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This paper presents a modeling framework for schedulability analysis of distributed integrated mod-

ular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected

by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in

UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model check-

ing (SMC). The framework has been designed to enable three types of analysis: global SMC, global

MC, and compositional MC. This allows an effective methodology including (1) quick schedulability

falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in

simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state

space. The framework is applied to the analysis of a concrete DIMA system.

1 Introduction

In the avionics industry, Distributed Integrated Modular Avionics (DIMA) has been widely recognized as

a promising architecture and the next generation of Integrated Modular Avionics (IMA). A DIMA system

installs standardized IMA modules in spatially distributed processors[15] that communicate through a

unified bus system[4] such as an AFDX network. Avionics functions residing on the IMA modules

are implemented in the form of application software running in an ARINC-653[2] compliant operating

system. The generic distributed structure of DIMA significantly improves performance and reliability

as well as lowers weight and cost, while it also dramatically increases the complexity of schedulability

analysis. A schedulable DIMA system should fulfil not only the temporal requirements of real-time tasks

in each ARINC-653 module but also several communication constraints among the distributed nodes. As

a result, the DIMA architecture requires the system integrators to analyze schedulability considering both

computation and communication.

The development of model checking based approaches has currently become an attractive topic for

the schedulability analysis of complex real-time systems due to the sufficient expressiveness of formal

models. The techniques of classical model checking (MC) describe schedulability as temporal logic

properties and verify the properties via symbolic state space exploration. Unfortunately, when being

applied to a complete avionics system, all of them suffer from an inevitable problem of state space

explosion, which makes the exact symbolic model checking practically infeasible.

Accordingly, Statistical Model Checking (SMC) is proposed as a promising technique that has pow-

erful facilities of formal modeling as well as avoids the state-space explosion of classical model checking.

A SMC engine runs and monitors a number of simulation processes, quickly estimating the statistical re-

sults of the satisfaction or violation of certain properties. However, SMC cannot provide any guarantee of

schedulability but quick falsification owing to its nature of statistical testing. Therefore, it is reasonable

to apply both classical and statistical model checking to the schedulability analysis of avionics systems.

http://dx.doi.org/10.4204/EPTCS.268.5
http://creativecommons.org
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Related work: We found no studies that analyzed the schedulability of distributed avionics systems

as a whole including the network by model checking. The related research isolates computation modules

from their underlying network, thereby considering these nodes as independent hierarchical scheduling

systems or investigating the network in isolation, which possibly leads to pessimistic results. There have

been works using model-checking approaches to analyze the temporal behavior of individual avionics

modules in various formal models such as Coloured Petri Nets (CPN)[11], preemptive Time Petri Nets

(pTPN)[6], Timed Automata (TA)[3], and StopWatch Automata (SWA)[9], and verify schedulability

properties via state space exploration. For hierarchical scheduling systems, some studies[7, 14, 5] exploit

the inherent temporal isolation of ARINC-653 partitions[2] and analyze each partition separately, but

they ignore the behavior of the underlying network or the interactions among partitions. Thus these

methods are not applicable to DIMA environments in which multiple distributed ARINC-653 partitions

communicate through a shared network to perform an avionics function together.

Contributions: In this paper, we present a modeling framework for schedulability analysis of DIMA

systems that are implemented as a set of UPPAAL SWA, i.e. the TA extended with stopwatches[8] in

UPPAAL. The framework combines compositional and global analysis by classical and statistical model

checking. The main contributions of this paper are summarized as follows:

• Modeling of DIMA systems covers the major behavior of two-level ARINC-653 compliant sched-

ulers, periodic/sporadic tasks, intra-partition synchronization, and inter-partition communications

through an AFDX network.

• Compositional analysis using classical model checking verifies the model of each ARINC-653

partition including its environment individually and then assemble the local results together to

derive conclusions about the schedulability of an entire system.

• Global analysis using statistical model checking allows users to quickly falsify non-schedulable

configurations by SMC hypothesis testing, which can handle a complete system model and avoid

an exhaustive exploration of the state space.

The rest of the paper is organized as follows. Section 2 describes the structure of a DIMA system.

An overview of the modeling framework is presented in section 3, where the methods of compositional

and global analysis are briefly outlined. In section 4, we detail the UPPAAL models of the framework.

Section 5 shows an experiment on a concrete DIMA system, and section 6 finally concludes.

2 Avionics System Description

We consider a generic architecture of a DIMA system with several ARINC-653 modules connected by

an AFDX network shown in Fig.1. There is a three-layer structure in the DIMA architecture consisting

of scheduling, task, and communication layers.

The scheduling layer comprises the scheduling facilities for generic computation resources in a

DIMA system, where physically distributed modules with independent computational power execute

application tasks simultaneously. The tasks run in a partitioned operating system which provides a two-

level scheduling mechanism and achieves temporal isolation between ARINC-653 partitions. In such

a scheduling system, partitions are scheduled by a Time Division Multiplexing (TDM) scheduler and

each partition also has its local scheduling policy, preemptive Fixed Priority (FP), to handle the internal

tasks[2].

