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Abstract

Computer systems can be found everywhere: in space, in our homes, in our
cars, in our pockets, and sometimes even in our own bodies. For concerns
of safety, economy, and convenience, it is important that such systems work
correctly. However, it is a notoriously difficult task to ensure that the software
running on computers behaves correctly and does not contain any bugs.

One approach to ease this task is that of model checking, where a model
of the system is made using some mathematical formalism. Requirements
expressed in a formal language can then be verified against the model in
order to give guarantees that the model satisfies the requirements. If the
model is faithful to the system being modelled, then the system itself will
also satisfy the requirements.

For many computer systems such as satellites, airbags, and traffic lights,
time is an important factor. As such, we need our formalisms and require-
ment languages to be able to incorporate real time.

In this thesis, we therefore develop formalisms and algorithms that allow
us to compare and express properties about real-time systems. We first in-
troduce a logical formalism for reasoning about upper and lower bounds on
time, and study the properties of this formalism, including axiomatisation
and algorithms for checking when a formula is satisfied.

We then consider the question of when a system is faster than another
system. We show that this is a difficult question which can not be answered
in general, but we identify some special cases where this question can be
answered. We also show that under this notion of faster-than, a local increase
in speed may lead to a global decrease in speed. This is known as a timing
anomaly, and we take steps toward avoiding such timing anomalies.

Finally, we consider how to compare the real-time behaviour of systems
not just qualitatively, but also quantitatively. Thus, we are not just interested
in knowing whether a system is faster or slower than another process, but
also how much faster or slower it is. This is done by introducing a distance
between systems. We show how to compute this distance and that it behaves
well with respect to properties expressed in a certain logical formalism.
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Resumé

Computersystemer kan findes overalt: i rummet, i vores hjem, i vores biler,
i vores lommer og endda nogle gange i vores egne kroppe. På grund af
økonomiske, sikkerheds- og bekvemmelighedsmæssige problemstillinger er
det vigtigt at sådanne systemer virker korrekt. Det er dog et notorisk svært
problem at sørge for at softwaren, der kører på computere, opfører sig kor-
rekt og ikke indeholder fejl.

En tilgang til at gøre dette problem nemmere er modeltestning, hvor man
laver en model af systemet i en matematisk formalisme. Derefter kan krav,
som er udtrykt i et formelt sprog, blive verificeret op mod modellen for at
give en garanti for, at modellen opfylder kravene.

For mange computersystemer såsom satellitter, airbags og trafiklys, er tid
en vigtig faktor. På grund af dette har vi behov for formelle sprog til at
udtrykke krav og for formalismer, som kan inkorporere realtid.

I denne afhandling udvikler vi derfor formalismer og algoritmer, som
lader os sammenligne og udtrykke egenskaber vedrørende realtidssystemer.
Først introducerer vi en logisk formalisme til at udtrykke egenskaber om
øvre og nedre grænser på tid, og vi studerer denne formalismes egenskaber,
herunder aksiomatisering og algoritmer til at fastslå om en formel er opfyldt.

Derefter betragter vi spørgsmålet om, hvornår et system er hurtigere end
et andet. Vi viser at dette er et svært spørgsmål, som generelt ikke kan
besvares, men vi identificerer nogle specialtilfælde hvor spørgsmålet kan
besvares. Vi viser også at med denne opfattelse af hurtigere-end, kan en
lokal forøgelse af hastighed føre til et globalt fald i hastighed. Dette kaldes
en tidsanomali, og vi påbegynder en undersøgelse af, hvordan sådanne tid-
sanomalier kan undgås.

Til slut beskæftiger vi os med hvordan vi kan sammenligne systemers re-
altidsadfærd ikke kun kvalitativt, men også kvantitativt. Dette betyder at vi
ikke kun er interesserede i at vide, om et system er hurtigere eller langsom-
mere end et andet system, men også hvor meget hurtigere eller langsommere
det er. Dette gør vi ved at introducere en afstand mellem systemer. Vi viser
hvordan man kan beregne denne afstand, og vi viser at den kan beskrives
ved hjælp af en bestemt logisk formalisme.
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Preface

The research described in this thesis was carried out at Aalborg University
from September 2015 to October 2018 as part of the research project Approx-
imate Reasoning for Stochastic Markovian Systems (project number 4181-
00360) funded by The Danish Council for Independent Research (DFF-FNU).
The aim of this project is to develop an approximation theory for stochastic
Markovian systems from a logical, topological, and computational point of
view.

The content of this thesis contributes to that aim by developing a notion
of a faster-than relation in the context of semi-Markov decision processes,
which subsume the popular formalism of continuous-time Markov chains.
This allows us to approximate a system by another system which operates
slower or faster than the former system. Furthermore, we extend this relation
to a distance which can give quantitative information about how closely one
system approximates another.

From the logical point of view, we give a logical characterisation of both
the faster-than relation and the distance which extends it. Furthermore, we
consider common aspects in a logical analysis, such as axiomatisation, satis-
fiability, and model checking.

From the topological point of view, we consider the topology induced
by the distance, and how properties given by a logical specification behave
in this topology. In particular, we show that approximate reasoning in the
limit is sound, meaning that when approximating closer and closer to the
real system, properties enjoyed by the approximations are preserved by the
real system.

Finally, from the computational point of view, we develop efficient algo-
rithms for deciding the faster-than relation and for computing the distance.
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Chapter 1

Introduction

Computer systems today are ubiquitous, from the tiny chips in watches and
pacemakers to the massive server farms that power the search engines and
other web services that we use every day. For economic, safety, and costumer
satisfaction reasons, it is important that such systems function correctly: If
a fault is found in a system that has already been mass produced and sold,
the manufacturer may have to repair or replace a large number of systems,
resulting in additional expenses for the manufacturer. Furthermore, we place
high importance on the correctness of safety-critical systems where lives may
be at stake, since even small and rare errors may result in serious injury or
death, such as the case of the Therac-25 radiation therapy machine, where at
least one person died from radiation poisoning due to a software error [100].
Lastly, because computer systems are so common in our everyday lives, we,
as customers and users of such systems, have an interest in them working
correctly, to save us confusion and frustration.

One of the important aspects of many computer systems is time, espe-
cially for real-time systems which operate under time constraints. This means
that when analysing the correctness of such systems, we want to be able to
understand how the system reacts to and evolves over time. Consider the
following examples.

Solar-powered satellites: Most satellites orbiting the earth rely on electricity
from on-board solar panels. Since such satellites spend periods in the
earth’s shadow where it can not collect solar power, it is important to
correctly plan and schedule the power consumption of the satellite in
order to maintain the condition of the battery.

Airbags: The effectiveness of airbags is extremely sensitive to time. Airbags
fully inflate in a matter of milliseconds, and if they inflate too soon,
they may already have deflated at the moment of impact, whereas if
they inflate too late, they may cause more harm than good.

3



Chapter 1. Introduction

Intelligent traffic lights: Many traffic lights today are equipped with sensors
to detect cars arriving at the traffic light. Based on this information,
the traffic light can decide how to direct the traffic. Ideally, this could
reduce the waiting time for road users in traffic lights.

In all of the above examples, we see that time is an important factor, and
numerous such examples exist.

Many of the properties of interest in real-time systems are non-functional
requirements. Non-functional requirements put constraints on the way in
which a system can be realised, in order to make the end user experience
more pleasant [34]. Some of the key non-functional requirements that inter-
act with time are reliability, throughput, and response time.

Reliability: A system should function correctly over long periods of time,
even as components start to deteriorate.

Throughput: A system should be able to produce or accept output at a con-
sistent and high rate.

Response time: A system should react quickly to inputs given to it.

We therefore need techniques and methods that will allow us to verify
properties such as non-functional requirements in real-time systems. One
successful approach to verifying the correctness of computer systems is that
of model checking [35, 56, 117]. The aim of model checking is to build an ab-
stract model of the system in question using some precise mathematical for-
malism, and then verifying that this model satisfies some specification. Such
specifications are often expressed by formulas of some logical formalism, but
they can also be represented by another model.

The act of translating a real system into a mathematical formalism, also
known as modeling, is therefore central to model checking. However, mod-
eling has many difficulties attached to it. One such difficulty is what we
will call the approximate modeling problem, which is the problem of accurately
representing quantitative information such as time in the formalism. All
measurements in the real world are made within some error margin, even
for highly advanced measuring equipment. The modelling formalism used
should therefore be able to accommodate this inaccuracy. Furthermore, many
systems have some uncertainty attached to them, such as robots that oper-
ate in physical environments or environments where the robot interacts with
other agents. Finally, the act of modeling itself requires abstracting away
some parts of the real system in order to arrive at a formal model of the
essential parts of the system. This abstraction process also introduces an el-
ement of error, since elements may be modeled wrongly, or key elements
may be left out. It is up to the skill and experience of the person doing the
modeling to prevent this from happening.

4



1.1. Structure of Thesis

All of these issues together makes the process of modeling difficult, and
we therefore need to develop formalisms, specification languages, and tech-
niques that allow us to account for this uncertainty and approximation. That
is the aim of this thesis.

1.1 Structure of Thesis

This thesis is split into two parts. Part I gives an overview of the current
state of the art and the papers that are part of this thesis, including the con-
tributions that the papers make to further the state of the art as well as the
mathematical preliminaries necessary for the results of the papers.

Part II include the full versions of the papers outlined in Part I. The papers
presented in this thesis are extended versions, including detailed proofs and
additional material.

Each chapter has its own separate bibliography.

1.2 State of the Art

We first survey the formalisms, specification languages, and techniques that
have already been developed for reasoning about real-time systems.

1.2.1 Models

The two most common formalisms for modeling real-time systems are timed
automata and Markov chains [5, 18].

Timed automata. Timed automata were introduced by Alur and Dill [4, 5]
in the early ’90s as a way of modeling time in automata theory. The key con-
cept in timed automata is that of clocks, each of which keep track of time
and can be independently reset. Transitions can then be constrained such
that a transition is only allowed when the current value of each clock sat-
isfies the constraints. Many extensions of timed automata have been con-
sidered, many of which include probabilistic behaviour. The most signifi-
cant, non-probabilistic extension of timed automata is that of timed I/O au-
tomata [42, 83], in which an important distinction is made between input and
output actions. Probabilistic timed automata [88, 89] are timed automata in
which the transitions are given probabilistically, and furthermore, the value
to which the clocks reset are also given by a probability distribution. Stochas-
tic timed automata [22] modify the semantics of timed automata, i.e. how
the behaviour of a timed automaton is interpreted, rather than modifying
the timed automaton itself, which then gives rise to a probabilistic process.
There is also another kind of stochastic timed automata, which give different
semantics to timed automata. In this semantics, the focus is on many timed

5



Chapter 1. Introduction

automata operating in a network [41, 80]. Here the semantics is a race be-
tween the different components, in the sense that the component that has the
smallest delay gets to choose the output.

