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Effect of Heat Loss on Performance of Thin Film 

Thermoelectric; A Mathematical Model  

Mojtaba Mirhosseini, Alireza Rezania, Lasse Rosendahl 

Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, 9220 Aalborg East, Denmark 

 

Abstract 

To produce a higher electrical power in thin film thermoelectric legs, one way is to conduct the heat flow in-

plane parallel to the surface of thin films. One important advantage of using the thermoelectric element in-plane 

is that, due to high thermal resistance of the thermoelectric leg, there is no need for an efficient heat sink at cold 

side. A comprehensive mathematical model for analyzing performance of a ZnSb based thermoelectric thin film 

is proposed based on one dimensional (1D) steady state analysis. Finite element method is employed to solve 

governing equations, and effects of temperature dependency of thermoelectric material are considered in the 

model. The modeling study is carried out by a comparison between the ideal case, where there is no heat loss 

from the thin film, and the case that the heat loss accrues from lateral surfaces of the thin film to the ambient. By 

taking side surface heat transfer into account for both vertical and horizontal placement of the thin film, two 

different nonlinear temperature distributions along the thin film length are obtained, and variation of matched 

power output versus different thermal boundary conditions is shown. The results show that convective heat 

transfer to the ambient reduces thermoelectric power output, especially at higher temperature difference between 

the hot and cold sides of the leg. Furthermore, different parameters such as Seebeck coefficient, temperature, 

generated Seebeck voltage, heat loss, thermoelectric voltage and current at peak power point are evaluated for 

vertical and horizontal thin film configurations.  

 

Keywords: Thin Film Thermoelectric Generator (TFTEG); Side Surface Heat Loss; Seebeck Coefficient; 

Matched Power Output; Finite Element Method (FEM); Zinc Antimonide. 

 

 

 

 

 

 

                                                           
 Corresponding author: Alireza Rezania. E-mail: alr@et.aau.dk 
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Nomenclatures 

Th : Hot side temperature TTEG,c : Thin film temperature at cold junction 

Tc : Cold side temperature 𝑄̇𝑇𝐸,𝑖 : Conduction through the ith element 

α : Seebeck coefficient 𝑅𝑡,ℎ : Thermal resistance of the hot side 

𝑄̇ℎ : Conductive heat transfer in hot side of thin film 𝑅𝑡,𝑐  : Thermal resistance of the cold side 

𝑄̇𝑐 : Conductive heat transfer in cold side of thin film 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,𝑖 : Peltier heat transfer of ith element 

𝑄̇𝑙𝑜𝑠𝑠,𝑖  : Heat loss from ith element 𝑅𝑡,𝑇𝐸,𝑖 : Thermal resistance of ith element 

𝑄̇𝐽𝑜𝑢𝑙𝑒,𝑖  : Joule heating of ith element 𝑅𝑒,𝑇𝐸,𝑖 : Electrical resistance of ith element 

TTEG,h : Thin film temperature at hot junction I: Electrical current 

𝑅𝑎𝐿  : Rayleigh number β: Air expansion coefficient 

𝑁𝑢̅̅ ̅̅
𝐿: Average Nusselt number Te: Average temperature of element 

Pr : Prandtl number T∞ : Ambient temperature 

L: Characteristic length ν : Kinematic viscosity 

ά: Thermal diffusivity factor of air Ti : Temperature of ith node 

𝑇𝑓,𝑒,𝑖 : Air film temperature of ith element 𝑁𝑢̅̅ ̅̅
𝐿,𝑖 : Average Nusselt number of ith element (Vertical) 

ΔT : Temperature difference between hot and cold 

junctions of thin film 
𝑁𝑢̅̅ ̅̅

𝐿,𝑡𝑜𝑝,𝑖 : Average Nusselt number of ith element  

(top surface of horizontal thin film) 