All the application tasks executing avionics functions constitute the task layer. We consider a task

as the smallest scheduling unit, each of which can be executed concurrently with other tasks in the same
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Figure 2: An Overview of Modeling Framework

partition. Assume that jobs of each task are scheduled repeatedly. We define two task types: periodic

tasks and sporadic tasks. A periodic task has a fixed release period, while a sporadic task is characterized

by a minimum separation between consecutive jobs.

The communication layer provides the services of inter-partition communication over a common

AFDX network. The AFDX protocol stack realized by an End System(ES) interfaces with the task layer

through ARINC-653 ports. Based on the AFDX protocol structure, the communication layer is further

divided into UDP/IP layer and Virtual Link layer, where a Virtual Link (VL) ensures an upper bound on

end-to-end delay.

The communication layer also affects the schedulability of the system. According to the ARINC-

653 standard[2], there are two types of ARINC-653 ports, sampling ports and queuing ports. A sampling

port can accommodate at most a single message that remains until it is overwritten by a new message.

Moreover, a refresh period is defined for each sampling port. This attribute provides a specified arrival

rate of messages, regardless of the rate of read requests from tasks. In contrast, a queuing port is allowed

to buffer multiple messages in a message queue with a fixed capacity. However, the operating system is

not responsible for handling overflow from the message queue.

In our framework, we verify the three following schedulability properties of DIMA systems: (1) All

the tasks meet their deadlines in each partition. (2) The refresh period of any sampling port is guaranteed.

(3) The overflow from any queuing ports is avoided.

3 An Overview of the Modeling Framework

3.1 An Outline of the UPPAAL Models

The UPPAAL templates in the modeling framework are organized as the above layered structure. Fig.2

shows an overview of these templates together with the channels between them.
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The scheduling layer consists of two TA templates PartitionScheduler and TaskScheduler. The

PartitionScheduler model provides the service of TDM partition scheduler for any partition. The Tas-

kScheduler model implementing FP scheduling policy allocates processor time to the task layer only

when the partition is active. Hence PartitionScheduler sends notification on the broadcast channels

enter_partition and exit_partition to TaskScheduler when entering and leaving its partition, re-

spectively.

The task layer contains a set of task models which are instantiated from two SWA templates Periodi-

cTask and SporadicTask. A task model describes an instance of an avionics program. Since the tasks

in a partition are scheduled by a task scheduler, we define four channels ready, release, sched and

stop as a set of scheduling commands to communicate between task templates and TaskScheduler.

Moreover, the priority ceiling protocol is implemented by mutexes in task models to deal with intra-

partition synchronization.

The communication layer comprises two types of models: UDP/IP and VL models. The UDP/IP

models are divided into two TA templates IPTx and IPRx, which calculate the delivery latency of the

UDP/IP layer in a transmitting ES and a receiving ES respectively. When sending a message to an

ARINC-653 port, the source task notifies the destination IPTx via the broadcast channel pmsg. In the link

layer, two TA templates VLinkTx and VLinkRx model the total latency of a VL through the transmitting

ES and the reception network respectively. The channel vl connects VLinkTx and VLinkRx in the same

VL. Additionally, there are also two broadcast channels ipoutp and ipinp between the UDP/IP and VL

models in opposite directions.

3.2 Integration of MC and SMC

In UPPAAL SMC, a model comprises networks of Stochastic Timed Automata (STA), which is designed

as a stochastic interpretation and extension of the TA formalism of UPPAAL classic[10]. To integrate

SMC into a common framework, we adapt the above templates for STA with the following features:

• Input-enabledness: Only broadcast channels, which can attach to an arbitrary number of receivers,

do we use in the modeling framework to ensure the input-enabled property that no input actions

are prevented from being sent to a STA.

• Deterministic bounded delays: The semantics of non-deterministic delays in TA is replaced with

probability distributions. The bounded delay at a location of templates is defined as a uniform dis-

tribution in STA. For example, PeriodicTask executes computing operations at a location Running

with a bounded delay interval [bcet,wcet]. Thus we assume this execution time to be random sam-

ples from the uniform distribution U(bcet,wcet).

• Deterministic unbounded delays: The unbounded delays are interpreted as exponential distribu-

tions in STA. We take the model SporadicTask for example. There is a minimum separation but no

maximum constraint between consecutive releases of a sporadic task. We describe this unbounded

separation as an exponential distribution with an empirical rate at a location WaitNextRelease.

• Non-zenoness: We adopt two modeling principles to reduce the risk of zenoness in UPPAAL: (1)

Avoid the loops composed of permanently enabled edges and urgent/committed locations where

time cannot progress. (2) Provide normal locations with two types of outgoing edges, which are

either event-driven edges that contain input channels or time-driven edges that do not have input

labels but guards making time progress at source locations. Since UPPAAL SMC can detect zeno

runs[10], the modeling framework has been checked thoroughly to achieve non-zenoness.
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3.3 Schedulability Analysis by MC and SMC

On the basis of the above models, we introduce the procedure for our schedulability analysis, which

combines classical and statistical model checking together. Fig.3 shows the four steps in the procedure:

(1) Scheduling configuration is encoded into the UPPAAL model as a structure array. (2) We perform

hypothesis testing of SMC for the model to falsify non-schedulable configuration rapidly. (3) If the

model goes through the SMC test, its schedulability should be verified by classical symbolic MC. (4) We

refine the configuration that fails steps (2,3) and restart step (1).