Markov chains. Markov chains were developed in the early 20th cen-
tury by Markov and extended to continuous time by Kolmogorov. Nowa-
days, Markov chains are used in almost all fields of engineering and science.
The use of Markov chains in model checking began in the second half of
the ’80s [40, 98, 132], but probabilistic automata, a generalisation of Markov
chains, have been studied in automata theory since their introduction in 1963
by Rabin [118]. Markov chains operate by choosing its transition to the next
state according to a probability distribution. In order to model real-time sys-
tems, continuous-time Markov chains are often used instead. In continuous-
time Markov chains, the transitions are probabilistic as in Markov chains,
but in addition the waiting time in each state is governed by an exponential
distribution. Various aspects of model checking and specification have been
extensively studied for continuous-time Markov chains [10, 17, 19, 32], even
for the case of infinite-state chains [69]. However, many phenomena that
occur in practice are not exponentially distributed, so it is useful to extend
the model of continuous-time Markov chains with distributions other than
the exponential. Semi-Markov chains therefore allow the waiting time in a
state to be governed by an arbitrary distribution. Aspects of model check-
ing have also been investigated for semi-Markov chains [101], although they
have received much less attention in the literature. One can also generalise
even further to obtain generalised semi-Markov processes [1, 68] that allow
different distributions for different actions. Generalised semi-Markov pro-
cesses are in fact close in spirit to probabilistic timed automata. They operate
by having a set of clocks, one for each possible action. The clocks run down,
and when a clock reaches 0, the action associated with that clock is fired. This
affects a probabilistic transition to a new state, as well as a probabilistic reset
of the clocks according to arbitrary distributions. Another important variant
of Markov chains used in model checking is that of Markov decision pro-
cesses, in which the actions of the process are determined by an outside con-
troller [58, 74]. Finally we mention the model of interactive Markov chains,
which combine continuous-time Markov chains with non-deterministic be-
haviour [76].

Reactive and generative. When discussing probabilistic models, one im-
portant distinction is that between reactive and generative models [131]. Re-
active systems are those that react to input by taking a transition depending
on the input given. On the other hand, generative systems are those that gen-
erate output as it executes transitions. As such, reactive systems take inputs,
whereas generative systems create outputs. Examples of reactive systems are
probabilistic automata, that takes words as input and either accepts or rejects
the word, and Markov decision processes, whose behaviour depends on the
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input given by the controller. An example of a generative system is that of
Segala automata [123], where each state can non-deterministically choose be-
tween a number of different generative transitions. Of course, the generative
and reactive models can be combined to have both inputs and outputs, as in
the model of timed I/O automata.

1.2.2 Logical Specification Languages

Many different logical specification languages have been introduced in the
literature for expressing properties related to time.

Weighted logics. For weighted logics, weighted monadic second order
logic was introduced to capture the behaviour of weighted automata [51].
This was later extended to many different, closely related models [12, 52,
53, 62, 105]. There have also been attempts to understand the connection
between weighted monadic second order logic and probabilistic logics [25].
Weighted modal logic [92] was introduced to reason about the consump-
tion of resources in weighted transition systems. This formalism was later
extended to handle recursion [96, 97] and concurrency [94]. A weighted ex-
tension of the expressive µ-calculus has also been developed [93].

Timed logics. The two most influential timed logics are linear temporal
logic (LTL) [116] and computation tree logic (CTL) [36], both of which are
subsumed by CTL∗ [57], which in turn is subsumed by the µ-calculus [85]. In
LTL, time is linear, meaning that at each moment in time, there is only one
possible future, whereas in CTL, time is branching, meaning that at each mo-
ment in time, we may simultaneously branch out into different future paths.
Both LTL and CTL have operators meaning “in the next step, a property will
hold”, “one property will hold until another property holds”, and “a prop-
erty will eventually hold”, as well as many other derived operators. Both
LTL and CTL in their original form consider time to be discrete. Therefore
real-time extensions have been developed, such as timed CTL [2] for CTL as
well as metric interval temporal logic [6] and timed LTL [20, 54] for LTL.

Probabilistic logics. Lastly we discuss logical specification languages for
reasoning about probabilistic behaviour. CTL has been extended with prob-
abilistic operators in PCTL [72], where one can express properties such as
“with probability at least p, a property will eventually hold”. However, like
CTL, time is discrete in PCTL. To extend CTL with both probability and real
time, continuous stochastic logic (CSL) has been introduced [11, 16, 50]. In
another direction, Markovian logic [86, 104] has been introduced, based on
earlier work on knowledge and probability [8, 9, 59]. Markovian logic has
two kinds of operators, one which states “with at least probability p, we can
go to a state satisfying some property”, and another which states “with at
most probability p, we can go to a state satisfying some property”.

7
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1.2.3 Relations Among Computational Processes

There are many ways in which one can compare and relate processes.
Bisimulation. The most popular way to compare processes is that of

bisimulation, which was introduced by van Benthem [127] under the name
of zigzag connection, and independently by Milner and Park [107, 111] who
introduced the name bisimulation. In the context of Markov chains, bisim-
ulation was defined by Larsen and Skou [98] and has close connections to
the notion of lumpability [27]. Bisimulation is a notion of behavioural equiv-
alence, in which each process must be able to mimic the behaviour of the
other process.

Since the concept of bisimulation has been so successful, notions of bisim-
ulation have been studied for most of the systems that are studied in the lit-
erature, including timed automata [3, 29], probabilistic timed automata [125],
timed I/O automata [83], Markov chains [46, 82, 98], continuous-time Markov
chains [19, 77], continuous-time Markov decision process [109], and gener-
alised semi-Markov processes [68].

Many of these notions of bisimulation follow from a more general theory
of processes as coalgebras [46, 119].

Simulation. Instead of asking when processes are behaviourally equiva-
lent, we can ask when one process can simulate or mimic the behaviour of
another process. This is the idea behind simulation relations.

Although simulation relations are not as ubiquitous in the literature as
bisimulation relations, they have still been studied for many types of systems,
including timed automata [126], probabilistic timed automata [125], timed
I/O automata [83], Markov chains [47, 81, 128], and continuous-time Markov
chains [19].

Simulation has also been studied from the coalgebraic point of view [78].
Trace equivalence and inclusion. Another notion of behavioural equiv-

alence, which comes from automata theory, is that of trace equivalence, in
which two processes are said to be equivalent if they have the same possible
executions, known as traces. Generally speaking, it has proven more difficult
to reason about trace equivalences than to reason about bisimulation [79].

Trace equivalences have been studied for timed automata [3], Markov
chains [21], and continuous-time Markov chains [136]

A related, but non-symmetric notion of trace inclusion has also been stud-
ied for Markov decision processes [64].

Bisimulation distances. Although the concept of bisimulation has been
influential, the concept is not satisfactory for quantitative systems, due to the
approximate modeling problem discussed in the introduction. This was orig-
inally emphasised by Jou and Smolka [66, 82], who instead of the qualitative
bisimulation relations advocated a quantitative bisimulation distance, which
not only says when processes behave differently, but also by how much their
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behaviour differs.
Such a distance has been developed for timed automata [75] by measur-

ing the difference between the time points along traces of the automata. Dis-
tances have also been developed for weighted transition systems [43, 60, 91],
including not only bisimulation distances, but also simulation distances that
generalise simulation rather than bisimulation.

Much work has been dedicated to studying bisimulation distances for
probabilistic systems. One way of defining such a distance is by allowing
an approximation factor ε on the probabilities involved in the definition of
bisimulation. This leads to the notion of ε-bisimulation, and the distance is
then given by the smallest ε that allows for a ε-bisimulation [49, 66]. An-
other approach is to make use of the Kantorovich1 distance [45] between
probability distributions. This approach has been successfully applied to de-
fine bisimulation distances for Markov chains [44, 48, 129], Markov decision
processes [61], continuous-time Markov chains [13], and generalised semi-
Markov processes [68].

Just as bisimulation distances generalise bisimulation to a quantitative
setting, so one could also generalise trace equivalence to a quantitative set-
ting. Together with bisimulation distances, such distances are often called
behavioural distances, since they quantify the dissimilarity between the be-
haviour of systems. Using the total variation distance, such generalisations of
trace equivalence has been studied for Markov chains [84] and semi-Markov
chains [14], and various other ways to generalise trace equivalence have been
considered for non-deterministic Markov chains [28].

Faster-than relations. Another way to relate the behaviour of two pro-
cesses is to ask when one process is faster than another. For non-probabilistic
and discrete-time systems, i.e. systems with no probabilities and where each
transition or step takes one time unit, such faster-than relations have been
well-studied [39, 102, 103, 108, 120]. In particular, they have been studied
for timed automata [67] and for Petri nets [134, 135], which are systems that
model the production and consumption of resources as transitions are taken.
However, for continuous-time systems, very little work has been done. To the
best of our knowledge, the only work that has been done on faster-than rela-
tions for continuous-time probabilistic systems is on continuous-time Markov
chains [19], where the simulation relation for continuous-time Markov chains
contains a condition which informally says that the process which is simulat-
ing another process is allowed to fire faster than the process it is simulating.

1This distance has many other names, the most notable alternatives being the Wasserstein,
Hutchinson, and earth-mover distance.
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1.2.4 Algorithms

In order to make use of the concepts we have surveyed so far, one needs
algorithms that allow us to determine if e.g. a formula in a logical language
can be satisfied or two models are in a certain relation. Preferably, we also
want the algorithms to be efficient, so that we can actually run them on
computers and get an answer within a reasonable time frame.

Model checking. The model checking problem asks, given a model and
a formula, whether the model satisfies that formula. For most logical specifi-
cation languages, this is a simple problem to verify, and efficient algorithms
therefore exist. The model checking problem is in PTIME for CTL [36, 37],
PCTL [72], and CSL [16]. For LTL [124] and timed CTL [2], the problem
is PSPACE-complete, whereas it is EXPSPACE-complete for metric interval
temporal logic [6].

Satisfiability. Another natural problem for a logical language is the sat-
isfiability problem, which asks whether a given formula can be satisfied at
all, i.e. whether we can find some model which satisfies the formula. This
can be seen as a sanity check for a formula: If a formula is not satisfi-
able, then it is unreasonable to ask for a system which has the property
expressed by the formula. The satisfiability problem is often harder than
the model checking problem, since in the model checking problem, we only
have to consider a single model, whereas in the satisfiability problem, we
have to consider all models. For LTL, the satisfiability problem is PSPACE-
complete [124, 133], for CTL it is EXPTIME [55], for metric interval temporal
logic it is EXPSPACE-complete [6], and for timed CTL it is undecidable [2].
For PCTL, the decidability (and hence also complexity) of the satisfiability
problem is a longstanding open problem, but various fragments have been
successfully studied [23, 26, 30, 73, 87, 106]. For a certain weighted logic
called recursive weighted logic, the satisfiability problem has been shown to
be decidable [95].

Bisimulation and simulation. Since bisimulation, and to some extent
simulation, are core concepts when reasoning about the behavior of systems,
algorithms have been developed to decide whether two systems are in a sim-
ulation or bisimulation relation. Most algorithms for timed automata use the
notion of regions, which is a way to partition the state space into finitely
many classes. For timed automata, both simulation and bisimulation are
EXPTIME-complete [29, 90, 99], and the two are in EXPTIME as well for
probabilistic timed automata [125]. Algorithms for deciding simulation and
bisimulation between Markov chains make use of the maximum flow prob-
lem for networks [33]. These algorithms are in PTIME for Markov chains,
continuous-time Markov chains, and Markov decision processes [15, 137].