𝑘𝑓,𝑖 : Air thermal conductivity near ith element at film 

temperature 

𝑁𝑢̅̅ ̅̅
𝐿,𝑏𝑜𝑡𝑡𝑜𝑚,𝑖 : Average Nusselt number of ith element 

(bottom surface of horizontal thin film) 

A : One side lateral area of element Vgen : Generated Seebeck voltage 

P : One side perimeter of element PPP : Peak power point 

𝛼̅ : Average Seebeck coefficient of thin film Te,i: Average temperature of ith element 
 

 

1. Introduction 

Traditionally, in analytical models for design and performance evaluation of thermoelectric generators (TEGs), 

material properties are assumed constants along the leg length, and average temperature of the cold and hot sides 

are used for the calculations [1]. Heat loss at the junctions between heat sink and heat source are considered 

mostly with constant material properties [2-4], while temperature dependent material properties affects profile of 

the heat flow from the hot side to the cold side of a TEG [5]. Different numerical approaches such as finite 

element method (FEM) and finite volume method (FVM) have been used to consider temperature dependent 

material properties for evaluation of TEG modules performance.  

Many researchers have conducted their performance analyses and optimization of TE devices based on the 

generalized thermoelectric energy balance equations. These generalized equations involve the internal 

irreversibility of Joule heating inside the thermoelectric legs and heat leakage through the thermoelectric 

elements. However, it is usually assumed that the TEG is thermally isolated from the surroundings except for the 

heat flows at the cold and hot junctions. 

Xiao et al. [6] carried out a detailed modeling and analyzing of a multi-element bulk TEG module. In their 

investigation, exergy analysis was performed to the irreversible heat transfer process in particular. Shen et al. [7] 

investigated theoretical modeling of thermoelectric generator performance particularly by considering the effect 
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of heat transfer from side surfaces. They found that, as the side surface convective heat transfer coefficient 

decreases, the efficiency increases. However, the matched power output depends on convection rates and 

thermoelectric materials. Performance of a TEG device, designed to convert engine exhaust heat directly into 

electricity, was studied under different operating conditions by Zhang [5]. A theoretical model was developed to 

evaluate different effective factors in order to optimize the electric power from low grade waste heat using TEG 

technology by Rana et al. [8]. Lee et al. [9] developed a mathematical model for a TEG, based on constitutive 

equations to analyze temperature dependent performance in terms of efficiency and output power. For thermal 

losses study, conductive and radiative heat transfer was considered in their finite element model. 

Although there are few studies that have investigated performance of thin film thermoelectric modules or 

elements [10-13], for modelling of heat loss in TEGs, only bulk thermoelectric modules are considered so far. As 

discussed in previous studies [14, 15], one way to enhance electrical power generation by thin film 

thermoelectric element is to conduct the heat flow parallel to the length of thin film deposited on an insulating 

substrate. Since, in thin film TEG with longitudinal direction heat flow, the lateral area is large and, the most 

suitable operating temperature for zinc antimonide thermoelectric material is mid temperature range (200-400 

°C), the heat loss between the element and the surrounding is not negligible. Therefore, in present study, 

mathematical modelling is carried out to estimate thermoelectric performance of a zinc antimonide based thin 

film that can be used in flexible TEG for sensor applications. Effects of convective heat transfer from the side 

surfaces of the element under various operating conditions are investigated by using Finite Element Method 

(FEM) for both vertical and horizontal configurations of the thin film. 

 

2. Theoretical model  

 

FEM has become an extremely worthy solution technique for coupled problems such as thermal-electric 

performance analysis in many devices and equipment. Herein, for modeling purpose, two copper strips are 

considered on both sides of the thin film in modelling instead of electrical interconnections of thin film in a 

module in reality. The cold side copper strip is exposed to the ambient temperature (25 °C) and the hot side 

copper strip to fixed temperatures. The heat, 𝑄̇ℎ , flows through the hot side thin copper strip, as the heat source 

with temperature of Th, and reaches the hot junction of thin film. Along the leg, a fraction of the heat is 

converted into electrical power via the Seebeck effect of thermoelectric materials under a certain electrical load. 