When we apply classical MC to the analysis of a DIMA system, the schedulability constraints are

expressed and verified as a safety property of SWA models. We add a boolean variable error with the

initial value False to UPPAAL templates for this purpose. Once the schedulability is violated, the related

model will assign the value True to error immediately. Thus, the schedulability is replaced with this

safety property ϕ :

A[] not error, (1)

which belongs to a simplified subset of TCTL used in UPPAAL.

According to the size of state space, we choose either a global or compositional MC analysis. The

system models with small size can be handled by the global analysis where the modeling elements of

all the partitions in the system are instantiated and checked directly. Nevertheless, most concrete system

models have larger state space, thereby making the global analysis infeasible. To reduce the state space

in this case, we perform a compositional analysis which check each partition including its environment

individually. A set of message interface automata is built to model the environment for a partition.

The schedulability can be obtained from the satisfaction of ϕ , i.e. the MC result “Yes” in Fig.3.

However, since the symbolic MC of UPPAAL for SWA introduces a slight over-approximation[8], we

cannot conclude non-schedulability from the MC results “No” or “May not” with certainty. Therefore,

we derive non-schedulability from SMC testing rather than from the verification of ϕ .

Considering the scalability of SMC, we only use a global analysis in UPPAAL SMC. The schedula-

bility of a complete avionics system is described as following queries of hypothesis testing:

Pr[<= M](<> error) <= θ , (2)

where M is the time bound on the simulations and θ is a very low probability. Since UPPAAL SMC

approximates the answer using simulation-based tests, we can falsify non-schedulable configuration (i.e.

the SMC result “No” in Fig.3) rapidly by finding counter-examples but identify schedulable ones only
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Figure 4: PartitionScheduler Model

with high probability (1− θ ) (i.e. the SMC result “Yes” in Fig.3). Hence, the configuration that goes

through the SMC tests should be validated by symbolic MC to ensure the schedulability of the corre-

sponding system.

4 UPPAAL Models

In this section, we detail the major UPPAAL templates according to the layered structure from top down.

4.1 Scheduling Layer Models

PartitionScheduler template In the scheduling layer, a partition is activated only during its partition win-

dows within every major time frame Tm f . We build a TA model PartitionScheduler(See Fig.4) to

provide the description of temporal resources for a particular partition.

The template declarations in UPPAAL support the execution of a PartitionScheduler model. The

parameter pid of PartitionScheduler is the identifier of its partition and the partition schedule is

recorded in an array of structures PartitionWindows. Each element in the array contains two integer

fields offset and duration, where offset is the start time of a partition window and duration denotes

the duration of this window. By reading PartitionWindowsTable from the declarations, the functions

winStart and winEnd with the same integer parameter wind return the start time and the end time of the

windth partition window, respectively. The integer constant MajorFrame stands for the major time frame

Tm f , and the clock x measures time within every Tm f . In the template, all the guards and invariants use x

to control the transitions between locations.

There are three locations in a PartitionScheduler model. The initial location Init represents a

conditional control structure that determines the next location at the start of a major time frame. If a

partition window and the major time frame start simultaneously, the model will move to the location

InPartition. Otherwise, it will enter the location OutOfPartition. Within a major time frame, the

model keeps traveling between InPartition and OutOfPartition according to whether or not the cur-

rent time is in a partition window. For any time from the initial instant, if the PartitionScheduler

model of pid enters a new partition window, it will move to the location InPartition, and notify the

unique task scheduler model in pid through the output channel enter_partition. On the contrary, if the

PartitionScheduler leaves its current partition window, it will move to the location OutOfPartition,

and send notification to the task scheduler model through the output channel exit_partition.

TaskScheduler template For any partition, there is a task scheduler that executes the preemptive FP
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scheduling policy while the partition is active. The behavior of the task scheduler is depicted in the

TA template TaskScheduler (See Fig.5). The only template parameter pid is the identifier of the task

scheduler’s partition.

Figure 5: TaskScheduler Model

The model of TaskScheduler receives

notification from the PartitionScheduler

model through two channels enter_parti-

tion and exit_partition, and uses the

channels ready, release, sched and stop as

scheduling commands to manage the tasks in

the partition pid. If there is a task becoming

ready to run or relinquishing the processor,

the task model will send its TaskScheduler

model a ready or release command respec-

tively. TaskScheduler maintains a ready

queue that keeps all the tasks ready and wait-

ing to run, and always allocates the processor

to the first task with the highest priority in the

ready queue. If a new task having a higher

priority than any tasks in the ready queue

is ready, TaskScheduler will insert the task

into the ready queue, interrupt the currently

running task via the channel stop and sched-

ule the new selected task via the channel sched. The task identifier is delivered by the offset of channel

arrays in the synchronization between TaskScheduler and the task layer.

The ready queue is implemented by the integer array rq which contains a sorted set of task identifiers

in priority order. The tasks with identical priority are served in order of readiness. The function rqLen

returns the number of the tasks in rq. We use the function enque to insert a new task (identifier) into the

ready queue rq and reorder the tasks in the queue. The function deque removes the first element from

the ready queue. The first element in rq, namely the identifier of the currently running task, is returned

from the function front and recorded in the integer variable running.

