is smaller then Vo and no
energy can be transferred. During this subinterval, VCr stays
flat. Next subinterval T2 is complementary to T1, but with
opposite sign.

C. DCM2

With respect to Fig. 8(b), principle waveforms for DCM2
are shown. As the name implies two half resonant cycles
will appear during a half switching period. This conduction
mode can only appear in the interval [0 to Fr/2] and if
∆V > 0. Being very similar to DCM1, DCM2 is a sequence of
following sub-intervals: T1-Q1-X-T2-Q2-X, with Q1 and Q2
equivalent sub-circuits shown in Fig. 7(e) and (f). From [t0 to
t1], S1 and S4 conduct and a full resonant cycle is delivered
to the load. During this interval, as the resonant current irs is
increasing, resonant capacitor voltage increases too. As soon
as the resonant current reaches zero, a phase displacement
between S1 and S4 is applied and S1 is no longer conducting.
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equivalent circuits (h).

In the following sub interval Q1, a negative resonant current
flows through D1 and T3, while VCr is slowly discharged, as
VCr > Vo. When VCr = Vo, another X subinterval begins and
no device is conducting.

D. CCM1-Hybrid

CCM1-hybrid mode of conduction is described in Fig.
8(c). The name hybrid is used as very short X sub interval
(characterized by zero resonant current) will appear. First of
all, this mode can appear in the switching interval [Fr/2 to Fr]
and if ∆V ≈ 0. It is composed of following subintervals:T1-
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X-Q1-T2-X-Q2. During subinterval T1, resonant current irs
will start at a low turn on current ir(0) and for a period equal
to δTsw/2 a resonant cycle is delivered to the load. Next,
a X subinterval appears, as VCr ≈ Vo. The length of T1
and X equals with δTsw/2 which is the phase displacement
between the inverter legs. Further on, as soon as phase
displacement is implemented, a Q1 subinterval will begin and

negative resonant current will start to flow. Following T2,X
and Q2 subintervals are complementary, but with opposite
sign. Compared to DCM1, the power to frequency relation
in CCM1-hybrid is slightly non linear.
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Fig. 9. Simulated results of steady state operation in DCM1 with steps in switching frequency (a); zoomed in windows of principle waveforms (primary
resonant current irp, magnetizing current im, inverter voltage Vg and resonant capacitor voltage Vcr at 900 Hz (b), 450 Hz (c) and 150 Hz (d).

E. CCM1

Final mode of conduction is characterized by the waveforms
from Fig. 8(d) and it’s composed of following subintervals:
T1-D1-Q1-T2-D2-Q2, with equivalent circuits shown in Fig. 7.
This mode appears only above Fr/2 and if ∆V >> 0, showing
a highly nonlinear relation between power and switching
frequency and it should be avoided as it increases turn-on
losses.

IV. STEADY STATE OPERATION

To illustrate the steady state operation of the target con-
verter, a PLECS simulation model was run with different
switching frequencies, in the range 0 to 1000 Hz, while voltage
difference ∆V between input and output voltage was kept to
0.1%, so as to facilitate the operation in DCM1. The results
are shown in Fig. 9, where it is seen that output power is linear
to the applied switching frequency. As the converter operates
in DCM1, peak resonant current and voltage are constant in
the whole operating range. Fig. 9 (b),(c) and (d) are zoomed
in windows of the principle current and voltage waveforms
(primary current irp, secondary current irs, inverter voltage
Vg , capacitor voltage VCr, magnetizing current im) and they
also demonstrate how pulse removal technique impacts the

magnetizing current, keeping it constant, regardless of applied
frequency. Another aspect worthy to mention is that at very
low switching frequency Fsw < 50Hz, the converter output
current becomes discontinuous, as seen in Fig. 9(a-bottom).
In the simulation model, LC tank quality factor Qs was
considered infinite, meaning the tank has no resistive losses.
In reality, to keep low losses Qs should be higher than 100,
meaning very low inductor resistance and capacitor ESR.
These factors are part of converter design specifications.

V. EXPERIMENT AND DISCUSSIONS

In order to validate the pulse removal technique, control
principles and protection of the SRC#, a scaled bench-top 1kW
demonstrator was built with specifications as shown in Table
II.

The circuit diagram is shown in Fig. 10(a) and experimental
setup in Fig. 10(b). The transformer is designed for a maxi-
mum frequency of 1000 Hz, which is the same as the target
component, and uses an amorphous core and windings with
round wires. This demonstration was tested with operation in
DCM mode, as this is the favorable mode of operation. Fig. 11
shows the SRC# characteristic waveforms for DCM1 mode,
where ∆V ≈ 0.



