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Abstract: This paper compares three methods for control of the superheat in a refrigeration
system. A traditional gain scheduled PI-based controller, a predictive functional controller
(PFC) and a predictive functional controller with a neural network model (PFCNN). The aim
is to investigate the performance of the three controllers with respect to disturbance rejection
measured both at the superheat deviation from the reference and the actuation of the expansion
valve. The controllers are designed and tested on a laboratory set-up. The performance of the
controllers turns out to be similar and distinguish between the concepts must be based on other
parameters like tuning and demands for computational power.
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1. INTRODUCTION

Refrigeration systems are widely used and among the most
electrical energy consuming equipment in supermarkets.
Refrigeration systems normally contain a refrigerant oper-
ating continuously between vaporization and compression.
This process is implemented by a valve, an evaporator, a
compressor and a condenser, and this set-up remains to a
considerable extent the same in most refrigeration systems.
The details of the vapour compression type refrigeration
process are not given here, but can be found in e.g. Vinther
(2013).

Larger refrigeration systems are normally controlled by
three SISO PI-controllers. One is controlling the compres-
sor to achieve an appropriate pressure in the evaporator
ensuring a suitable saturation temperature. The condenser
fan velocity is similarly PI controlled to ensure a certain
condensation temperature. Finally the superheat is con-
trolled using the opening degree (OD) of the expansion
valve. The control of the superheat is in focus in this
work. Different control concepts has been investigated in
Vinther (2013), Rasmussen et al. (2009), Elliott et al.
(2010), Vinther et al. (2013) and Vinther et al. (2012).

Super-heating of the refrigerant beyond the evaporation
temperature is important, since no superheat means that
two-phase refrigerant will enter the compressor and in-
crease the power consumption and wear. This means that
the flow through the valve must be kept at a level, where
all the refrigerant is evaporated before it reaches the
compressor. At the same time, it is important to have as
much two-phase refrigerant in the evaporator as possible,
to increase the heat transfer and thus optimize the refrig-

eration process. So a key variable, which greatly affects the
efficiency of a refrigeration system, is the superheat, which
again is an indirect measure of the filling of the evaporator.
Normally the superheat is measured using the saturation
pressure in the evaporator and the outlet vapour temper-
ature at the evaporator output; these are combined to
give the superheat. In our work we will compare three
different controllers namely a gain scheduled PI controller,
a predictive functional controller (PFC) and a neural net-
work based PFC. PFC has been investigated for superheat
control in Changenet et al. (2008) and Fallahsohi et al.
(2009), with promising results. PFC with a neural network
model has been suggested for highly non-linear systems,
Yang et al. (2005) and Guo (2006); the present system is
non-linear especially in the small signal gain, which could
justify adding a neural network model to PFC. The control
concepts are tested on a full scale laboratory set-up.

Most refrigeration systems are equipped with comput-
ers not suited for large computational tasks. The gain
scheduled PI controller and the PFC with fixed difference
equation model demands few computations. A trained
neural network will not increase the computational effort
considerably, but the training of a neural network consti-
tutes a computational problem and must be done prior to
commissioning.

Section 2 describes the laboratory set-up. The modelling
of the expansion valve and the evaporator is presented in
Section 3. Section 4 explains the control strategies and
controller adjustments, Section 5 provides a comparison
of the three control concepts and concluding remarks are
finally given in Section 6.
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2. DESCRIPTION OF THE TEST SET-UP

A refrigeration system with full scale components is avail-
able at Aalborg University. A simplified schematic of the
test set-up is presented in Fig. 1. This system has an
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Fig. 1. Refrigeration laboratory system test set-up (a water
chiller system), Vinther (2013).

approximate maximum cooling capacity of 4 kW and water
is circulated on the secondary side of the evaporator in a
circuit with a 60 litre water tank, a pump, and a heater.
The refrigerant is R134a and the system also consists of
a scroll compressor, a condenser unit, and interchangeable
expansion valves; this can be either a stepper motor, EEV,
or a thermostatic expansion valve, TEV. It is possible to
control the OD of the EEV valve. The power to the water
heater is controllable and can be seen as a disturbance
to the system. The condenser pressure is controlled using
the frequency of the condenser fan ensuring a reference
pressure. The suction pressure P, is controlled using the
scroll compressor frequency. Sensors measuring tempera-
tures and pressures, with a sampling interval of 1 second,
are indicated in the figure. A more detailed description of
the set-up can be found in Vinther (2013).