On the other hand, a portion of the imposed thermal energy is transferred to the ambient from side surfaces of 

thin film by convection. The rest of the heat, 𝑄̇𝑐, passes through the cold junction and the cold side thin copper 

strip and reaches the temperature of Tc. Both copper strips have a width of 0.01 mm, and the same thickness with 

the thin film (summation of 350 μm substrate thickness and 600 nm thermoelectric material thickness). The 

thermal conductivity of the copper strips is assumed 400 W/mK. Figure 1 shows a picture and schematic views 

of the considered thin film in vertical and horizontal placements including nodes and elements in FEM model. 
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Figure 2 illustrates the thermal resistance networks and type of heat exchanging mechanisms through the 

elements and nodes. As shown, a term of 𝑄̇𝑙𝑜𝑠𝑠  should additionally be considered in the analyses since the effect 

of the heat transfer from the side surface is taken into account. A brief summary of equations explaining the 

thermal-electric analysis in this problem are mentioned as follows. 

 

 

 

 

 

 

 

 

 

a) 

 

 

 b)                c) 

Fig. 1: a) Picture of the zinc antimonide thin film specimen; Schematic view of the thin film, nodes and 

elements, copper strips at hot and cold junctions; b) Vertical placement; c) Horizontal placement 
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Fig. 2: One dimensional thermal equivalent electrical circuit 

 

The thermal resistance of the hot side is shown by Rt,h that can be used for calculating the conductive heat 

transfer across the copper strip. Moreover, Rt,c represents the thermal resistance of the copper strip at the cold 

side. The model, furthermore, includes effects of the Joule and Peltier heating. Based on the FEM method, length 

of the thin film is divided into a number of elements. The energy balance for the first and last nodes of the thin 

film is given by Eqs. (1-10). Temperatures of these nodes are represented by TTEG,h and TTEG,c. For the hot 

junction on the thin film, equations can be written as: 

 

𝑄̇ℎ − 𝑄̇𝑇𝐸,1 − 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,1 +
𝑄̇𝐽𝑜𝑢𝑙𝑒,1

2
−

𝑄̇𝑙𝑜𝑠𝑠,1

2
= 0                                                                                                      (1)       

𝑄̇ℎ =
𝑇ℎ−𝑇𝑇𝐸𝐺,ℎ

𝑅𝑡,ℎ
                                                                                                                                                        (2) 

𝑄̇𝑇𝐸,1 =
𝑇𝑇𝐸𝐺,ℎ−𝑇𝑇𝐸𝐺,1

𝑅𝑡,𝑇𝐸,1
                                                                                                                                              (3) 

𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,1 = 𝛼 𝑇𝑇𝐸𝐺,ℎ 𝐼                                                                                                                                            (4) 

𝑄̇𝐽𝑜𝑢𝑙𝑒,1 = 𝐼2 𝑅𝑒,𝑇𝐸,1                                                                                                                                               (5) 

 

The Joule heating (𝑄̇𝐽𝑜𝑢𝑙𝑒) is a volumetric heat generation mechanism, that half of this heat is taken into 

consideration at the hot and cold junctions of each element. Transferring of the thermal energy between two 
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junctions of each element by the Peltier effect is shown as 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟 . The Thomson heat effect is neglected in this 

study, because of its lower contribution in comparison with other thermo-electrical heat transfer mechanism in 

mid temperature range [16, 17]. For the cold junction of the thin film we have: 

𝑄̇𝑐 − 𝑄̇𝑇𝐸,𝑖 − 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,𝑖 −
𝑄̇𝐽𝑜𝑢𝑙𝑒,𝑖

2
+

𝑄̇𝑙𝑜𝑠𝑠,𝑖

2
= 0                                                                                                        (6) 