Trace equivalence and inclusion. Generally speaking, reasoning about
traces is much harder than reasoning about bisimulation. For timed au-
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tomata, both trace equivalence [5] and trace inclusion [5, 110] are undecid-
able. See [7] for a survey on these and related results. For probabilistic
automata, the trace inclusion problem is also undecidable [24, 38]. However,
somewhat surprisingly, the trace equivalence problem for probabilistic au-
tomata is in fact decidable and in PTIME [64, 122], using techniques from
linear algebra. See [63] for an overview of undecidability results for proba-
bilistic automata.

Bisimulation distances. Algorithms to compute bisimulation distances
are different in nature from the algorithms we have surveyed so far, since
we do not just need a yes/no answer, but must output a number. Therefore
it also makes sense to sometimes approximate this number up to an error
margin, meaning that instead of computing the number, we compute a num-
ber that is sufficiently close to the actual number. For probabilistic systems,
computing the bisimulation distance makes use of linear programming to
solve the transportation problem (see e.g. [121, pp. 221-223]). This results in
a PTIME-complete algorithm for Markov chains [31, 130]. An algorithm also
exists for continuous-time Markov chains [13], however, technically speaking,
this is an approximation algorithm, since the actual value may be irrational. If
we instead consider the total variation distance, then the threshold problem,
which asks whether the distance is greater than a given threshold, is undecid-
able [84]. However, the distance can be approximated in PSPACE [14, 84].

1.3 Contributions

This section summarises the most significant contributions that this thesis
adds to the state of the art. The content of this thesis is based on the following
papers.

• Paper A: Reasoning About Bounds in Weighted Transition Systems
is under submission for Logical Methods in Computer Science [70]
and is an extended version of A Complete Approximation Theory for
Weighted Transition Systems, which was published in the proceedings
of the Second International Symposium on Dependable Software Engi-
neering: Theories, Tools, and Applications (2016) [71].
Co-authors: Mikkel Hansen, Kim Guldstrand Larsen, and Radu Mardare.

• Paper B: Timed Comparisons of Semi-Markov Processes was pub-
lished in the proceedings of the 12th International Conference on Lan-
guage and Automata Theory and Applications (2018) [115].
Co-authors: Nathanaël Fijalkow, Giorgio Bacci, Kim Guldstrand Larsen, and
Radu Mardare.

• Paper C: A Faster-Than Relation for Semi-Markov Decision Processes
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Figure 1.3.1: A simple model of a robot vacuum cleaner.

is based on an unpublished manuscript [113].
Co-authors: Giorgio Bacci and Kim Guldstrand Larsen.

• Paper D: A Hemimetric Extension of Simulation for Semi-Markov
Decision Processes was published in the proceedings of the 15th Inter-
national Conference on Quantitative Evaluation of Systems (2018) [114].
Co-authors: Giorgio Bacci, Kim Guldstrand Larsen, and Radu Mardare.

Paper A takes a simple view of time, where the time that something takes
is given explicitly as the weight of taking a transition in a graph. Such sys-
tems are called weighted transition systems.

Example 1.3.1. Figure 1.3.1 shows an example of a weighted transition sys-
tem. It is a model of a robot vacuum cleaner which has three states: a waiting

state, a cleaning state, and a charging state. In the waiting state, the sys-
tem can choose to simply keep waiting for another minute. However, it can
also choose to immediately start cleaning by going to the cleaning state.
Depending on how dirty the floor is, this cleaning could take 5, 10, or 15
minutes, after which the system returns to the waiting state. In the waiting

state, the system can furthermore decide that it needs to recharge its batter-
ies. This is done by going to the charging state, which may take 1 or 2 min-
utes depending on how far away the robot is from the charging station. The
charging itself takes either 60 or 100 minutes, depending on how depleted
the batteries are, after which the system returns to the waiting state. �

However, because of the approximate modeling problem, putting an exact
value for the amount of time that something takes is not feasible. Paper A
therefore suggests that we instead reason about lower and upper bounds on
the time taken, which is a more manageable engineering task.

This is done by introducing a logical specification language which lets us
express properties such as
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“it takes at most 0.1 seconds to go to a state where the airbag is
deployed”

and

“it takes at least 0.01 seconds to go to a state where the airbag is
deployed”.

The main contributions of Paper A are then to study the properties of this
language.

We show first of all that the language describes exactly the behaviour
of systems. This means that if two systems have the same behaviour, then
they must also satisfy the same properties of our language, and vice versa.
This kind of property is known by various names in the literature, including
bisimulation invariance, logical characterisation, adequacy, Hennessy-Milner
property, and full abstraction.

Contribution 1. We present a language for reasoning about lower and
upper bounds in weighted transition systems and we show that this
language characterises exactly those systems that have the same kind of
behaviour.

We then present a proof system given by a set of axioms which fully
describe our logical language, in the sense that anything that can be proved
from the axioms must be true, and anything which is true can be proved from
the axioms. This means that the axioms are both sound and complete.

Finally, we present two decision algorithms. The first algorithm decides
the model checking problem, which asks whether a given system satisfies some
formula. The second algorithm decides whether, for a given formula in a our
language, there exists some weighted transition system in which that formula
is true. If such a system exists, the formula is said to be satisfiable.

Contribution 2. We provide a complete axiomatisation of the logical
specification language, and give an algorithm for deciding the model
checking problem and an algorithm for deciding satisfiability of a for-
mula.

Papers B, C, and D take a different view of time. Here, the approxi-
mate modeling problem is tackled by introducing probability into the model-
ing formalism. We thus consider semi-Markov processes, where both the time
spent in a given state, and the transition step to a next state are governed by
probability distributions.
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Figure 1.3.2: A simple model of an intelligent traffic light.

Example 1.3.2. Figure 1.3.2 shows an example of a semi-Markov process,
modeling a simple traffic light at an intersection with two roads. In this
example, there are four states, where the top two states show green light for
the first road and red light for the second, and the bottom two states show red
light for the first road and green light for the second. This is indicated by the
labels g1 and r2 in the top two states, and r1 and g2 in the bottom two states.
The number in each state denotes the rate of an exponential distribution,
meaning that the higher the number, the faster that state will take a transition.
The labels on the edges between states denote what action is taken, whether
it is an input or an output, and the probability of taking that action. Inputs
are denoted by ? and outputs by !. For example, car2?, stay! : 0.9 means
that when receiving the input car2, the system has a 90% chance to take this
transition, which also outputs stay.

Imagine that the system starts in the top left state, where the light is
green for the first road and red for the second. If now the system sees a
car approaching on the first road, indicated by the action car1?, then the
system changes to the top right state, in which the system has a high chance
of keeping the light green for the first road. Hence, seeing a car approaching
on the first road will tend to cause the light to remain green for that road. On
the other hand, if a car is observed on the second road, both roads, or none
of the roads, all of which is indicated by the action car1?, then the system
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changes the red and green lights by going to the bottom left state, in which
the light is red for the first road and green for the second, and outputting
change!. The top right state has a higher rate than the top left state, since in
this state the system needs to be able to quickly react to a car approaching
on the second road, so that the second road is not stuck with red light for
too long. In this state, when another car is observed on the first road, again
indicated by car1?, then the system has probability 0.9 of staying in this state
and outputting stay!, thus keeping the light green for the first road a little
longer. However, even if another car is observed on the first road, the system
may still change the lights with probability 0.1, out of fairness to pedestrians
who are not covered by the model. If a car is observed on the second road,
both roads, or none of the roads while in this state, the system again changes
to the bottom left state, thus changing the light to green for the second road.

The bottom two states function symmetrically, with the light being green
for the first road and red for the second road. �

Papers B and C consider how to compare semi-Markov processes with
respect to the amount of time it takes to execute sequences of actions. Here,
the idea is that one process should be faster than another if whatever se-
quence of actions the slow process can do, the fast process can do faster and
with a higher probability. This is the so-called trace-based semantics of semi-
Markov processes, hence we will refer to this as the trace-based faster-than
relation.

We show that the trace-based faster-than relation is undecidable, meaning
that there is no algorithm which can determine whether a given process is
faster than another. This undecidability result is quite robust, since the rela-
tion remains undecidable even if we consider approximating the relation up
to a multiplicative error term.

Contribution 3. We show that deciding the trace-based faster-than rela-
tion is a difficult problem. In particular, the relation is undecidable and
approximating it up to a multiplicative constant is impossible.

However, we still obtain some positive results. If we consider approxima-
tion up to an additive constant rather than a multiplicative constant, then we
can recover decidability under the following two assumptions. The first as-
sumption is that we only consider the behaviour of the processes up to some
finite point in time. Thus we allow the fast process to become slower than
the other process, as long as this happens only sufficiently far into the future.
The second assumption is that a process must spend some non-zero amount
of time in each state that it visits. In other words, instantaneous change of
state is not allowed, which is a reasonable assumption from a practical point
of view. Such processes are called slow.
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Contribution 4. We give an algorithm for approximating a time-bounded
version of the trace-based faster-than relation up to an additive constant
for slow processes.

Another way to recover decidability is to restrict ourselves to so-called
unambiguous processes. An unambiguous process is one in which the next
state is determined uniquely by the output, so if you know the current state
of the process and you know what is output, then you know exactly what
state the process ends up in next.

Contribution 5. We give an algorithm for unambiguous processes which
can decide whether one process is trace-based faster than another.

We also study the trace-based faster-than relation from the logical point
of view. We describe a simple logical language which is expressive enough to
characterise exactly those states that are related by the trace-based faster-than
relation. We study the properties of the language and show in particular that
both the satisfiability and the model checking problem are decidable.

Contribution 6. We introduce a logical language which characterises
the trace-based faster-than relation and we show that both the satisfi-
ability problem and the model checking problem for this language are
decidable.

Lastly we consider the compositional aspects of the trace-based faster-
than relation. When considering a number of components operating in par-
allel, we would like to replace one or more of these components with another
component which is faster. However, we show that doing so may lead to
parallel timing anomalies, meaning that although the replaced component
is faster than the previous component, this may result in the overall system
becoming slower. In an attempt to better understand such parallel timing
anomalies and how to avoid them, we identify a set of conditions which will
ensure that parallel timing anomalies do not occur. Furthermore, we give an
algorithm to check whether these conditions are satisfied.

Contribution 7. We give examples of parallel timing anomalies occuring
for the trace-based faster-than relation. However, we also describe some
conditions under which parallel timing anomalies can not occur, and we
develop an algorithm for checking whether these conditions are met.

Paper D also considers semi-Markov processes. However, here we fur-
thermore address the approximate modeling problem by not only comparing
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processes qualitatively, but also quantitatively. Thus we are not only able to
say whether a process is faster than another, but are also able to quantify how
much slower or faster it is.

For this we consider what we will call the simulation-based faster-than
relation, so called because it is based on the idea of one process simulating
another. Roughly speaking, a process is simulation-based faster than another
process if every step in the slow process can be simulated by the faster pro-
cess, except the faster process is allowed to do the step faster. To turn this into
a quantitative measure, we introduce an acceleration factor through which we
obtain a distance between processes. The acceleration factor allows us to in-
crease the speed of a process, so that by accelerating a process by this factor,
it may become faster than another process which it was originally slower
than. We then define the distance between from one process to another as
the smallest acceleration factor necessary to make second process faster than
the first. Our first result is an algorithm for computing this distance.