3. MODELLING OF SUPERHEAT

The evaporator superheat control set-up in focus is illus-
trated in Fig. 2. Pressure P, and the outlet temperature
T, from the evaporator are measured. The pressure P, is
converted to the corresponding saturation temperature 7T¢;
this is subtracted from T, giving the superheat tempera-
ture Tgp,.

Tsh,ref =1

Oz—0=

Liquid To compressor

Valve

Evaporator

Fig. 2. Control of the superheat using the valve OD.

A small signal model from the valve OD to the superheat
can be described by a first order system with delay, Vinther
(2013), Rasmussen et al. (2009), Vinther et al. (2013)

e~ TesOD(s), (1)

TSh(S) - s+ 1

where ~indicates small signal values, K is the small signal
gain, 7 is a time constant and finally Ty is a time delay.

The small signal gain can be found from an experiment,
see Fig. 3. In the experiment OD is slowly increased from
40.5% to 43.2%. The absolute value of the superheat is
measured and is going from 15°C' to 2°C'; the small signal
gain is the slope of this curve and can be found by making
an approximation to the absolute superheat followed by
finding the derivative of the approximation.

A potential approximation of the curve Ty as function of
OD is Vinther (2013)

Tsn =~ —kiarctan(ke(OD — OD)) +Tsp,  k1,ka >0, (2)
where bar’s are offsets and k1, ko are parameters. The four
parameters are fitted to the graph and plotted in Fig. 3.
The small signal gain is now found as

dTsp k1ko
K=——F—=- = 3
dOD 1+ (k2(OD — OD))?’ ®)
which is also shown in Fig. 3 along with a simple numerical
derivation.

Superheat as function of OD
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Fig. 3. Measured superheat as function of OD (upper plot).
Small signal gain (lower plot).

It is seen in Fig. 3 that the gain K is very dependent of
the OD value. For varying outdoor temperatures, Ty o,
or water heater powers, the cooling capacity is changed,
meaning that the OD has a different operating point given
as the center point in the atan function. Measurements
indicate that shape of the atan function is the same for all
center points giving the same small signal gain profile.

To overcome the variations caused by changing cooling
capacity it is appropriate to have integral action in the
controller. The variations in small signal gain can either
be solved by gain scheduling or alternatively by use of a
neural network.

4. CONTROL CONCEPTS

The aim of the superheat control is to maintain a constant
(and low) superheat. In larger refrigeration systems the
superheat is controlled using a standard PI controller,
this will be the underlying basis for benchmarking the
controllers. The two other controllers have their point of
origin in predictive functional control (PFC) where the
first is based on Richalet et al. (2014) and Richalet et al.
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(2011); a first order system with delay is used as model
for calculating the control response. The third controller
broadens the PFC using a radial basis function neural
network (RBFNN) as model instead of the linear first order
system, Yang et al. (2005), Guo (2006).

The PI controller is on the form
1
OD(s) = (~ K, — Ki ) E(s), (4)

where OD(s) is control output, E(s) is control input and
K,, K; are PI coefficients. Standard anti-integrator wind-
up is included. To deal with the system gain non-linearity
the PI controller gain is gain-scheduled using three oper-
ating points and by making a linear interpolation between
the points.

In PFC the idea is to calculate a constant controller output
that, within a given time horizon, will reduce the control
error by a certain factor.

The control error e must be reduced according to
e(n+h) = e(n)A", (5)
where A < 1 is a constant, h is the time horizon or the

desired coincidence point, meaning that the error will be
reduced with the factor A\*. According to Fig. 4

e(n)=Ap+e(n+h)=Ap+en)\' = (©)
Ap= (1= Ae(n) = (1= A)(r = Tun(n)),
where Ap is the desired change of the process output from
time n to time n 4+ h. The controller task is to find an OD

signal, which is constant from n to n + h, such that the
process output is changed by Ap.

r
e —11)
°©
-é —e(n) Ap
2
© 8 sh(n)
c
o A
= Tsh(n +h
g
2 Am
3l
Tsh(n)
n n+h Time

Fig. 4. llustration of PFC functionality.