𝑄̇𝑐 =
𝑇𝑇𝐸𝐺,𝑐−𝑇𝑐

𝑅𝑡,𝑐
                                                                                                                                                         (7) 

𝑄̇𝑇𝐸,𝑖 =
𝑇𝑇𝐸𝐺,𝑖−1−𝑇𝑇𝐸𝐺,𝑐

𝑅𝑡,𝑇𝐸,𝑖
                                                                                                                                            (8) 

𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,𝑖 = 𝛼 𝑇𝑇𝐸𝐺,𝑐  𝐼                                                                                                                                            (9)                                                                                                                                      

𝑄̇𝐽𝑜𝑢𝑙𝑒,𝑖 = 𝐼2 𝑅𝑒,𝑇𝐸,𝑖                                                                                                                                              (10) 

 

For an arbitrary node between the above mentioned nodes, Eq. 11 is used. Fundamental descriptions and 

preliminary discussion about modelling of TEG modules and energy balance equations have been explained in 

literature [7, 18]. 

 

𝑄̇𝑇𝐸,𝑖−3 − 𝑄̇𝑇𝐸,𝑖−2 + 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,𝑖−3 − 𝑄̇𝑃𝑒𝑙𝑡𝑖𝑒𝑟,𝑖−2 +
𝑄̇𝐽𝑜𝑢𝑙𝑒,𝑖−3

2
+

𝑄̇𝐽𝑜𝑢𝑙𝑒,𝑖−2

2
−

𝑄̇𝑙𝑜𝑠𝑠,𝑖−2

2
−

𝑄̇𝑙𝑜𝑠𝑠,𝑖−3

2
= 0                       (11)             

                                                                        

Similar to Eq. (11) can be written for all internal nodes between the hot and cold junctions of the thin film. By 

making a system of equations for the studied nodes using the FEM and solving it and defined boundary 

conditions, the unknown temperatures of the nodes can be determined. The cold side copper strip is exposed to 

the ambient temperature at 25 ᵒC, while the copper strip at the hot side is exposed to fixed temperatures, 150, 

200, 250, 300 and 350 ᵒC. The term of Q̇loss,i−2 shows the heat loss from element (i-2)th and Q̇loss,i−3 is the heat 

loss from element (i-3)th. Therefore, the total convective heat loss from (i-3) th node becomes equal to summation 

of half of the convective heat loss from element (i-2)th and half of the convective heat loss from element (i-3)th 

that is transferred to the surrounding ( see Fig. 2). The thermal conductivity, electrical resistivity and Seebeck 

coefficient of each element of the ZnSb thin film are calculated as functions of temperature obtained 

experimentally in another study [19]. The curve fitting allows estimating the properties from ambient 

temperature to an upper practical temperature, which is around 400 ᵒC for ZnSb based materials used as p-type 

material. To include effect of free convection of the vertical thin film to the ambient, an empirical correlation for 

average Nusselt number (Nu) can be applied for laminar flows, where Rayleigh number (Ra) is less than 109 

[20].  

 

𝑁𝑢̅̅ ̅̅
𝐿 = 0.68 +

0.67 𝑅𝑎𝐿
(1/4)

[1+(0.492
𝑃𝑟⁄ )

(9
16⁄ )

]

(4
9⁄ )

                                                                                                                   (12) 
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𝑅𝑎𝐿 =
𝑔𝛽(𝑇𝑒−𝑇∞)𝐿3

𝜈ά
                                                                                                                                               (13) 

 

where Pr is the Prandtl number, and L is characteristic length defined based on the external flow geometry. In 

this study, L is height of the vertical thin film (17.2 mm). The parameter β is expansion coefficient of air. 