Table 1: The Major Locations in Task Scheduler

Location
Partition Windows Ready Tasks

Outside Inside 0 > 0

NoTask
√ √

Idle
√ √

WaitPartition
√ √

Occupied
√ √

According to whether the current time is in

the partition windows as well as to the number

of the tasks in the ready queue, we create four

major locations listed in Table 1. These four

locations cover all situations, where the model

must be at one of these locations for any time

from the initial instant. In contrast, all the other

locations of the template are committed and uti-

lized to realize conditional branches or atomic action sequences.

4.2 Task Layer Models

We build two SWA templates PeriodicTask and SporadicTask in UPPAAL. Both templates share the

same skeleton. So we take PeriodicTask for example to sketch out the structure of a task model.

In the template, we define two normal clock x and curTime and a stopwatch exeTime. The clock

x measures the delays prescribed by the task type to calculate the release points of the task. The clock
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Figure 6: The Main Structure of a Task Model

curTime is used to determine the start of the next task period. By contrast, the stopwatch exeTime

measures the processing time during the execution of an abstract instruction that describes concrete task

behavior, and thus progresses only when the model is at the location Running.

Once the task is scheduled by TaskScheduler through the channel sched, it will start execution on

the processor and move from the location Ready to ReadOp. For any task in the system, a sequential list

of abstract instructions is implemented as the structure array op. By using an integer variable pc as a

program counter, the task can fetch the next abstract instruction from op[pc] at the location ReadOp (See

Fig.6).

According to the command in the abstract instruction currently read from op, the task model performs

a conditional branch and moves from the location ReadOp to one of the different locations that represent

different operations. Therefore, the command set containing the following seven elements divides the

rest of the template into seven corresponding parts.

• COMPUTE Command: When the model reads a COMPUTE command, it will (re)start the stopwatch

exeTime and enter the location Running, which means that the processor is being occupied by the

task and executing a computation instruction.

• LOCK Command: By reading a LOCK command, the task model attempts to acquire the mutual

exclusion lock that is specified by the res field of the instruction. The availability of a mutual

exclusion lock depend on the priority ceiling protocol.

• UNLOCK Command: When fetching an UNLOCK command from op, the task releases the lock in

the instruction and wakes up all the tasks blocked on this lock.

• DELAY Command: The instruction with a DELAY command can make a task suspended at the

location WaitDelay for a specified period of time.

• SEND and RECEIVE Command: The commands SEND and RECEIVE represent non-blocking mes-

sage I/O operations among different partitions.

• END Command: The command END denotes the accomplishment of the current job in this task

period. The task will relinquish the processor through the channel release and stay at the location

WaitNextRelease until the next period starts.
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Figure 7: The VLinkTx Model

4.3 Communication Layer Models

The communication layer consists of four templates: IPTx and IPRx calculate the delivery latency of the

UDP/IP layer. VLinkTx and VLinkRx calculate the transit delay of frames through a specified VL. We

take VLinkTx for example. It calculates the latency of frame delivery through the source ES.

VLinkTx has a template parameter vlid that is the unique identifier of a VL. The VL models read the

configuration from the array vlink, which contains a source FIFO buffer src, an array dst of destination

FIFO buffers, an identifier es of the VL’s source ES, an integer field BAG that stands for the Bandwidth

Allocation Gap (BAG)[1], and an integer field TxDelay denoting the frame delay[1].

The total delay through a VL is divided into technological latency and configuration latency. The

technological latency is independent of traffic load, whereas the configuration latency depends on system

configuration and traffic load.

We declare two integer constants TechMin and TechMax to be the interval of the technological latency

[TechMin,TechMax]. The configuration latency is divided into three parts: the fixed frame delay, the

floating delay in waiting for the interval of BAG, and the varying configuration jitter within each BAG.

According to the ARINC-664 Part 7[1], a VL should regulate its traffic to send no more than one frame in

each BAG. A clock t measures the interval of the jitter as well as the BAG. By contrast, the configuration

jitter within BAGs is caused by the interference from the frames of the other VLs in the same transmitting

ES[1]. We define an integer array txjitter where each element provides the maximum configuration

jitter according to the current traffic at the output of an ES.

As is depicted in Fig.7, VLinkTx obtains notification of packet-receiving on the input channel ipoutp.

At the initial location Init, VLinkTx waits for the first packet to arrive at the source FIFO. On receiving

this first packet, the model enters the location Sending and resets the clock t to start the latency cal-

culation as well as a new BAG interval. Leaving the location Sending means the model completes the

sending operation of a frame. At this point, VLinkTx must invoke the function vlSend to decrease the

message counter of the source FIFO.

According to the number of packets in the source FIFO, VLinkTx waits for the next BAG interval or

the next incoming packet after completing a sending operation. First, if the model still has at least one

packet in the source FIFO to transmit, it will enter the location WaitBAG, thereby waiting for the start

of the next BAG. Second, if there is only the sent packet in the source FIFO, the model will stay at the

location Idle until the arrival of the next incoming packet.
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5 Case Study

This section demonstrates the schedulability analysis of an avionics system which combines the workload

of [7] and the AFDX configuration of [13]. The workload is comprised of 5 partitions, and further divided

into 18 periodic tasks and 4 sporadic tasks. Considering the inter-partition messages in the workload, we

assign each message type Msgi, i = {1,2,3,4} a separate VL with the same subscript. The messages of

Msg1 and Msg2 are handled at the refresh period 50ms in sampling ports. Msg3 and Msg4 are configured

to operate in queuing ports, each of which can accommodate a maximum of one message.