Contribution 8. We describe an algorithm for computing the distance
from one process to another. This algorithm runs in polynomial time
using known techniques, making it relevant for use and implementation
in practice.

We then consider the compositional aspects of the distance. Here the
relevant notion is that of non-expansiveness: Composition should not expand
the distance between processes. If composition is non-expansive, then it also
follows that we are guaranteed that parallel timing anomalies do not occur.
We show that under some mild conditions, which are satisfied by many types
of composition found in the literature, composition is indeed non-expansive
with respect to our distance.

Contribution 9. We show that, under mild assumptions, composition is
non-expansive with respect to the distance between semi-Markov pro-
cesses.

Finally we consider a logical language which we call timed Markovian
logic. This language can express properties such as

“with probability at least 0.99 we leave the state where the traffic
light is red before 10 seconds have passed”

and

“with probability at most 0.5 we end up in a state where the traffic
light is green.”
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We show that this language gives a logical characterisation of the simulation-
based faster-than relation. Furthermore, we extend this to a quantitative gen-
eralisation of logical characterisation for our distance.

Contribution 10. We introduce a logical specification language called
timed Markovian logic and show that this language characterises both
the simulation-based faster-than relation and the distance between semi-
Markov processes.

The rest of Part I is structured as follows. In Chapter 2 we introduce some
mathematical concepts and notation that we will use throughout the the-
sis, including the definition of weighted transition systems and semi-Markov
processes that we have mentioned here. We describe in more detail the re-
sults of Paper A in Chapter 3, the results of Paper B and Paper C in Chapter 4,
and the results of Paper D in Chapter 5. For the complete details, see the full
papers in Part II.
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Chapter 2

Preliminaries

In this chapter we introduce some of the key concepts and standard results
that we will use throughout the paper. The material in this chapter is not
novel, and can be found in any standard textbook on each of the subjects
discussed.

We will use N, Q, and R to denote the natural, rational, and real num-
bers, respectively. Furthermore, we will use Q≥0 and R≥0 to denote the
non-negative rational and real numbers, respectively, and R>0 denotes the
strictly positive real numbers. For expressions involving ∞, we will adopt
the convention that

∞ + x = x + ∞ = ∞

whenever x ∈ R and
∞ · x = x ·∞ = ∞

whenever x ∈ R>0.

2.1 Set Theory

We assume the reader is familiar with the basic concepts of set theory. Given
two sets A and B, A∪ B, A∩ B, A× B is the union, intersection, and Cartesian
product, respectively, of A and B. We denote by 2A the power set of A and
by Ac the complement of A. For a function f : A → B, the preimage of a set
Y ⊆ B under f is given by

f−1(Y) = {x ∈ A | f (x) ∈ Y}.

A relation on a set A is simply a subset R ⊆ A× A. We will sometimes
write aRb to mean (a, b) ∈ R. An equivalence relation on a set A is a relation
R ⊆ A× A that has the following properties.
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Reflexivity: (a, a) ∈ R for any a ∈ A.

Symmetry: If (a, b) ∈ R, then (b, a) ∈ R.

Transitivity: If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

An equivalence relation partitions a set into equivalence classes such that every
element of the set is in exactly one equivalence class. A preorder is a relation
which satisfies reflexivity and transitivity.

A set which can be put into bijection with a subset of the natural numbers
is said to be countable, otherwise it is said to be uncountable.

2.2 Boolean Algebra

Boolean algebra is a formalisation and generalisation of the rules of logic as
initially introduced by George Boole. For a comprehensive introduction to
Boolean algebras, see the excellent textbook by Givant and Halmos [6].

Definition 2.2.1. A Boolean algebra is a set A together with two binary opera-
tions ∧ and ∨, a unary operation ¬, and two distinguished elements > and
⊥. These must satisfy the following conditions, for any elements p, q, r ∈ A.

p ∧> = p p ∨⊥ = p (identity laws)

p ∧ ¬p = ⊥ p ∨ ¬p = > (complement laws)

p ∧ q = q ∧ p p ∨ q = q ∨ p (commutative laws)

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)
(associative laws)

N

The two operations ∧ and ∨ are known as meet and join, respectively,
whereas the operation ¬ is known as complement. The elements > and ⊥ are
known as the top and bottom elements, respectively.

Example 2.2.2. The two-element Boolean algebra has only the elements >
and ⊥. In this algebra, we interpret > as true and ⊥ as false. We then
recover the usual logical connectives, as ∧ becomes conjunction, ∨ becomes
disjunction, and ¬ becomes negation. �

Example 2.2.3. The power set 2X of a set X is a Boolean algebra where meet
is intersection, join is union, and complement is set complement. �

From the definition of a Boolean algebra follows naturally a notion of
order between the elements of a Boolean algebra.
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2.2. Boolean Algebra

Definition 2.2.4. We will write p→ q and say that p is below q if p∧ q = p. N

This order also explains the names top and bottom for > and ⊥, since we
now have ⊥ → p→ > for any p ∈ A, meaning that ⊥ is below every element
and every element is below >.

A map from one Boolean algebra to another that preserves the structure
of the Boolean algebra is called a homomorphism.

Definition 2.2.5. Let A and B be two Boolean algebras. A homomorphism from
A to B is a map f : A→ B such that

f (p ∧ q) = f (p) ∧ f (q)

f (p ∨ q) = f (p) ∨ f (q)

f (¬p) = ¬ f (p) N

It is simple to show that if f is a homomorphism, then we also get

f (>) = > and f (⊥) = ⊥.

An important example of homomorphism comes from the quotient con-
structed from a congruence.

Definition 2.2.6. A congruence on a Boolean algebra A is an equivalence rela-
tion R such that whenever pRr and qRs we also have

(p ∧ q)R(r ∧ s)

(p ∨ q)R(r ∨ s)

(¬p)R(¬r) N

Given a congruence R on a Boolean algebra A, we can now construct the
quotient of A under R, which is denoted by A/R. The quotient of A under
R consists of all equivalence classes of R, and is in fact a Boolean algebra by
defining meet, join, and complement as

[p] ∧ [q] = [p ∧ q]

[p] ∨ [q] = [p ∨ q]

¬[p] = [¬p],

where [p] denotes the equivalence class of p.

Proposition 2.2.7 ([6, Chapter 17]). Let A be a Boolean algebra and R a con-
gruence on A. Define the function f : A → A/R by f (p) = [p]. Then f is a
homomorphism, known as the projection from A unto A/R.
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Example 2.2.8. Consider a Boolean algebra A. Define p ↔ q if and only if
p → q and q → p. For example, it is easy to see that (p ∧ >) ↔ p. Then the
relation

R↔ = {(p, q) ∈ A× A | p↔ q},

is an equivalence relation and can be shown to be a congruence on A. The
quotient of A under R↔ is known as the Lindenbaum algebra. �

An important concept for Boolean algebras is that of a filter.

Definition 2.2.9. Given a Boolean algebra A, a filter is a subset F ⊆ A such
that

1. > ∈ F,

2. if p ∈ F and q ∈ F, then p ∧ q ∈ F, and

3. If p ∈ F and p→ q, then q ∈ F. N

In other words, a filter is a subset which contains >, is closed under meet,
and is upward-closed.

Definition 2.2.10. Given a Boolean algebra A, U is an ultrafilter if

• U is a filter,

• U 6= A, and

• if F is another filter such that U ⊆ F, then either F = U or F = A. N

An ultrafilter is therefore a filter which is maximal, in the sense that we
can not add anything to the filter while having it remain a filter. Ultrafilters
have the following nice property.

Lemma 2.2.11 ([6, Chapter 20, Lemma 1]). Let A be a Boolean algebra. U is an
ultrafilter if and only if for any p ∈ A we have either p ∈ U or ¬p ∈ U, but not
both.

2.3 Metric Spaces

The theory of metric spaces is concerned with notions of distance. The most
basic distance is that of Euclidean distance, which is simply the length of the
straight line between two points in a Euclidean space. However, this notion
quickly becomes too simplistic. For example, the distance one has to travel to
go from Denmark to England depends on whether one is going by airplane,
by ferry, by train, or something else. Furthermore, the Euclidean distance is
symmetric: If the distance from A to B is x, then the distance from B to A
is also x. However, some natural notions of distance are not symmetric. For
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example, the distance when traveling by car in a city from point A to point
B may not be the same as the distance from B to A, due to the existence of
one-way streets.

Definition 2.3.1. Let X be a set, and d : X× X → [0, ∞] a function. Consider
the following conditions on d.

(D1) d(x, y) = 0 implies x = y.

(D2) x = y implies d(x, y) = 0.

(D3) d(x, y) = d(y, x).

(D4) d(x, z) ≤ d(x, y) + d(y, z).

The function d is

• a metric if it satisfies (D1)-(D4),

• a pseudometric if it satisfies (D2)-(D4), and

• a hemimetric if it satisfies (D2) and (D4). N

Condition (D3) is known as symmetry and condition (D4) is known as the
triangle inequality. We will use the term distance to mean any of the above
three.

Example 2.3.2. For any set X, define the function

d(x, y) =

{
0 if x = y
1 if x 6= y.

This is known as the discrete metric. �

Example 2.3.3. Consider the real numbers R and define the function

d(x, y) = |y− x| =
√
(y− x)2.

This is known as the Euclidean distance, and simply measures the length of the
straight line between the two points x and y. This can easily be generalised
to Rn for any n. �

A metric space is then a set X together with a metric on X, and similarly
for a pseudometric and hemimetric space. Metric spaces are the most com-
mon and well-studied of the three types of spaces in the literature. However,
for us, the pseudometric and hemimetric spaces are more natural. This is
because we want systems that have the same behaviour to be at distance 0
from each other, but having the same behaviour does not necessarily mean
that the systems are equal. Hence condition (D1) becomes unnatural.
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Given a distance d on X, we can define the closed and open sets of X as
follows. For a point x ∈ X and a radius r > 0, the open ball of radius r
centered in x is

Br(x) = {y ∈ X | d(x, y) < r}. (2.1)

Definition 2.3.4. Given a space X with a distance d, a subset U ⊆ X is said
to be open if for any x ∈ U there exists r > 0 such that Br(x) ⊆ U. A subset
V ⊆ X is said to be closed if its complement Vc is open. N

In other words, a set is open if for any point in the set, we can find an
open ball around that point such that the open ball is contained in the set.
Note that a set can be both open and closed at the same time, such a set is
called clopen.

The open sets (or equivalently, the closed sets) of a space X with a distance
d form a topology on X.

Definition 2.3.5. Given a set X, a topology on X is a collection of subsets
τ ⊆ 2X such that

• ∅ ∈ τ and X ∈ τ,

• any union of elements of τ is again in τ, and

• any finite intersection of elements of τ is again in τ. N

A topological space is then a set X together with a topology τ on X.
Topological spaces are more general than metric, pseudometric, or hemimet-
ric spaces, since the distance of a metric, pseudometric, or hemimetric space
induces a topology, and thus these are also topological spaces, whereas a
topological space need not have a distance at all.