Parameter Te represents the average temperature of each element that is related to two adjacent nodes of that 

element. In Eq. (13), T∞ is the ambient temperature equal to 25 ᵒC in this study. The parameters ν and ά are 

kinematic viscosity and thermal diffusivity factor of air, respectively. Air properties in the equations are obtained 

at film temperature [20]:  

𝑇𝑓,𝑒,𝑖 =
(

𝑇𝑖+𝑇𝑖−1
2

)+𝑇∞

2
                                                                                                                                             (14) 

 

where 𝑇𝑖 and 𝑇𝑖−1, are temperatures on thin film at ith and (i-1)th nodes. Furthermore, 𝑇𝑓,𝑒,𝑖 implies the air film 

temperature of the ith element. It is worthy to note that, Eq. (12) calculates Nu for one side of the vertical 

element. Therefore, for two lateral sides of the vertical thin film, effect of the Nu on both sides of the element 

must be considered for calculation of the heat loss as follows: 

Q̇loss,i = (
2𝑁𝑢̅̅ ̅̅ 𝐿,𝑖𝑘𝑓,𝑖

𝐿
) 𝐴(𝑇𝑒,𝑖-𝑇∞)                                                                                                                           (15) 

 

where 𝑁𝑢̅̅ ̅̅
𝐿,𝑖 is the average Nusselt number of ith element, 𝑘𝑓,𝑖 is thermal conductivity of air near the ith element at 

film temperature, and A is the lateral area of one side of the element. Moreover, for calculating heat loss to the 

ambient in the horizontal placement due to free convection, empirical correlations can be represented for average 

Nusselt number (Nu) at top and bottom surface of the horizontal plate [20]: 

 

𝑁𝑢̅̅ ̅̅
𝐿,𝑡𝑜𝑝 = 0.54 𝑅𝑎𝐿

1/4                                  (104 ≤ 𝑅𝑎𝐿≤ 107) (16) 

𝑁𝑢̅̅ ̅̅
𝐿,𝑡𝑜𝑝 = 0.15 𝑅𝑎𝐿

1/3                                  (107 ≤ 𝑅𝑎𝐿≤ 1011) (17) 

𝑁𝑢̅̅ ̅̅
𝐿,𝑏𝑜𝑡𝑡𝑜𝑚 = 0.27 𝑅𝑎𝐿

1/4                            (105 ≤ 𝑅𝑎𝐿≤ 1010) (18) 

 

In the horizontal case, L is defined as A/P, so that A is one side lateral area and P is perimeter of the rectangular 

element on thin film. Therefore, the heat loss from the ith element in horizontal placement is obtained by: 

Q̇loss,i = (
(𝑁𝑢̅̅ ̅̅ 𝐿,𝑡𝑜𝑝,𝑖+𝑁𝑢̅̅ ̅̅ 𝐿,𝑏𝑜𝑡𝑡𝑜𝑚,𝑖)𝑘𝑓,𝑖

𝐿
) 𝐴(𝑇𝑒,𝑖-𝑇∞)                                                                                                   (19) 

To solve the algebraic equations for analyzing performance of the thin film, a computer program in MATLAB 

software was developed and compiled. Firstly, the number of elements and initial temperatures of all nodes 

along the leg are assumed. Then, according to the initial temperature distribution, physical properties of each 
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element are obtained. By solving all the thermal-electrical equations simultaneously, temperature distribution 

along the leg was achieved. When the absolute temperature difference lower than 10-5 between two tandem 

iterations in each node is satisfied, the iteration stops.   

 

3. Results and discussions 

3.1. Discretization independence study 

For finding solution with acceptable accuracy and to check dependency of the results to the mesh, the problem is 

considered over the elements while it is divided into one, four and nine elements. In this study, density of the 

mesh is high enough and, consequently, the temperature difference between two nodes on each element is small 

enough to ensure the power generation by the thin film is not influenced if the number of elements increases 

further. Seebeck coefficient of a homogeneous thermoelectric material only depends on temperature. Therefore, 

according to temperature distribution along the thin film, the Seebeck coefficient has its own individual 

distribution. It is worthy to note that, the results in this paper are represented based on calculations at matched 

power output or peak power point (PPP). The matched power output is obtained when the consumptive electrical 

load is equal to the TEG electrical resistance [10-12, 21, and 22]. 