Fig.8 illustrates the distributed deployment of the workload. We consider 3 ARINC-653 modules

connected by an AFDX network, and allocate each partition to one of the modules. The module M1

accommodates P1 and P2, the module M2 executes P3 and P5, and the partition P4 is allocated to M3.

There are 4 VLs V1-V4 connecting 3 ESs across 2 switches S1 and S2 in the AFDX network. The arrows

above VLs’ names indicate the direction of message flow.

P1 P2

P3

P4

P5

ES1

M1

ES2

M2

ES3

M3

V1

V2

V3

V4

V1 V2 V3
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0 5 10 15 20 25

Major Time Frame

Time / ms

Figure 8: The Distributed Avionics Deployment and Partition Schedules (Times in Milliseconds)

The avionics system equips each of its processor cores with a partition schedule. Assume the modules

in the experiment to be single-processor platforms. Fig.8 gives the partition schedules, which fix a

common major time frame Tm f at 25ms and allocate 5ms to each partition within every Tm f . All the

partition schedules are enabled at the same initial instant and their clocks are always synchronized. The

scheduling configuration keeps the temporal order of the partitions in [7]. Hence the partition schedules

contain five disjoint windows 〈P1,0,5〉, 〈P2,5,5〉, 〈P3,10,5〉, 〈P4,15,5〉, and 〈P5,20,5〉, where the second

parameter is the offset from the start of Tm f and last the duration.

After combining all the models of the system, we executed the schedulability analysis in UPPAAL.

We set M = 100000 and θ = 0.001 for Eq.(2). The experiment was performed on the UPPAAL 4.1.19

64-bit version and an Intel Core i7-5600U laptop processor.

Results of the Analysis

The result (The case 1 in Table 2) shows that the above scheduling configuration fails the SMC test and

thus is non-schedulable. We can explore the cause of non-schedulability on the basis of counter-examples

to help refine the system configuration.

The Gantt chart in Fig.9 shows such a counter-example, where the task Tsk3
2 in P3 violates the con-

straint of the refresh period of Msg2. At the top of the chart are task models, where the line is painted

in green whenever a task stays at Ready state and in blue at Running. The bottom line labels “partition”

and “tscheduler” represent two scheduling-layer models PartitionScheduler and TaskScheduler re-

spectively. For the line “partition”, color red denotes the time outside P3, and green is within P3. The

communication-layer models transmitting the messages of Msgk correspond to the chart lines “msgk -

snd”, “iptxk”, “iprxk”, “vltxk”, and “vlrxk”, which denote the message-delivery delays of Msgk.



160 A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

Figure 9: The Gantt Chart of a Counter-example (Times in Microseconds)

The counter-example illustrates that network latency increases the risk of breaching the schedulabil-

ity constraints. Let t be the elapsed time since the initial instant t0 = 0 shown in the Gantt chart. The first

message of Msg2 was sent by the message interface msg2_snd at t = 7.625ms, and reached the destination

port at t = 8.088ms. When Tsk3
2 was scheduled to read Msg2 at t = 60.000ms, the age of the first received

message indicated the value 51.912ms that had exceeded the refresh period. Thus, the copied message

of Msg2 was not a valid data sample. Although msg2_snd sent a new Msg2 message at t = 59.585ms, the

message did not arrive at the destination port until t = 60.184ms due to network latency.

Considering the effect of network latency on the scheduling configuration, we updated the partition

schedules by performing a swap of time slots between P1 and P2. The modified partition schedules pro-

vide five windows 〈P1,5,5〉, 〈P2,0,5〉, 〈P3,10,5〉, 〈P4,15,5〉, and 〈P5,20,5〉. The schedulability analysis

of the updated system was executed again. The result (The case 2 in Table 2) shows that the configura-

tion goes through the global SMC test and compositional verification of classical MC. Thus, the updated

system finally achieves schedulability.

Table 2 shows the execution time and memory usage. In compositional analysis (MC in Table 2), the

partition P3 contains more instantiated models (19 processes) than the other four partitions. As a result,

model-checking runs slower and requires more memory than the others. Nevertheless, the compositional

analysis could be performed on ordinary computers within an acceptable time.

Compared with the compositional way, global analysis based on the same UPPAAL models would

require 51 processes including all the 22 task models whose state space is much more complex than the

others. This causes UPPAAL classic to run out of memory within a few minutes, and thus makes the

global analysis using classical MC infeasible. In contrast, SMC testing can be quickly accomplished

when we perform global analysis (SMC in Table 2), offering effective state space reduction.

6 Conclusion

In this paper, we present a modeling framework for schedulability analysis of DIMA systems, which

are implemented as a set of stopwatch automata in UPPAAL. We analyze the UPPAAL models including

computation and communication by both classical and statistical model checking. The techniques pre-

sented in this paper are applicable to the design of DIMA scheduling systems. The experimental results

show the applicability of our modeling framework. As future work, we plan to develop a model-based

approach to the automatic optimization and generation of a DIMA scheduling system.