In Equation (2.1), we used d(x, y), the distance from x to y, for the defini-
tion of an open ball. For metric and pseudometric spaces, it would not have
made a difference if we instead had written d(y, x), the distance from y to
x, since in these spaces, the distance is symmetric. However, for hemimetric
spaces, we will distinguish between the left-centered open balls BL

r (x) and the
right-centered open balls BR

r (x), defined as

BL
r (x) = {y ∈ X | d(x, y) < r} and BR

r (x) = {y ∈ X | d(y, x) < r}.

The left-centered and the right-centered open balls both give rise to a topol-
ogy, but these two topologies will in general be quite different.

The intuition for open sets is that they do not necessarily contain their
border, whereas closed sets must contain their border, so that whenever the
points in the set get infinitely close to some other point, then that other point
must also be in the set. To make this intuition precise, we introduce the
notion of convergence.
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Definition 2.3.6. Let X be a space with a distance d. We say that a sequence
of points (xn)n∈N converges to x ∈ X if for every ε > 0 we can find N ∈ N

such that for every n ≥ N we have that d(x, xn) < ε. N

If a sequence (xn)n∈N converges to x, we will also say that x is a limit of
(xn)n∈N. In metric spaces limits are unique, so that we may speak of the limit
of a sequence. However, this is not the case for pseudometric and hemimetric
spaces. We can now define what it means to be sequentially closed.

Definition 2.3.7. A set U ⊆ X is sequentially closed if whenever a sequence
(xn)n∈N, where xn ∈ U for all n ∈ N, converges to some x, then also x ∈
U. N

A set is therefore sequentially closed if the limit of any sequence is again
in that set. The two notions of closed set and sequentially closed set coincide.

Lemma 2.3.8 ([7, Exercise 4.7.14 and Lemma 6.3.6]). For metric, pseudometric,
and hemimetric spaces, a set is closed if and only if it is sequentially closed.

2.4 Measure Theory

The aim of measure theory is to generalise the notion of size by “measuring”
the size of sets. This is usually simple for finite and countable sets, but
becomes very subtle for uncountable sets such as the real numbers. We will
only concern ourselves here with those measures that assign a probability to
sets, the so-called probability measures. The starting point of measure theory
is the notion of a σ-algebra.

Definition 2.4.1. Let X be a set. A σ-algebra on X is a non-empty collection
of subsets Σ ⊆ 2X such that

(A1) X ∈ Σ,

(A2) A ∈ Σ implies Ac ∈ Σ, and

(A3) A1, A2, A3, · · · ∈ Σ implies
⋃∞

n=1 An ∈ Σ.

A measurable space is a set X together with a σ-algebra on X. N

Condition (A2) is known as closure under complement, and condition
(A3) is known as closure under countable union. Because we have closure
under complement, condition (A1) could be replaced by ∅ ∈ Σ. Further-
more, conditions (A2) and (A3) together also imply closure under countable
intersection. An element of a σ-algebra will be called a measurable set.

Example 2.4.2. For any set X, {∅, X} is a σ-algebra on X. This is known as
the trivial or indiscrete σ-algebra on X. �
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Example 2.4.3. For any set X, the power set 2X is a σ-algebra on X, known
as the discrete σ-algebra on X. �

Example 2.4.4. If we start with a topological space X with topology τ, then
the Borel σ-algebra is the smallest σ-algebra containing all the elements of τ.
The elements of the Borel σ-algebra are called Borel sets. �

When speaking about the real numbers, we will always assume that they
are equipped with the Borel σ-algebra, which we denote by B.

The structure-preserving maps between measurable spaces are the mea-
surable functions.

Definition 2.4.5. Given two measurable spaces X and Y with σ-algebra ΣX
and ΣY, respectively, a function f : X → Y is measurable if f−1(E) ∈ ΣX for
any E ∈ ΣY. N

We will now introduce the central concept of a measure. A measure as-
signs a numerical value to each measurable set, which we may interpret as
the size of that set.

Definition 2.4.6. Given a measurable space X with σ-algebra Σ, a measure is
a function µ : Σ→ R≥0 such that

(M1) µ(∅) = 0 and

(M2) for any countable collection A1, A2, A3, · · · ∈ Σ of pairwise disjoint sets
it holds that

µ

(⋃
i∈N

Ai

)
= ∑

i∈N

µ(Ai).

A measure µ : Σ→ [0, 1] is called a subprobability measure if µ(X) ≤ 1 and
a probability measure if µ(X) = 1.

Given a set X, we will use the notation

• D(X) to denote the set of all subprobability measures on X, and

• D=1(X) to denote the set of all probability measures on X. N

Condition (M2) is known as countable additivity. A probability measure
is thus a function that assigns a probability to the measurable sets, with the
condition that the probability of something happening must be 1. A measure
µ ∈ D(X) will be said to be finitely supported if its support

supp(µ) = {x ∈ X | µ(x) > 0}

is finite.
An important example of measure is the product measure.
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(a) Dirac (b) Uniform (c) Exponential

Figure 2.4.1: Plots of the CDFs of a Dirac distribution at 2, a uniform distribution with parame-
ters a = 2 and b = 5, and an exponential distribution with rate 2.

Proposition 2.4.7 (Product measure [4, Theorem 18.2]). Let X and Y be two
measurable spaces with σ-algebra ΣX and ΣY, respectively. We will then denote by
X × Y the product space, which is a measurable space with σ-algebra ΣX ⊗ ΣY,
defined as the smallest σ-algebra containing the sets E× F for E ∈ ΣX and F ∈ ΣY.

Given two measures µ : ΣX → R≥0 and ν : ΣY → R≥0, the product measure
µ× ν : ΣX ⊗ ΣY → R≥0, is the unique measure such that

(µ× ν)(E× F) = µ(E) · ν(F)

for all (E, F) ∈ ΣX × ΣY.

One of the important concepts derived from a probability measure is the
cumulative distribution function.

Definition 2.4.8. Given a probability measure µ ∈ D(R≥0), the cumulative
distribution function (CDF), or simply distribution function, of µ will be denoted
by Fµ and is given by Fµ(t) = µ([0, t]). N

Consider now (sub)probability measures on the non-negative real num-
bers, i.e. µ ∈ D(R≥0), where we interpret R≥0 as time. If we consider µ(X)
for some measurable X to be the probability that an event, such as a system
taking an action, has happened within the time interval given by X. Then
Fµ(t) gives the probability that an event has occurred before the time point t.
CDFs have the following nice properties.

Monotonicity: If x ≤ y, then Fµ(x) ≤ Fµ(y).

Right-continuity: Let x ∈ R≥0. For every ε > 0 there exists a δ > 0 such that
if x < y < x + δ, then Fµ(y)− Fµ(x) < ε.

Example 2.4.9. The Dirac measure at x, denoted by δx, is given by

δx(E) =

{
1 if x ∈ E
0 if x /∈ E
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for any measurable E. We will denote the CDF of δx by Dirac[x], which has
the property that

Dirac[x] (t) =

{
1 if t ≥ x
0 otherwise.

The CDF of the Dirac measure at 2 is plotted in Figure 2.4.1a. �

Example 2.4.10. A uniform distribution is given by two parameters a, b ∈ R≥0
such that a < b. We will denote its CDF by Unif [a, b], which is defined by

Unif [a, b] (t) =


1 if t < a
t−a
b−a if a ≤ t < b
0 if x ≥ b.

The CDF of a uniform distribution with parameters a = 2 and b = 5 is plotted
in Figure 2.4.1b. �

Example 2.4.11. An exponential distribution is given by a parameter θ > 0,
often called the rate. Its CDF will be denoted by Exp[θ], and is defined by

Exp[θ] (t) = 1− e−θt.

The CDF of an exponential distribution with rate 2 is plotted in Figure 2.4.1c.
�

Since it is often difficult to define a measure directly on a σ-algebra, some
of the most useful results in measure theory are the extension theorems that
allow us to only define something simpler, after which the extension theo-
rem guarantees us that this definition can be extended to a measure on the
σ-algebra. The extension theorem that we are interested in requires the fol-
lowing definition.

Definition 2.4.12. Let A be a Boolean algebra of sets. A function µ0 : A →
R≥0 is called a pre-measure if

(P1) µ0(∅) = 0 and

(P2) µ0(
⋃∞

n=1 En) = ∑∞
n=1 µ0(En) whenever E1, E2, · · · ∈ A are disjoint sets

such that
⋃∞

n=1 En ∈ A. N

A pre-measure is therefore much like a measure, except that it is defined
on a Boolean algebra rather than a σ-algebra. However, by the following
theorem, any pre-measure can be uniquely extended to a measure on a σ-
algebra.

Theorem 2.4.13 (Hahn-Kolmogorov Theorem [12, Theorem 1.7.8]). Let A be a
Boolean algebra of sets. Any pre-measure µ0 : A → R≥0 can be uniquely extended
to a measure µ : Σ → R≥0, where Σ is the smallest σ-algebra containing A, such
that µ0(E) = µ(E) whenever E ∈ A.
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2.4.1 Integration

An important part of measure theory is the theory of integration. We will not
concern ourselves here with the intricacies of defining integration through
measure theory. Instead, we will state some properties of the Lebesgue in-
tegral that are useful when manipulating integrals. In the following, we
therefore assume that all functions are integrable. We use the notation∫

E
f (x) µ(dx)

to denote that we are integrating the function f over the measurable set E
with respect to the measure µ viewed as a function of x. When E = [0, t], we
instead write ∫ t

0
f (x) µ(dx).

Lemma 2.4.14 (Linearity of integrals [4, Theorem 16.1(ii)]). The integral is lin-
ear, meaning that∫

E
a f (x) + bg(x) µ(dx) = a

∫
E

f (x) µ(dx) + b
∫

E
g(x) µ(dx)

when a, b ∈ R≥0 and E is measurable.

Lemma 2.4.15 (Fubini’s theorem [9, Theorem 3.16]). Let X and Y be measurable
spaces with σ-algebra ΣX and ΣY, respectively, and let µ : ΣX → R≥0 and ν :
ΣY → R≥0 be measures. If f : X×Y → [0, ∞] is a measurable function, then∫

E×F
f (x, y) (µ× ν)(d(x, y)) =

∫
E

∫
F

f (x, y) ν(dy)µ(dx)

=
∫

F

∫
E

f (x, y) µ(dx)ν(dy)

for any E ∈ ΣX and F ∈ ΣY.

Lemma 2.4.16 (Change of variable [9, Proposition 3.8]). Let X and Y be mea-
surable spaces with σ-algebra ΣX and ΣY, respectively. Furthermore, let T : X → Y
be a measurable function, and define the measure ν by ν = µ ◦ T−1.

If f : Y → R≥0 is a measurable function, then∫
T−1(E)

( f ◦ T)(x) µ(dx) =
∫

E
f (y) ν(dy)

for any E ∈ ΣY.

Using integration, we can now define the important concept of convolu-
tion. Whereas the CDF Fµ(t) gives the probability that a single event has
occurred before time t, we are often interested in the probability that multi-
ple events have all occurred before time t. For this, we need the notion of
convolution.
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Definition 2.4.17. Given two measures µ, ν ∈ D(R≥0), the convolution of µ
and ν is given by

(µ ∗ ν)([0, t]) =
∫ t

0
ν([0, t− x]) µ(dx). N

(µ ∗ ν)([0, t]) is then the probability that the event governed by µ and the
event governed by ν have both occurred, in sequence, before time t. Convo-
lution is both commutative and associative, meaning that

µ ∗ ν = ν ∗ µ and µ ∗ (ν ∗ η) = (µ ∗ ν) ∗ η.