The discrete version of the first order model with delay
given in (1) is

Ta(n+1) =als(n) + K(1—a)OD(n—q), (7)

where a = e~7+/7 T, is the sampling time, and ¢T = T}.

Given a constant input, the output of the model is given
as

Tan(n+h) = a"Top(n) + K(1 —a")OD(n—q).  (8)
If we want the output of the model to change Am = Ap,
from time n to n + h, then

Ap = Ton(n+ h) = Tan(n). (9)
Inserting Ty (n + h) gives
Ap = (a" — )Ty (n) + K(1 — a®)OD(n — q).
Solving this equation for OAD(n —q) gives

(10)

OD(n—q) = K(lA_pah) + %Tsh(n), (11)
_\r R
= IM(T = Tsn(n)) + %Teh(n). (12)

Because we want to find OD(n) the equation is time
shifted
. 1— Ak
OD(n) = ———
() = i =am

The last term is not problematic because Tsh(n +q) is
calculated from the time shifted version of (1)

Ta(n+q) = alsp(n+q—1)+ K(1—a)OD(n—1); (14)

a term that can be calculated at the previous sample time.
The term Tsp(n + q) is estimated from

(T—Tsh(n—l—q))—l-%fsh(n—kq). (13)

Ton(n+q) — Tsn(n) = Tsn(n +q) — Tsn(n),  (15)
giving the estimate
Ts(n+q) = Tan(n) + Ten(n + q) — Ton(n).  (16)

Inserting (16) in (13), the final algorithm is

. 1— A" . 1.
OD(n) = m(r—Tsh(n-FQ))*‘?Tsh(n‘i‘Q)- (17)

Equation (14) and (16) are updated for each sample.

Even though there is no integrator in the control algo-
rithm, the steady state error will be zero,see Richalet et al.
(2011). If the system is stable the steady state gain of the
model is

1

fsh,ss - KObse = Obss - }jﬂsh,s& (18)
Inserting this in control algorithm (17) gives
1. 1— Ak 1.
7Ts sS ™ T4 N - Ts ss 7Ts ss
K T K1 —ah) (= Tonss)) + 7 Ton, (19)

= r— Tsh,ss = 07

resulting in no steady state error, as it is the case for a
PI-controller.

The structure of the PFC can be seen in the upper part of
Fig. 5. Due to the non-linearities in the plant as indicated
in Fig. 3, the linear model may not be an appropriate way
to predict the correct plant output at time n+h. Therefore
a more accurate model is desirable. Measurements from
the laboratory test set-up gives a unique opportunity to
construct a data driven model; neural networks offers
a possibility to include measurements in an intelligent
manner. The linear model is therefore replaced by a neural
network model in the lower part of Fig. 5. The neural
network is both used by the PFC and by a solver, which
iteratively searches for an OD, that gives the desired Ap
at time n + h.

In Park et al. (1991) it has been proven that a Radial
Basis Function Neural Network (RBFNN), see Fig. 6,
has universal approximation capability for a non-linear
function assuming only one hidden layer.
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Fig. 6. The structure of a RBF neural network.

The overall network output is

k
y(w) =b+ " aifi(u) (20)
i=1
and 1
fi(ua) :exp(*ajl\u*uilﬁ), (21)

where b is an offset, o are weight factors from the hidden
layer to the output, f; are neuron functions dependent on
the center u; and the width, o;, of the radial basis function.
In training, which is based on back-propagation learning,
the parameters p,o,a,b are adjusted to fit a measured
data-set.

Modelling of dynamic systems using neural networks can
be performed in different ways, Bhushan et al. (2011).
To include the dynamics of the process, the RBFNN is
extended with time delays, making it possible to cope with
difference equations, see Fig. 7.

The number of neurons and connections have been deter-
mined by splitting the data set into two parts, one for

Hidden layer
Input layer

Output layer

Fig. 7. The structure of RBF neural network for a SISO
dynamic system.

training and one for verification. The model output from
the neural network is simple to calculate, but a problem
using a neural network in the PFC is to determine which
constant value of OD gives a certain Ap. For the linear
model this is simply found by using (11), in the neural
network case a search algorithm for finding the desired
value of OD must be used, this complicates the neural
network solution. The neural network solution is shown in
the lower part of Fig. 5 where the neural network model is
used twofold, it is a simulation model where it calculates
Tyn(n), but is also used to forecast the value Typ,(n+ h) to
calculate Obs.