P. Han, Z. Zhai B. Nielsen & U. Nyman 161

Table 2: The Experiment Results (Result), Execution Time (Time/sec.) and Memory Usage (Mem/MB)

Case 1 Case 2

MC SMC MC SMC

No. Result Time Mem Result Time Mem No. Result Time Mem Result Time Mem

P1 Yes 7.35 141

No 2.67 53

P1 Yes 6.07 101

Yes 77.58 53

P2 Yes 1.02 45 P2 Yes 1.09 49

P3 Maynot 57.84 563 P3 Yes 437.99 3150

P4 Yes 0.83 45 P4 Yes 0.88 43

P5 Yes 33.27 526 P5 Yes 179.25 2078
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Appendix

The appendix consists of three sections. Appendix A gives a description of the remaining UPPAAL mod-

els in this paper. Appendix B details the avionics workload in the case study. The AFDX configuration

is then presented in Appendix C.

A Remaining Models

A.1 UDP/IP Layer Models

Although the behavior of the UDP/IP layer largely depends on the implementation of the network proto-

col stack, we create two TA templates IPTx and IPRx to estimate the latency of message delivery through

the UDP/IP layer. Both templates have two msgbuf_t parameters src and dst that denote the source

buffer and the destination buffer respectively. After being instantiated in the system declarations, these

two templates give rise to a set of UDP/IP layer models. By operating the message counters buf in src

and dst, the models transfer messages from their respective source buffers to the destination buffers.

Two types of message buffers are provided for the UDP/IP layer models. The first is the port buffers

between tasks and the UDP/IP layer. The set of port buffers in the system is defined as a global array

portbuf. We declare the second as another global msgbuf_t array fifo which represents the FIFO

buffers between the UDP/IP layer and virtual links. Obviously, IPTx and IPRx forward messages in

mutually opposed directions.

The template IPTx calculates the latency of message delivery from a port buffer src to a FIFO buffer

dst. In order to specify the time interval of forwarding a single message from the source port to the

destination FIFO, we declare two integer constants IpFwdMin and IpFwdMax as the lower bound and

upper bound, respectively. For any queuing port, the model can perform IP fragmentation according to

the integer parameter frag, so breaking one message into f rag IP fragments during transmission. In this

case, If IPTx handles a message sent from src to dst, the message counter buf of src will be decreased

by one, and meanwhile the counter of dst must increase by frag. On the contrary, since sampling ports

should not use IP fragmentation[1], the default value 1 is assigned to the template parameters frag of the

IPTx models whose source ports are declared to be sampling mode.

Figure 10: The IPTx Model

As is depicted in Fig.10, an iteration structure realizes the major function of IPTx. After starting

from the initial location Waiting, the model keeps waiting for the first incoming message to arrive in the

port buffer src. Once any tasks send the port a message through the channel pmsg, IPTx will increase the
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Figure 11: The IPRx Model

counter of src by invoking the function sndMsg and thereupon move to the location Forwarding. This

location represents that the UDP/IP layer is executing the forwarding operation. Thus, the model can

non-deterministically choose a forwarding delay TF from the interval [IpFwdMin,IpFwdMax] and stay at

the location Forwarding for TF to forward the first message in the src port. Receiving a new incoming

message during forwarding will not affect the delay TF but only raise the counter of src once more. When

the model completes the current forwarding operation, it will send notification to a VL model through

the output channel ipoutp! as well as operate the message counters of src and dst. The forwarding

operation continues until the source buffer is empty. In other words, if there is still at least one message in

the src port, the model will immediately return to the location Forwarding to forward the next message.

Otherwise, the model will move back to the initial location Waiting and restart the iteration to wait for

the arrival of the following messages.

The template IPTx has a location VlError that represents the existence of errors in the destination

VL. First, if any errors are reported by the VL, the function getErr serving as a guard will return true and

the model will stop the forwarding iteration at the location VlError. Second, a shortage of FIFO space

will also lead the model to VlError. The FIFO dst, which has a MaxMsg capacity, should accommodate

at least f rag IP packet(s) during every forwarding operation, unless the guard dst.buf > MaxMsg−frag

holds at the location Forwarding.

In addition, once the function sndMsg tries sending a message to a full queuing port, the IPTx model

will report an overflow error to the source task, which will thereupon move to an error location MsgErr.

In contrast, sampling ports can avoid overflow by overwriting the previous message in the buffer. Hence

sndMsg assigns 1 directly to the counter of a sampling port.

The template IPRx calculates the latency of message delivery from a FIFO buffer src to a port buffer

dst. As is shown in Fig.11, IPRx also includes a forwarding iteration similar to IPTx, but we insert two

following parts into the iteration structure.

The first is a reassembly iteration between the initial location Waiting and the location Forwarding

. The nested iteration contains only one Reassembly location, where the model waits for IP packets

to arrive and reassembles a complete message. Assume that the IP packets of every message can ar-

rive in order. The template parameter reass denotes that reass consecutive IP packets constitute one
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Figure 12: The VLinkRx Model

complete message. At the location Reassembly, a non-deterministic time between two integer constants

IpReassMin and IpReassMax is spent in processing an IP fragment. After this processing delay, the IP

packet must be removed from the src FIFO. When reassembling a message, the model uses an integer

variable cnt to record the number of IP packets that have arrived of the message. Once the model accu-

mulates the reass consecutive IP packets, it will enter the location Forwarding to forward the complete

message to dst.