0885-8993 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2017.2770220, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS 9

Cf

Cf

iout

Lr Cr

S1 S3

S2 S4

D5

D7

D9

D8

ir

Lm

irp irs

im

Vout

Cin

Cin

VoVg’

D6 D10

D11

D12

Vin

Rload

a) b)

Inverter

Transformer
Load

LC Tank
RectifierVg

Fig. 10. Experiment circuit diagram (a); Experiment setup (b). In order to have a constant output voltage, a second DC source is used to supply a load
resistor. As long as Vg is smaller then Vo no power is delivered to load, as it comes only from Vo. If for example, the SRC# will deliver 50% of nominal
load, then the external dc source will cover the rest of 50%. In this manner it’s possible to obtain a constant output voltage without too much effort. The
disadvantage is that the resistors are always dissipating nominal power.

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 200Hz

 

 

0 1 2 3 4 5

x 10
−3

−5

0

5
C

ur
re

nt
[A

]
Vg
Vcr
irs

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 500Hz

 

 

0 1 2 3 4 5

x 10
−3

−5

0

5

C
ur

re
nt

[A
]

Vg
Vcr
irs

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 800Hz

 

 

0 1 2 3 4 5

x 10
−3

−5

0

5

C
ur

re
nt

[A
]

Vg
Vcr
irs

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 200Hz

 

 

0 1 2 3 4 5

x 10
−3

−10

0

10

C
ur

re
nt

[A
]

Vg
irp
im

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 500Hz

 

 

0 1 2 3 4 5

x 10
−3

−10

0

10

C
ur

re
nt

[A
]

Vg
irp
im

0 1 2 3 4 5

x 10
−3

−600

−400

−200

0

200

400

600

Time[s]

V
ol

ta
ge

[V
]

Fsw = 800Hz

 

 

0 1 2 3 4 5

x 10
−3

−10

0

10

C
ur

re
nt

[A
]

Vg
irp
im

Fig. 11. Measured experimental waveforms with ∆V ≈ 0%. Left side - measured secondary side resonant current irs, resonant capacitor voltage VCr and
inverter voltage Vg . Right side - measured inverter side resonant current irp, magnetizing current im and inverter voltage Vg (b) for different switching
frequencies.

Looking at principle waveforms from Fig. 11 (left side),
it can be noticed that regardless of switching frequency,

the magnetizing current is stable and there is no saturation
phenomenon. As the transformer windings resistance is high
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TABLE II
EXPERIMENTAL SRC# PARAMETERS

Parameter ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ Value ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙
Vin 250 V
Vout 500 V
Pn 1kW
Lr 20mH
Cr 2uF
N 2

in this case, as compared to the magnetizing inductance Lm,
the magnetizing current shows a slow decline during the
zero voltage period. Measurement of magnetizing current im
was possible with open transformer secondary and overlapped
across irp (Fig. 11 (right side).

Fig. 11 shows the primary and secondary resonant current
(irp and irs) and applied inverter voltage Vg for three different
switching frequencies (200, 500 and 800 Hz). It is noticed
that during the zero voltage periods, on inverter side the
current flowing through one pair of transistor and diodes
is the magnetizing current. Another phenomenon observed
during the experiments, is the acoustic noise generated, as the
converter operates from very low frequency up to 1000 Hz.
For elevated power, it is expected the noise to increase and it
will require a system to damp the noise.

VI. CONCLUSION

The single phase series resonant converter with resonant
tank on rectifier side and operated with a new modulation
scheme is proposed as a candidate for megawatt high-voltage
DC wind turbines. The circuit promises high efficiency and
low transformer size, due to soft-commutation on inverter and
rectifier devices. This paper has given a general presentation
of circuit operation, conduction modes, governing equations
and sample waveforms. By employing frequency control and
phase-shifted modulation below resonant point of LC tank,
continuous regulation of power from nominal level to zero
is possible. The main principle of proposed method is to
clamp the applied voltage to zero as soon as the resonant
current becomes zero, limiting the magnetic flux build-up
and resulting in a compact and efficient transformer. The
circuit will experience four different conductions modes (2
discontinuous and 2 continuous) and they are determined by
operating frequency and voltage drop across LC tank. The
proposed pulse-removal modulation scheme and the expected
conduction modes were implemented and tested on a 1kW,
250V/500V demonstrator. Higher power and voltage ratings
are now pursued, where loss segregation and closed-loop
control will be investigated experimentally, and published.
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