Figure 3 shows the average Seebeck coefficient by adopting different temperatures at the hot side. As number of 

the nodes increases, accuracy of the results enhances, however the rate of improvement of the accuracy clearly 

reduces from the 5-node model to the 10-node model. Therefore, the solution can be considered relatively 

independent to node number more than 5. Furthermore, there is not noticeable difference between the results of 

the 5-node and 10-node models either with or without side surface heat loss. Heat loss effect causes reduction of 

the average Seebeck coefficients; however this reduction is more significant for the vertical placement of thin 

film. The 2-node model cannot predict effect of heat loss from the side surfaces because the Seebeck coefficient 

of the thin film is only related to the temperature of the junctions of two sides. By increasing the hot side 

temperature, the average Seebeck coefficient increases continuously for all the studied cases, except for the 5-

node and 10-node models at zero heat loss cases, which have maximum values when the hot side temperature is 

300 ᵒC. At 300 ᵒC, temperatures of the most elements along the thin film in these cases are close to the 

temperature which corresponds to the maximum Seebeck coefficient. At temperatures higher than 300 ᵒC, 

bipolar transport effect [11, 12] appears and the Seebeck coefficient of some elements reduces; so that the 

average Seebeck coefficient reduces. Although, by considering the heat loss for the both vertical and horizontal 

placements, the number of elements that have temperatures in the range of maximum Seebeck coefficient 

reduces. Therefore, in the studied range of temperature, average Seebeck coefficient increases monotonically and 

the maximum value of average coefficient is only observed for cases without heat loss consideration. In absence 

of the heat loss, performance of the vertical and horizontal placements of the thin film are the same. 
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Fig. 3: average Seebeck coefficient versus different hot side temperatures at PPP 

 

Figure 4 shows calculated total heat loss for different hot side temperatures. Comparing the results shows that 5-

node model has good accuracy, whereas the 10-node model is more precise. The 2-node model is not capable to 

estimate the middle nodes temperatures and is not sensitive to the heat loss consideration.  For the horizontal 

configuration, the total heat loss obtained by the 2, 5 and 10-node models are closer to each other than the results 

of the vertical placement case. In all studied models, the heat loss increases by rising the hot side temperature 

with an incremental slope, however a further slope is observed for the 2-node model. Due to highest precision, 

the 10-node model is chosen for further evaluation of the thin film performance. 
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Fig. 4: Total heat loss from the thin film versus hot side temperature at PPP 

 

3.2. Local temperature and heat loss distribution 

Figure 5 indicates that the temperature distribution along the thin film is approximately linear and independent to 

the placement direction when there is no heat loss from the elements. The nonlinear trends are observed by 

considering the convective heat loss from the side surface for both vertical and horizontal thin film placements. 

The gradient of temperature corresponding to the heat loss effect is large near the hot junction of thin film. In 

vertical case with the heat loss, the temperature drop along the thin film is more than the horizontal case due to 

higher heat transfer coefficient around the vertical thin film for all studied operating conditions. 

The local heat loss can be obtained for different cases (Fig. 6). The local heat losses increase as the hot junction 

temperature enhances. The heat loss distribution depends on the temperature distributions along the thin film, 

and the heat loss in vertical placement is higher than the horizontal thin film. Free convection occurs due to 

density variation of the associated flow. The hot air rises up and cold air takes its place in any free convection 

heat transfer. In case of vertical plate, more contact surface exists for flowing air in comparison with the 

horizontal plate. Therefore, more contact causes more heat transfer rate, and it gets higher heat transfer 

coefficient value for vertical plates than horizontal plates [20]. 
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Fig.5: Temperature distribution along the thin film at PPP 

 

 

Fig. 6: Local heat loss for different hot side temperatures at PPP 
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3.3. Seebeck coefficient and Seebeck voltage distribution 

The Seebeck coefficient is function of temperature. Figure 7 depicts the Seebeck coefficient in different 

positions along the thin film. By increasing the hot side temperature, a maximum value appears in Seebeck 

coefficient distribution shifting toward the cold junction. When the heat loss is considered, the local Seebeck 

coefficient severely reduces in most of positions compared to the same temperature case with no heat loss.  