5. TEST RESULTS

The three controllers mentioned have been tested on the
laboratory set-up and all the results can be found in Hinds-
borg et al. (2016). A disturbance sequence, as shown in the
top of Fig. 8, containing variations in compressor frequency
and power to the water heater, is applied to the system.
The sequence is constructed to include nearly steady state
conditions, shifts in disturbance signals individually and
simultaneously, in this way the systems are tested. It is
chosen to use a superheat reference Typ .y = 8°C to
avoiding liquid entering the compressor, though in Vinther
(2013) this value results in oscillatory output (also when
using a TEV), because the system gain is very high in this
operating point. However, detuning the controllers would
result in too slow disturbance rejection (risk of flooding).

The PI controller parameters K;, K, are tuned to three
operating points according to the different small signal
gains as shown in Fig. 3 and gain-scheduled using linear
interpolation.

In the PFC prediction model, the parameters K, 7, Ty
are determined using system identification in a typical
operating point as described in Section 3, see also Vinther
(2013); Hindsborg et al. (2016). For the prediction horizon
h a short (15 s), medium (30 s), and long (45 s) have been
examined; the chosen value 30 s is a compromise between
fast response and low noise sensitivity. The damping factor
A is set to 0.05.

In the PFC with neural network model, the RBFNN
structure must be determined. Candidates of the RBFNN
with different numbers of neurons, number of delayed
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Fig. 8. The disturbance sequence given by compressor speed and power to the water heater.
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Fig. 9. A zoom on the superheat plot during the disturbance sequence given by compressor speed and power to the

water heater.

inputs and number of delayed output have been trained
using a training data set. The candidates have been
compared using an evaluation data set. RBFNN is used to
determine which constant input OD(n) must be used in
order to obtain a change Am = Ap (see (6)) at time n+ h;
this cannot be solved analytically therefore a numerical
solver is used.

In Fig. 8 the three controllers have been tested using the
disturbance sequence and the reference Ty ,o.r = 8°C.

Seemingly all three controllers give responses with no
steady state errors. Disturbances on either compressor
speed or water heater power solely implies only small
superheat variations. Simultaneously load changes intro-
duce larger deviations from the set-point but still in an
acceptable range; the superheat do not reach zero. Due
to steady state behaviour it is difficult to distinguish be-
tween the controllers. Shifts in one disturbance don’t give
large superheat variations. The most problematic is when
both compressor speed and water heater power are shifted
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simultaneously as at approx. 2.1, 4.2, 4.8 and 6.9 hours;
here the PFC performs better than the PI controller and
the PFCNN causes large output variations. In Fig. 9 is a
zoom of the superheat variations. Here it is seen that at
steady state the three controllers acts very similar.

In Fig. 8 the lower plot shows the actuation, these are
similar and the variations correspond to the disturbances.
As seen the valve-opening is larger for the PFCNN con-
troller than the other controller, this is caused by a large
difference in the ambient temperature (the experiments
where performed at different weather conditions in the

spring).

All in all the performance of the three controllers are
quite similar. This implies that the choice of controller
is more a question of tuning and implementation than of
performance. Unfortunately the test-bench is constructed
so the set-point used for the superheat gives sinusoidal
variations making it difficult to compare the results of
the controllers. PFCNN requires large amount of training
data and demands storage and computational capacity of
the control computer. The two other candidates are less
demanding. One advantage of the PFC is the ability to
remove the steady state error without an integrator, a
disadvantages is that the PFC operates on a small signal
data. The PI controller can operate on absolute signals but
an anti-integrator wind-up algorithm is a must.

6. CONCLUSION

In the paper three different control strategies for control
of the superheat in a refrigeration system have been
introduced. The three strategies are gain scheduled PI
control, predictive functional control and finally predictive
functional control using neural network. The controllers
are tested in a laboratory set-up using real refrigeration
components. The performance is similar implying that
the choice of control strategy can be motivated by other
parameters like tunability and demands for computational
capacity.
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