Furthermore, the Dirac measure at 0 is the identity for convolution, so that

µ ∗ δ0 = µ.

2.5 Complexity Theory

One of the most important concepts in computer science is that of an al-
gorithm. Informally, an algorithm is a mechanical procedure for producing
a set of outputs. Many equivalent ways of formalising the notion of algo-
rithm have been proposed, most notably those of Turing machines, recursive
functions, and the λ-calculus. We will take our underlying model of com-
putation to be that of Turing machines. However, as is commonly done, we
will describe algorithms informally as pseudocode, with the understanding
that such pseudocode could, if needed, be translated into one of the above-
mentioned formalisms. The textbook by Sipser provides a gentle introduction
to the theory of computability and complexity [11].

One of the most profound results of computability theory is the fact that,
for some problems, there can not exist an algorithm to solve that problem.

Definition 2.5.1. A decision problem is the problem of deciding whether a
given element is a member of some set. A decision problem is said to be
decidable if there exists an algorithm that solves the decision problem. If no
such algorithm exists, the decision problem is said to be undecidable. N

Sometimes we want our algorithm to not just answer yes or no, but to
compute some value, for example the value of a function. For this, we have
the notion of computability.

Definition 2.5.2. We will say that a function is computable if there exists an
algorithm which computes the value of the function for any input in the
domain of the function. N

For practical issues, we are not only interested in whether or not an al-
gorithm exists, but also in how fast that algorithm runs: Does it finish in
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seconds, or do we have to wait years for the output? In order to talk about
the running time of algorithms, we need the following notation.

Definition 2.5.3. Given two functions f , g : N → R≥0, we will say that g
is an asymptotic upper bound for f and write f (n) ∈ O(g(n)) if we can find
c, N ∈N such that for any n ≥ N we have f (n) ≤ cg(n). N

Here, the word “asymptotic” means “as we approach infinity”, meaning
that the function g will eventually become an upper bound for the function
f , if we let n become large enough. O therefore suppresses smaller terms and
constant factors.

Example 2.5.4. When f is a polynomial, we can simply pick out the largest
term in the polynomial, which will then be an asymptotic upper bound for
f . For example, if f (n) = 7n4 + 3n2 + 5, then 7n4 is the largest term, and we
can drop the constant 7, so we obtain that f (n) ∈ O(n4). �

We can now use the concept of asymptotic upper bound to describe the
complexity of algorithms.

Definition 2.5.5. We will say that an algorithm uses time O(g(n)) if f (n) ∈
O(g(n)), where f is a function that returns the number of steps that the
algorithm goes through when given an input of size n.

Likewise, we will say that an algorithm uses space O(g(n)) if f (n) ∈
O(g(n)), where f is a function that returns the amount of space or mem-
ory that the algorithm uses when given an input of size n. N

We can now classify the complexity of different algorithms, leading to a
veritable zoo of complexity classes [1]. We will describe here only some of
the most important complexity classes. Let g(n) be a polynomial function.

P (or PTIME) is the class of problems that can be solved by an algorithm
that uses O(g(n)) time.

NP is the class of problems such that whenever the answer is “yes”, there
exists a proof or witness of this fact, and furthermore, there exists an
algorithm in P that can verify whether a given proof is correct.

coNP is the class of problems such that whenever the answer is “no”, there
exists a proof or witness of this fact, and furthermore, there exists an
algorithm in P that can verify whether a given proof is correct.

PSPACE is the class of problems that can be solved by an algorithm that
uses O(g(n)) space.

EXPTIME is the class of problems that can be solved by an algorithm that
uses O(2g(n)) time.

EXPSPACE is the class of problems that can be solved by an algorithm that
uses O(2g(n)) space.

45



Chapter 2. Preliminaries

2.6 Models

In this thesis we will make use of two different kinds of models: Weighted
transition systems and semi-Markov processes, both of which are standard
in the literature. Weighted transition systems are similar to labelled transi-
tions systems [3] except they have weights on transitions instead of labels.
Semi-Markov processes extend continuous-time Markov processes by allow-
ing the sojourn time to follow any distribution, not just exponential distribu-
tions [10].

2.6.1 Weighted Transition Systems

Weighted transition systems are systems in which each transition from a state
to a new state is associated with some weight. This weight can be interpreted
as the cost of taking that transition, the time spent taking that transition, the
amount of resources spent taking that transition, etc. Assume that we have a
countable set of atomic propositions, denoted by AP .

Definition 2.6.1. A weighted transition system (WTS) is a tuple M = (S,→, `),
where

1. S is a set of states,

2. →⊆ S×R≥0 × S is the transition relation, and

3. ` : S→ 2AP is the labelling function. N

We will write s r−→ t to mean that (s, r, t) ∈→. A WTS is said to be image-
finite if for any s ∈ S, there are only finitely many t ∈ S such that s r−→ t for
some r ∈ R≥0.

A WTS operates by non-deterministically choosing, from a state s, a tran-
sition s r−→ t, after which the system ends up in state t, and from there can do
further transitions. In a state s, `(s) gives all the atomic propositions that are
true in that state. One can also think of `(s) as the labels that we put on that
state.

Example 2.6.2. An example of a WTS was given in Example 1.3.1. In this
example, we have three states, so S = {s1, s2, s3}, where `(s1) = {waiting},
`(s2) = {cleaning}, and `(s3) = {charging}. The transition relation is given
by the arrows between the states, so that e.g. s1

0−→ s2 and s3
60−→ s1. �

The standard way of determining whether two WTSs behave the same is
that of bisimulation [5].

Definition 2.6.3. Let M = (S,→, `) be a WTS. A weighted bisimulation relation
is an equivalence relation R ⊆ S× S such that (s, t) ∈ R implies
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(Atomic harmony) `(s) = `(t),

(Zig) if s r−→ s′, then there exists t′ ∈ S such that t r−→ t′ and (s′, t′) ∈ R, and

(Zag) if t r−→ t′, then there exists s′ ∈ S such that s r−→ s′ and (s′, t′) ∈ R. N

We will say that s, t ∈ S are weighted bisimilar and write s ∼W t if there
exists a weighted bisimulation relation R such that (s, t) ∈ R. Weighted
bisimilarity, denoted by ∼W , is the largest weighted bisimulation.

Atomic harmony says that any states in the relation must have the same
labels. The zig and zag conditions are responsible for ensuring that the tran-
sition behaviour of the two states is the same. Zig says that if s can do a
transition, then t can do the same transition, and the states that we end up in
after taking these transitions are also bisimilar. Zag is symmetric, saying that
s can match transitions taken by t.

2.6.2 Semi-Markov Processes

A semi-Markov process is a system in which both the time that is spent in
each state and the next state reached after taking a transition is determined
probabilistically. We will take here the view of semi-Markov processes as
graphs or transition systems, rather than as a sequence of random variables.
This also means that we will implicitly assume that all semi-Markov pro-
cesses are time-homogeneous. We assume a countable set In of input actions
and a countable set Out of output actions.

Definition 2.6.4. A semi-Markov process (SMP) is a tuple M = (S, τ, ρ, `),
where

1. S is a countable set of states,

2. τ : S× In→ D(S× Out) is the transition function,

3. ρ : S→ D(R≥0) is the time-residence function, and

4. ` : S→ 2AP is the labelling function. N

The operational behaviour of a SMP is as follows. Starting in a state s, the
SMP receives some input a from the environment. It then probabilistically
goes to a new state s′ while outputting some b after waiting some time t,
the probability of which is given by τ(s, a)(s′, b) · ρ(s)([0, t]). The labelling
function tells us which labels each state has. For a state s ∈ S, we will write
Fs for the CDF ρ(s), i.e. Fs(t) = ρ(s)([0, t]).

We will say that an SMP M = (S, τ, ρ, `) is finite if S is a finite set. If M
is finite, we will denote by |M| the size of the state space ofM.
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Example 2.6.5. An example of a SMP was given in Example 1.3.2. Here we
have four states S = {s1, s2, s3, s4}, where s1 is the top left state, s2 the top
right state, s3 the bottom left state, and s4 the bottom left state. ρ is then given
by

ρ(s1) = ρ(s3) = Exp[0.1] and ρ(s2) = ρ(s4) = Exp[2] ,

and ` is given by

`(s1) = `(s2) = {g1, r2} and `(s3) = `(s4) = {r1, g2}.

The transition function τ is given by the arrows in Figure 1.3.2 and their
associated probability, so that for example τ(s2, car1?)(s3, change!) = 0.1 and
τ(s4, car2?)(s4, stay!) = 0.9. �

From this general definition of semi-Markov process, we can obtain the
following standard models as special cases.

Generative: We get generative semi-Markov processes by letting In be a sin-
gleton set. For a generative process, we will simply write τ(s)(s′, a) for
the transition function.

Reactive: Reactive semi-Markov processes, also known as semi-Markov de-
cision processes, are obtained by letting In = Out, and in addition
requiring that τ(s, a)(s′, b) > 0 only when a = b. For a reactive process,
we write the transition function as τ(s, a)(s′).

Continuous-time: If for every s ∈ S, ρ(s) is an exponential distribution for
some rate θ > 0, then we obtain the popular model of continuous-time
Markov chains.

Discrete-time: If we let ρ(s) = ρ(s′) for every s, s′ ∈ S, then we obtain
discrete-time Markov chains.

These can of course be combined to obtain e.g. continuous-time Markov
decision processes, which are reactive continuous-time Markov chains. For
the majority of this thesis, we will focus on the special cases of reactive and
generative SMPs.

Remark 2.6.6. Continuous-time processes are often described in a differ-
ent way than presented here. In the more common definition, there is no
residence-time function, and instead there are rates given on the transitions.
When adding actions on the transitions, this leads to the definition of (re-
active) continuous-time Markov decision processes [8]. We recall here this
alternative definition.

Definition 2.6.7 (Alternative). A continuous-time Markov decision process is a
pair M = (S, R, `), where S is a countable set of states, R : S× In× S→ R≥0
is the rate matrix, and ` : S→ 2AP is the labelling function. N
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We then have the following derived quantities. The exit rate of s ∈ S under
a ∈ In is given by E(s, a) = ∑s′∈S R(s, a, s′), and the probability of going from
s to s′ under a is given by P(s, a, s′) = R(s,a,s′)

E(s,a) .
Unfortunately, the two definitions are not equivalent. However, we can

view our definition as a special case of the alternative definition by letting
R(s, a, s′) = θs · τ(s, a)(s′), where θs denotes the rate of the exponential distri-
bution given by ρ(s). Then we see that

E(s, a) = ∑
s′∈S

R(s, a, s′) = θs · ∑
s′∈S

τ(s, a)(s′) = θs,

so that E(s, a) = E(s, a′) for all a, a′ ∈ In. We also get

P(s, a, s′) =
R(s, a, s′)

E(s, a)
= τ(s, a)(s′),

as expected.
The reason that the two definitions are not equivalent is that in our defi-

nition, we must have E(s, a) = E(s, a′) for any a, a′ ∈ In, meaning that every
action has the same exit rate, whereas in the alternative definition, each action
can have a different exit rate. One could attempt to remedy this by modifying
our definition to allow a different residence-time function ρa for each a ∈ In,
but we will not explore this idea further in this thesis.