Results show that the highest values of Seebeck coefficient occur for the nodes close to the hot side when the 

heat loss is taken into account. It is due to the relation between local temperature distribution (see Fig .5) and 

Seebeck coefficient (see Fig. 7). The values of Seebeck coefficient and particularly temperature gradient 

approximately in the last 30 % of leg length are small, so that these elements only produce small power rather 

than others. Furthermore, heat loss from this region is low due to the lower temperature difference with ambient 

temperature. Similar to the trend of Fig. 5, Seebeck values of the vertical thin film placement are less than the 

horizontal one. 

 

 

Fig. 7: Local Seebeck coefficient along the thin film at PPP  

 

Local Seebeck voltage (Vgen) is shown in Fig. 8 for different hot side temperatures. It is defined as multiplication 

of local Seebeck coefficient and local temperature gradient along the thin film. In cases without the heat loss, the 

change in distribution is smooth and without sharp trend, however by considering effect of the heat loss, trend of 

the Seebeck voltage distribution changes with a sharp reduction from the hot junction to the cold junction as the 

local temperature reduces. Also, up to 28% of the leg length from the hot junction, the vertical placement of thin 

film has higher Seebeck voltage than the horizontal arrangement, while in the rest of the thin film length, the 

Seebeck voltage of the horizontal case becomes higher than the vertical configuration.  

Page 12 of 18AUTHOR SUBMITTED MANUSCRIPT - MRX-110832.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



13 
 

 

 

Fig. 8: Local Seebeck voltage along the thin film at PPP 

 

 

3.4. Electrical resistance and I-V curve 

The electrical resistance of each element along the thin film is a function of the local temperature; hence the total 

electrical resistance is influenced by the thermal boundary conditions and temperature distribution [14]. As 

illustrated in Fig. 9, by increasing the hot side temperature the electrical resistance reduces. In particular, the 

slope of reduction is more for the case without heat loss due to higher temperature distribution along the isolated 

thin film that causes more reduction in local and total electrical resistance. The electrical resistance for vertical 

placement with heat loss consideration is higher because of its lower temperature. 
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Fig. 9: Total electrical resistance at different hot side temperature 

 

Summation of local Seebeck voltage along the thin film gives the total Seebeck voltage. Total thermoelectric 

voltage is half of the total Seebeck voltage at peak power point [23] as depicted versus the electrical current in 

Fig 10. In a fixed hot side temperature, although the total voltage is not influenced by the heat loss, the electrical 

currents changes significantly by including the heat loss effect. For example, corresponded to each hot side 

temperature, almost a constant voltage occurs for different thin film configurations, while the current reaches its 

lowest value in vertical arrangement. However, the current is not much sensitive to vertical or horizontal 

placement. The letters V and H in the figure legend show the data corresponding to cases with heat loss for 

vertical and horizontal placements, respectively and Q=0 for the case without heat loss. They have been shown 

from left to right in the figure legend as V-H-Q=0, as indicated along each line. For higher hot side temperature, 

difference between the current values of the vertical and horizontal thin film configuration is higher. 
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Fig. 10: Thin film total voltage (VTEG) versus electrical current at PPP 

 

 

3.5. Matched power output 

The matched power output is defined as a power generated by the TEG when an external electrical load 

resistance equal to total electrical resistance (R) of the thermoelectric device is imposed to the electrical circuit. 

The power generation by the thin film and generally thermoelectric devices can be underestimated or 

overestimated depending on the operating conditions, test facilities, and thermoelectric materials. The thin film 

matched power is obtained in each operating conditions as mentioned in the modeling part. Using an analytical 

relation as Pmatched=(𝛼̅2ΔT2)/4R [1, 23], that can be used in absence of heat loss shows a good agreement between 

the analytical relation and the results from the FEM model. 