Second, according to the transfer mode of the destination port dst, we add two different paths fol-

lowing the location Forwarding to operate queuing ports and sampling ports, respectively. For a queuing

port, we increase the value of its message counter buf by 1. The guard dst.buf < pcapacity() ensures

that the number of messages in dst is less than the capacity of dst. Otherwise, the model will report an

overflow error by moving to the Overflow location. For a sampling port, we should fill an empty buffer

with the new message or overwrite the previous one. Therefore, IPRx directly assigns 1 to the message

counter buf. Meanwhile, IPRx resets the port clock of dst. If a task found an invalid message in the

dst after comparing the refresh period of the message with the port clock of the dst, the IPRx model

would detect a port error using the function getPortErr and stop its forwarding iteration at the location

InvalidMsg.

Both the templatesIPTx and IPRx provide a typical processing procedure for the UDP/IP protocol.

Users can easily adapt the templates for their specific implementation.

A.2 Virtual Link Models

We create two TA templates VLinkTx and VLinkRx to calculate the transit delay of frames through a

specified VL.

The template VLinkRx provides the latency of frame delivery through the route from the first switch

to a destination ES. In VLinkRx, the integer argument links(resp. switches) denotes the number of

physical links(resp. switches) along the route. Assume that each switch and ES can send and receive

frames at wire speed. We divide the latency into three parts: the transmission delay of physical links,

the processing delay of switches, and the latency at the destination ES. First, given the frame delay
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vlink[vlid].TxDelay of each physical link, the total transmission delay can be described as the ex-

pression vlink[vlid].TxDelay∗links. Second, two integer constants SwMin and SwMax give the interval

[SwMin∗switches,SwMax∗switches] of the processing delay through switches. Similarly, we also define

two integer constants RxMin and RxMax to record the the interval [RxMin,RxMax] of the latency at the des-

tination ES. By adding up these three delays, we provide each frame with the range of the total latency

through the route [vlink[vlid].TxDelay∗links + SwMin∗switches + RxMin, vlink[vlid].TxDelay∗
links + SwMax∗switches + RxMax]. At the initial instant, the model should invoke the function initVar,

which records the total latency interval in two integer variables VlTrMin and VlTrMax.

Assume that no more than MaxPackets frames can travel along the route simultaneously. We create

the clock array TrTimer with a MaxPackets size to measure the delivery latency of all the frames through

the route. Given in-order reliable delivery in the network, TrTimer is operated as a circular queue, where

each valid clock serves as the unique timer of a frame. As long as TrTimer is not empty, two integer

variables first and last indicate the start and the end of valid clocks in TrTimer, respectively. The

clock TrTimer[first] represents the timer of the earliest frame that is travelling along the route. When

VLinkRx completes the delivery of a frame, TrTimer[first] will be reset and the offset first will be

also updated according to the circular-queue implementation. By contrast, the clock TrTimer[last]

measures the delivery latency of the most recent frame being transmitted along the route. Immediately a

new frame appears in its first physical link, VLinkRx will call the function add that appends a new element

to the array TrTimer and updates the offset last.

The template VLinkRx is shown in Fig.12. After initializing the latency interval [VlTrMin,VlTrMax]
of a single frame in the function initVar, the VLinkRx model stays at the location Idle until it re-

ceives frame arrival notification from the input channel vl?. New frame arrivals are handled at the

location Receiving. First, VLinkRx invokes the function add to insert a new valid clock in TrTimer[

last]. Immediately afterwards, the model resets the clock TrTimer[last] as well as enters the location

Transmitting, thereby starting the latency calculation of the most recent frame. Additionally, if more

than MaxPackets frames were transmitted simultaneously, the model should report error and move to the

location LinkError.

For each frame that is travelling along the route, VLinkRx spends a non-deterministic time between

VlTrMin and VlTrMax performing the frame delivery at the location Transmitting. Since a VL may

have more than one destination partitions, we define a select n:pid_t to give a random arrival order of

multicast frames. During frame delivery, the model still react to the input channel vl? so that we can

handle each frame arriving in the VL vlid. Once a frame is delivered to the UDP/IP layer in the receiving

ES, the VLinkRx model will call the function vlRcv to increase the destination FIFO, and notify vlid’s

IPRx model through the output channel ipinp!. Thereafter, frame delivery continues at the location

Transmitting until there is no frame travelling along the route. In that case, the model will return to the

location Idle and wait for the incoming frames again.

A.3 Message Interfaces

Two UPPAAL TA templates have been created to help the construction of message interfaces. By instan-

tiating the parameters in the templates, one can build a message interface for a particular message type.

In general, message-sending actions and the release of their source tasks have similar temporal patterns.

Hence we assume that periodic and sporadic tasks generate periodic and sporadic messages respectively.