Despite this difference from the more common definition, we have chosen
the definition given in this thesis since it generalises more easily to semi-
Markov processes. �

Often we wish to construct systems by putting together smaller compo-
nents. In order to do this, we need to define what it means to compose
systems. Because our systems have real-time behaviour, in particular we
need to describe how the real-time behaviour of the components influence
the combined system. In order to accommodate different choices for com-
bining real-time behaviour from the literature, we let this be described by a
generic composition function.

Definition 2.6.8. A function ? : D(R≥0)×D(R≥0) → D(R≥0) is a residence-
time composition function if it is commutative, meaning that

?(µ, ν) = ?(ν, µ) for all µ, ν ∈ D(R≥0). N

For technical reasons, we will only consider composition of reactive SMPs.

Definition 2.6.9. Let ? be a residence-time composition function. Then the
?-composition of M1 = (S1, τ1, ρ1, `1) and M2 = (S2, τ2, ρ2, `2), denoted
M1 ‖?M2 = (S, τ, ρ, `), is given by
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1. S = S1 × S2,

2. τ((s1, s2), a)((s′1, s′2)) = τ1(s1, a)(s′1) · τ2(s2, a)(s′2),

3. ρ((s1, s2)) = ?(ρ1(s1), ρ2(s2)), and

4. `((s1, s2)) = `(s1) ∪ `(s2).

We will also write s1 ‖? s2 to mean that (s1, s2) ∈ S. N

Similarly to the case of weighted transition systems, the standard notion
of behavioural equivalence for SMPs is that of bisimulation.

Definition 2.6.10. Let M = (S, τ, ρ, `) be a SMP. A bisimulation relation is a
relation R ⊆ S× S such that s1Rs2 implies

(B1) `(s1) = `(s2),

(B2) Fs1(t) = Fs2(t) for all t ∈ R≥0, and

(B3) for all a ∈ In there exists a weight function ∆a ∈ D(S× S× Out) such
that

(a) ∆a(s, s′, b) > 0 implies sRs′,

(b) τ(s1, a)(s, b) = ∑s′∈S ∆a(s, s′, b), and

(c) τ(s2, a)(s′, b) = ∑s∈S ∆a(s, s′, b). N

The idea behind bisimulation for SMPs is the same as that for WTSs. Con-
ditions (B1) and (B2) ensure that the information in the states is the same, by
requiring that they have the same labels and the same residence-time func-
tion. Instead of the zig and zag conditions, we have the concept of a weight
function in condition (B3). The weight function matches the probability mass
of the transitions available to s1 with the probability mass of the transitions
available to s2 in such a way that the bisimulation relation is preserved by the
successor states. This means that when the probability mass of going from s1
to a successor state s and outputting b, is matched with the probability mass
of going from s2 to s′ and outputting b, then it must also hold that s and s′

are in the bisimulation relation.
If there exists a bisimulation relation R such that s1Rs2, then we will

say that s1 and s2 are bisimilar and write s1 ∼ s2. Bisimilarity is the largest
bisimulation relation and is denoted by ∼.

A related notion is that of simulation. Whereas bisimulation guarantees
that the processes have the same behaviour, simulation guarantees that one
process can simulate any behaviour from the other process. Therefore, if s1
simulates s2, s1 will be able to do anything that s2 can do, but may also be
able to do some things that s2 can not do.
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Definition 2.6.11. Let M = (S, τ, ρ, `) be an SMP. A simulation relation is a
relation R ⊆ S× S such that s1Rs2 implies

(S1) `(s1) = `(s2),

(S2) Fs1(t) ≤ Fs2(t) for all t ∈ R≥0, and

(S3) for all a ∈ In there exists a weight function ∆a ∈ D(S× S× Out) such
that

(a) ∆a(s, s′, b) > 0 implies sRs′,

(b) τ(s1, a)(s, b) = ∑s′∈S ∆a(s, s′, b), and

(c) τ(s2, a)(s′, b) = ∑s∈S ∆a(s, s′, b). N

The only difference between bisimulation and simulation is in conditions
(B2) and (S2), where equality is used for bisimulation, whereas an inequality
is used for simulation. This means that while bisimilarity is an equivalence
relation, similarity is only a preorder.

If there exists a simulation relation R such that s1Rs2, then we will say
that s2 simulates s1 and write s1 - s2. Similarity is the largest simulation
relation and is denoted by -.

Both simulation and bisimulation are at their core coinductive definitions,
meaning that they compare elements step by step. However, sometimes we
want to compare the entire history of an execution of a system with the exe-
cution of another system, rather than comparing them stepwise. We therefore
also need to know what the probability of such an execution is. In order to
define this probability, we first introduce the space of timed paths. The ob-
servable behaviour to keep track of in an execution of a SMP is the states that
it visited, the time at which transitions were made, and the output actions
that were performed. An execution or path is therefore an infinite sequence

π = (s1, t1, a1), (s2, t2, a2), (s3, t3, a3), · · · ∈ (S×R≥0 × Out)ω.

Given a path π and i ∈N, we let

π[i] = si, π〈i〉 = ti, πJiK = ai,

π|i = (s1, t1, a1), . . . , (si, ti, ai), and π|i = (si, ti, ai), (si+1, ti+1, ai+1), . . .

We denote by Π(M) the set of all paths in M and by

Πn(M) = {π|n | π ∈ Π(M)}

the set of all prefixes of length n of paths in M.
In order to turn Π(M) into a measurable space, we need to construct a

suitable σ-algebra. We will do this through the standard cylinder set con-
struction. Given n ≥ 1 and a set E ⊆ Πn(M), the cylinder set of rank n is the
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set of all paths whose prefix up to the nth position agrees with that of E. The
cylinder set of rank n is therefore given by

C(E) = {π ∈ Π(M) | π|n ∈ E}.

This means that all paths in C(E) begin exactly as prescribed by E, but after
the nth step, they may start to differ. For notational convenience, given a set

E = S1 ×O1 × R1 · · · × Sn ×On × Rn ⊆ Πn(M),

we will often write C(E) as

C(S1 . . . Sn, O1 . . . On, R1 . . . Rn).

A cylinder C(S1 . . . Sn, O1 . . . On, R1 . . . Rn) is said to be measurable if Si ∈ 2S,
Oi ∈ 2Out, and Ri ∈ B for all 1 ≤ i ≤ n.

Lemma 2.6.12 ([2, Section 2.7]). The set of measurable cylinders forms a Boolean
algebra of sets.

Definition 2.6.13. Let M = (S, τ, ρ, `) be a SMP. The measurable space of paths is
the set of paths Π(M) together with the σ-algebra Σ, defined as the smallest
σ-algebra containing all measurable cylinders. N

Now that we have a σ-algebra for Π(M), we wish to define a probability
measure on paths. However, in order to do so, we must somehow resolve the
non-determinism that is given by the input actions. In other words, we must
decide on how the environment behaves when choosing inputs. This will
be done by schedulers, which are also known in the literature as controllers,
policies, or adversaries.

Definition 2.6.14. A scheduler is a function σ : S∗ → D(In). N

Intuitively, a scheduler looks at the history of visited states so far, and
based on this information, it probabilistically chooses an input. One can
also consider more complicated schedulers, such as schedulers that take into
account the timed history [13], but we will not do so in this thesis.

Definition 2.6.15. Given a sequence of states w = s1 . . . sk and a scheduler σ,
we define the subprobability Pσ(w) inductively on measurable cylinders as

Pσ(w)(∅) = 0

Pσ(w)(C(S, O, R)) = ρ(sk)(R) · ∑
s′∈S

∑
a∈In

∑
b∈O

τ(sk, a)(s′, b) · σ(w)(a), and

Pσ(w)(C(S1S2 . . . Sn, O1O2 . . . On, R1R2 . . . Rn))

= ρ(sk)(R1) · ∑
s′∈S1

∑
a∈In

∑
b∈O1

τ(sk, a)(s′, b) · σ(w)(a)

·Pσ(ws′)(C(S2 . . . Sn, O2 . . . On, R2 . . . Rn)) N
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For generative systems, In is a singleton, and therefore there is only one
possible scheduler, namely the one that assigns probability one to the single
element of In for any w ∈ S∗. When considering generative systems, we can
therefore forget about schedulers.

Notice that we have only defined Pσ(w) on the Boolean algebra of mea-
surable cylinders. We will now invoke the Hahn-Kolmogorov theorem to
show that we can extend it to the measurable space of paths.

Lemma 2.6.16.

Pσ(w)(C(S1 . . . Sn, O1 . . . On, R1 . . . Rn))

= ∑
s′1∈S1

∑
a1∈In

∑
b1∈O1

· · · ∑
sn∈Sn

∑
an∈In

∑
bn∈On

τ(sk, a1)(s′1, b1) · · · τ(s′n−1, an)(s′n, bn)

· σ(w)(a1) · · · σ(ws′1 · · · s′n−1)(an)

· ρ(sk)× ρ(s′1)× · · · × ρ(s′n−1)(R1 × · · · × Rn)

Proof. The result follows from unfolding the induction in Definition 2.6.15.
�

Theorem 2.6.17. The subprobability Pσ(w) can be uniquely extended to a subprob-
ability on the measurable space of paths.

Proof. We will first argue that Pσ(w) is a pre-measure. Let Σ0 denote the set
of measurable cylinders. By Lemma 2.6.12, Σ0 is a Boolean algebra. In order
to show that Pσ(w) is a pre-measure, we therefore only need to show that
conditions (P1) and (P2) from Definition 2.4.12 are satisfied. (P1) is satisfied
by definition.

Next we consider condition (P2). For notational convenience, let

∞⋃
m=1

C(Sm,1 . . . Sm,nm , Om,1 . . . Om,nm , Rm,1 . . . Rm,nm) =
∞⋃

m=1

Cm.

We must then show that

Pσ(w)

(
∞⋃

m=1

Cm

)
=

∞

∑
m=1

Pσ(w)(Cm)

whenever
⋃∞

m=1 Cm is a disjoint union of measurable cylinders such that⋃∞
m=1 Cm = C for some measurable cylinder

C = C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn).