In Table 1, results of matched power output obtained by 10-node FEM model are compared with the results 

calculated by the above-mentioned analytical relation in absence and presence of heat loss for both vertical and 

horizontal arrangements. The FEM model estimates the matched power values higher than the analytical results, 

because of simplification in the analytical relation. Moreover, the results of FEM model show the heat loss 

generally reduces the matched power. At 350 ᵒC the percentage of difference between the matched powers of 

cases with and without heat loss consideration is 4.5 % and 4.07 %, respectively for vertical and horizontal 

placement. A comparison between the matched power outputs in vertical and horizontal placements in presence 

of heat loss indicates that the horizontal thin film can generate more power than the vertical. 
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Table1: Matched power output of the thin film  

Hot side temperature (ᵒC) 

Matched power output (μW) 

 

Pmatched =
(𝛼̅2ΔT2)

4R
 

10-node model (FEM) 

Qloss=0 Qlossǂ0 (Vertical) Qlossǂ0 (Horizontal) 

150 3.27 3.64 3.58 3.58 

200 6.63 7.42 7.25 7.27 

250 11.4 12.66 12.27 12.31 

300 17.4 19.32 18.59 18.66 

350 24.8 27.33 26.10 26.22 

 

The results of this study are compared with previous experimental works [10-12]. The experimental studies were 

carried out on a zinc antimonide thin film specimen with the same effective length, width, thermoelectric 

material and thickness of the substrate. Table 2 shows voltages generation in the thin film at hot side 

temperatures of 200 to 350 ᵒC and under optimal electrical load which produce maximum power. The results 

show that difference between the two data series is ≤ 20 %, which shows a good agreement between the 

mathematical modelling and the experimental data. The error is due to trade-off between unavoidable effect of 

contact resistance and extra length of the specimen in the experimental studies. As reported in the experimental 

studies, a fraction of the specimen length on each side of the specimen, namely 3 mm, was covered by the hot 

side block and cold side clamp to hold the sample. This extra effective length was not taken into account in the 

mathematical modelling. A fraction of the generated thermoelectric voltage is due to the thermoelectric materials 

in these regions.  

 

Table 2: Comparison of thermoelectric voltages (VTEG) at peak power point (PPP)  

Hot side temperature of the 

specimen (ᵒC) 

VTEG (mV) at PPP, Qloss≠0, 

Experiments, vertical [10, 12] 

VTEG (mV) at PPP, Qloss≠0, FEM 

model (10-node), vertical 

200 19.6 16.6 

250 26.2 21.5 

300 33.0 26.3 

350 37.9 31.0 

 

 

4. Conclusions 

There are several researches in literature about theoretical performance modeling of bulk thermoelectric 

materials and modules; however there is still lack of knowledge about in-plane arrangement of thin film 

performance modelling with/without considering side surface heat loss. In this study, a FEM model was used to 
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analyze performance of a ZnSb thin film. In longitudinal direction application of thin films, because of big 

lateral area versus the thin film cross sectional area, side surface heat loss can play a significant role in power 

generation and performance. The results showed that by considering the heat loss, the matched power output 

reduces due to reduction of the Seebeck coefficient and temperature gradient and due to enhancement of the 

electrical resistance in most locations along the leg. The horizontal placement can produce more power than the 

vertical thin film if the heat loss is taken into account. The results show that the thin film generates maximum 

power density of 191.92, 183.29, and 184.11 mW/cm3 (power per unit volume of the thermoelectric material 

layer) corresponding to the hot side temperature of 350 ᵒC, for the cases without the heat loss and with heat loss 

in the vertical and horizontal placements, respectively. It is found that, electrical current is more sensitive to the 

heat loss consideration in comparison with the thermoelectric voltage at peak power output. 
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