The TA template of PMsgSender depicted in Fig.13 is built for the periodic messages. We define

a set of functions in the template to access the parameters of this message pattern. The functions

initialOffset, offset and jitter read the corresponding parameters from the declarations. The func-
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Figure 13: Periodic Message Sender Figure 14: Sporadic Message Sender

tions minPeriod and maxPeriod always return the same value of a fixed period. There are two clocks

curTime and x in the template. The clock curTime represents the accumulated time since the beginning

of the current period. By using the clock x to measure time repeatedly in each period, PMsgSender can

wait for the delays of initial offset, offset and jitter at the locations WaitInitialOffset, WaitOffset and

WaitJitter respectively. The template exploits the broadcast action array pmsg to model the message-

sending behavior. When transmitting a message to the UDP/IP layer, periodic message sender model

gives the IPTx model a notification of the broadcast action pmsg[msgid(rid)], where the offset msgid

(rid) is the identifier of the message type. After the broadcast synchronization of pmsg in normal

execution, the model stays at the location WaitNextPeriod until the next period starts. However, if

the port buffer were overflow after the broadcast synchronization, the model would stop the following

message-sending operation and enter the location Overflow to indicate the violation of schedulability

properties.

As is shown in Fig.14, the other TA template of SMsgSender has an analogous structure with the

PMsgSender. In accordance with the sporadic message pattern, a SMsgSender can stay at the location

MsgWind for any time before its next sending action. Location WaitNextRelease enables a minimum

separation between the consecutive messages.
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B Avionics Workload

As shown in Table 3, the workload is comprised

of 5 partitions (P1−P5), and further divided into 18

periodic tasks and 4 sporadic tasks. The type of a

task depends on its release interval. A periodic task

has a deterministic period, whereas the release time

of a sporadic task is only bounded by a minimum

separation. The execution of a task is character-

ized as a sequence of chunks. Each chunk involves

the description of a non-deterministic execution

time, required resources and message-passing op-

erations. There are 3 intra-partition locks(column

mutex) and 4 inter-partition message types defined

in the task set. The columns output and input indi-

cate transfer direction of messages.

Table 3: The Workload of the Avionics System[7, 12](Times in Milliseconds)

No. Task Release Offset Jitter Deadline Priority
Execution Chunks

Time Mutex Output Input

P1

Tsk1
1 [25,25] 2 0 25 2

[0.8,1.3] - - -

[0.1,0.2] - - -

Tsk1
2 [50,50] 3 0 50 3 [0.2,0.4] - Msg1 -

Tsk1
3 [50,50] 3 0 50 4 [2.7,4.2] - - -

Tsk1
4 [50,50] 0 0 50 5 [0.1,0.2] Mux1

1 - -

Tsk1
5 [120,∞) 0 0 120 6

[0.6,0.9] - - -

[0.1,0.2] Mux1
1 - -

P2

Tsk2
1 [50,50] 0 0.5 50 2 [1.9,3.0] - - -

Tsk2
2 [50,50] 2 0 50 3 [0.7,1.1] - Msg2 -

Tsk2
3 [100,100] 0 0 100 4 [0.1,0.2] Mux2

1 - -

Tsk2
4 [100,∞) 10 0 100 5

[0.8,1.3] - - -

[0.2,0.3] Mux2
1 - -

P3

Tsk3
1 [25,25] 0 0.5 25 2 [0.5,0.8] - - Msg1

Tsk3
2 [50,50] 0 0 50 3 [0.7,1.1] - - Msg2

Tsk3
3 [50,50] 0 0 50 4 [1.0,1.6] - - Msg3

Tsk3
4 [100,∞) 11 0 100 5

[0.7,1.0] - - -

[0.1,0.3] - - -

P4

Tsk4
1 [25,25] 3 0.2 25 2 [0.7,1.2] - - -

Tsk4
2 [50,50] 5 0 50 3 [1.2,1.9] - Msg3 Msg1

Tsk4
3 [50,50] 25 0 50 4 [0.1,0.2] - - Msg4

Tsk4
4 [100,100] 11 0 100 5 [0.7,1.1] - - -

Tsk4
5 [200,200] 13 0 200 6 [3.7,5.8] - - -

P5

Tsk5
1 [50,50] 0 0.3 50 1 [0.7,1.1] - - Msg1

Tsk5
2 [50,50] 2 0 50 2 [1.2,1.9] - Msg4 Msg2

Tsk5
3 [200,200] 0 0 200 3

[0.4,0.6] - - -

[0.2,0.3] Mux5
1 - -

Tsk5
4 [200,∞) 14 0 200 4

[1.4,2.2] - - -

[0.1,0.2] Mux5
1 - -
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C AFDX Configuration

The AFDX configuration in Table 4 is based

on the case of [13]. There are four message types

Msgi, i = {1,2,3,4}, each of which is allocated

to a separate VL with the same subscript shown

in column “VL”. The column “Length” indicates

the length of a message sent from an ARINC-653

partition. For any VL in the configuration, the

columns “BAG” and “Lmax” denote its Bandwidth

Allocation Gap and Maximum packet Length re-

spectively. The source and destination partition(s)

are given in the columns “Source” and “Destina-

tion” respectively.

Table 4: The AFDX Configuration in the Case Study (Times in Milliseconds and Sizes in Bytes)

Message Length VL BAG Lmax Source Destinations

Msg1 306 V1 8 200 P1 P3,P4,P5

Msg2 953 V2 16 1000 P2 P3,P5

Msg3 453 V3 32 500 P4 P3

Msg4 153 V4 32 200 P5 P4