Note first that we can make all cylinders in
⋃∞

m=1 Cm have the same length
without affecting disjointness. This is because if

C(Si,1 . . . Si,ni , Oi,1 . . . Oi,ni , Ri,1 . . . Ri,ni )
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and
C(Sj,1 . . . Sj,nj , Oj,1 . . . Oj,nj , Rj,1 . . . Rj,nj)

are two disjoint cylinders with ni < nj, then we can extend the first with

C(Si,1 . . . Si,ni , Oi,1 . . . Oi,ni , Ri,1 . . . Ri,ni )

= C(Si,1 . . . Si,ni S . . . S︸ ︷︷ ︸
l times

, Oi,1 . . . Oi,ni Out . . . Out︸ ︷︷ ︸
l times

, Ri,1 . . . Ri,ni R . . . R︸ ︷︷ ︸
l times

)

where l = nj − ni, and the two cylinders are still disjoint. We can therefore
assume without loss of generality that all the cylinders have length n. Let
w = s1 . . . sk. By Lemma 2.6.16 we then get

Pσ(w)

(
∞⋃

m=1

Cm

)
= Pσ(w)(C(S1 . . . Sn, O1 . . . On, R1 . . . Rn)

= ∑
s′1∈S1

∑
a1∈In

∑
b1∈O1

· · · ∑
sn∈Sn

∑
an∈In

∑
bn∈On

τ(sk, a1)(s′1, b1) · · · τ(s′n−1, an)(s′n, bn)

· σ(w)(a1) · · · σ(ws′1 · · · s′n−1)(an)

· ρ(sk)× ρ(s′1)× · · · × ρ(s′n−1)(R1 × · · · × Rn)

= ∑
s′1∈

∞⋃
m=1

Sm,1

∑
a1∈In

∑
b1∈

∞⋃
m=1

Om,1

· · · ∑
s′n∈

∞⋃
m=1

Sm,n

∑
an∈In

∑
bn∈

∞⋃
m=1

Om,n

τ(sk, a1)(s′1, b1)

· τ(s′1, a2)(s′2, b2) · · · τ(s′n−1, an)(s′n, bn)

· σ(w)(a1) · · · σ(ws′1 · · · s′n−1)(an)

· ρ(sk)× ρ(s′1)× · · · × ρ(s′n−1)

(
∞⋃

m=1

Rm,1 × · · · ×
∞⋃

m=1

Rm,n

)

=
∞

∑
m=1

∑
s′1∈Sm,1

∑
a1∈In

∑
b1∈Om,1

· · · ∑
s′n∈Sm,n

∑
an∈In

∑
bn∈Om,n

τ(sk, a1)(s′1, b1)

· τ(s′1, a2)(s′2, b2) · · · τ(s′n−1, an)(s′n, bn)

· σ(w)(a1) · · · σ(ws′1 · · · s′n−1)(an)

· ρ(sk)× ρ(s′1)× · · · × ρ(s′n−1)(Rm,1 × · · · × Rm,n)

=
∞

∑
m=1

Pσ(w)(Cm),

and we conclude that condition (P2) is also satisfied.
We have thus shown that Pσ(w) is a pre-measure. Since the measurable

space of paths is defined as the smallest σ-algebra containing all measur-
able cylinders, it then follows from the Hahn-Kolmogorov theorem (Theo-
rem 2.4.13) that Pσ(w) can be uniquely extended to the measurable space of
paths. �
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Chapter 3

Logical Specification
Language for Reasoning
About Bounds

This chapter summarises the content of Paper A “Reasoning About Bounds
in Weighted Transition Systems” [6]. For the full paper, see Part II.

When using weighted transition systems (WTSs) as a modeling formal-
ism, we encounter the approximate modeling problem: the quantities of in-
terest may be irrational, whereas we can only ever measure rational values,
and even then only with some uncertainty. It is therefore not clear which
weight we should assign to each transition. Consider again the WTS in Ex-
ample 1.3.1, where cleaning takes either 5, 10, or 15 minutes. These numbers
are rather arbitrary, and we may easily imagine that cleaning could also take
6 minutes or 12.5 minutes. One way of approaching this problem is to allow
intervals of transitions, and then reasoning about these. This is the approach
taken by for example interval Markov chains [8] and interval weighted modal
transition systems [9].

We will consider here a different, but related approach to the problem.
Instead of reasoning about individual transitions or intervals of transitions,
we reason about upper and lower bounds on the transitions. In Example
1.3.1, we may for instance say that cleaning takes at most 15 time units, so
15 is an upper bound on the time it takes to clean. Likewise, 5 is a lower
bound. We argue that this is a reasonable point of view from an applications
perspective, partly because bounds on quantities are easier to engineer than
very precise measurements, and partly because many requirements that we
are interested in verifying use upper and lower bounds, such as

“the airbag must inflate within at most 2 milliseconds”
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and

“traffic light must be green for at least 8 seconds before changing.”

While the aforementioned approach of using intervals has some similar-
ities with our approach of using bounds, namely that the endpoints of the
intervals are also bounds, the two approaches are not equivalent. This is
because when we talk about bounds, transitions with weights that are in
between the bounds may or may not exist. To see this, consider again Ex-
ample 1.3.1. 5 is a lower bound on transitions from the cleaning state to
the waiting state, and 15 is an upper bound. However, the only transition
that is allowed in between these bounds has weight 10. In contrast, interval
approaches allow transitions with any weight that is within the interval.

Our focus is on logical aspects: we will introduce a logical specification
language, which we call weighted logic with bounds (WLWB), and develop
its metatheory, including a complete axiomatisation. We also argue that
WLWB is the correct language for speaking about bounds in WTSs, by show-
ing that it characterises a modified version of weighted bisimulation in which
states are behaviourally equivalent when they have the same upper and lower
bounds on behaviours. Furthermore, we give algorithms for solving the sat-
isfiability and model checking problems for WLWB.

3.1 Weighted Logic With Bounds

First we introduce weighted logic with bounds (WLWB). We will denote for-
mulas of WLWB by L, and they are induced by the abstract syntax

L : ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lr ϕ | Mr ϕ

where r ∈ Q≥0 is a non-negative rational number and p ∈ AP is an atomic
proposition. ¬ and ∧ are the standard Boolean negation and conjunction,
and the rest of the Boolean operators, such as disjunction and implication,
can be derived from these.

The novel formulas are the ones of the form Lr ϕ and Mr ϕ. Intuitively,
Lr ϕ says that it is possible to take a transition with weight at least r to a state
where ϕ is true. Similarly, Mr ϕ says that it is possible to take a transition
with weight at most r to a state where ϕ is true.

In order to define the semantics of WLWB, we introduce some notation.
Consider a WTSM = (S,→, `). We then define the image set for a given state
s ∈ S and subset T ⊆ S as

θ (s) (T) = {r ∈ R≥0 | there exists t ∈ T such that s r−→ t}.
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θ (s) (JϕK)

r
θ− θ+

(a)M, s |= Lr ϕ

θ (s) (JϕK)

r
θ− θ+

(b)M, s |= Mr ϕ

Figure 3.1.1: The semantics of Lr and Mr . IfM, s |= Lr ϕ, then r is to the left of θ− (s) (JϕK), and
ifM, s |= Mr ϕ, then r is to the right of θ+ (s) (JϕK).

In other words θ(s)(T) is the set of all weights with which we can take a
transition from s to some state in T. Furthermore, we let

θ− (s) (T) =

{
−∞ if T = ∅
inf θ (s) (T) otherwise

and

θ+ (s) (T) =

{
∞ if T = ∅
sup θ (s) (T) otherwise,

so θ− (s) (T) is a lower bound on θ (s) (T) and θ+ (s) (T) is an upper bound.
Given a WTS M = (S,→, `), we now define the semantics of WLWB by

the satisfaction relation |= as follows.

M, s |= p if and only if p ∈ `(s),
M, s |= ¬ϕ if and only if M, s 6|= ϕ,
M, s |= ϕ ∧ ψ if and only if M, s |= ϕ andM, s |= ψ,
M, s |= Lr ϕ if and only if θ− (s) (JϕKM) ≥ r,
M, s |= Mr ϕ if and only if θ+ (s) (JϕKM) ≤ r,

where JϕKM = {s ∈ S | M, s |= ϕ} is the set of all states of M that satisfies
the formula ϕ. We will often omit the subscript M when it is clear which
WTS is referred to.

The semantics of Lr and Mr is illustrated in Figure 3.1.1. The horizontal
arrows represent the real number line, and the arches represent the part of the
real number line in which elements of θ (s) (JϕK) may lie. The endpoints of
the arches therefore correspond to θ− (s) (JϕK) and θ+ (s) (JϕK). This means
that if a state satisfies Lr ϕ, then r must be to the left of the arch, and if a state
satisfies Mr ϕ, then r must be to the right of the arch.

The operators Lr and Mr are inspired by similar operators in Marko-
vian logic [4, 10], which in turn were inspired by logics for Harsanyi type
spaces [1, 2]. However, although the intuition behind the operators are the
same in both cases, they behave quite differently, since Markovian logic con-
siders probabilities, whereas we consider weights, which have less structure

59



Chapter 3. Logical Specification Language for Reasoning About Bounds

between them. We will see some of these differences when we consider ax-
iomatisation in Section 3.3.

WLWB can express the usual “necessarily” and “possibly” operators from
modal logic, written � and ♦, respectively. To see this, note that ♦ϕ means
that it is possible to take a transition to where ϕ holds. Since all our weights
are non-negative, L0 ϕ is true if and only if it is possible to take a transition to
where ϕ holds. The two are therefore equivalent, so we get

♦ϕ = L0 ϕ and �ϕ = ¬L0¬ϕ.

3.2 Bisimulation Using Bounds

We now argue that WLWB is the right language to reason about bounds in
weighted transition systems. In order to do this, we define a new notion of
bisimulation, which we call generalised weighted bisimulation. This notion
of bisimulation only compares the upper and lower bounds of the possible
behaviour of the systems. We then show that WLWB characterises exactly
those states that are in a generalised weighted bisimulation relation with
each other.

Definition 3.2.1. LetM = (S,→, `) be a WTS. An equivalence relation R ⊆
S× S is a generalised weighted bisimulation relation if for any states s, t ∈ S we
have that sRt implies

(Atomic harmony) `(s) = `(t),

(Lower bound) θ− (s) (T) = θ− (t) (T), and

(Upper bound) θ+ (s) (T) = θ− (t) (T)

for any R-equivalence class T ⊆ S. N

We will say that s and t are generalised weighted bisimilar and write
s ∼ t if there exists a generalised weighted bisimulation relation R such that
sRt. Generalised weighted bisimilarity, denoted ∼, is the largest generalised
weighted bisimulation relation.

Example 3.2.2. Consider the states s and t of the WTS in Figure 3.2.1. We
will show that the relation

R = {(s, s), (t, t), (s′, s′), (t′, t′), (s, t), (t, s), (s′, t′), (t′, s′)}

is a generalised weighted bisimulation relation. It is clearly an equivalence
relation.

For (s′, t′) ∈ R, we have `(s′) = {b} = `(t′), and since neither of the
two states have any outgoing transitions, their lower and upper bounds also
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s{a}

s′{b}

1 2 3

t {a}

t′ {b}

1 3

Figure 3.2.1: s ∼ t but s 6∼W t.

match. For (s, t) ∈ R, we have `(s) = {a} = `(t), so atomic harmony is
satisfied. For the bounds, note that T = {s′, t′} is the only equivalence class
that can be reached from s and t, so this is the only equivalence class we need
to consider. We have

θ− (s) (T) = min{1, 2, 3} = 1 = min{1, 3} = θ− (t) (T)

and
θ+ (s) (T) = max{1, 2, 3} = 3 = max{1, 3} = θ+ (t) (T) ,

so the lower and upper bounds also match. The remaining elements in the
relation can be verified in a similar and symmetric manner. We therefore
conclude that s ∼ t.

On the other hand, it is not the case that s ∼W t. To see this, simply note
that s 2−→ s′, which can not be matched by t, i.e. there is no state t′′ such that
t 2−→ t′′. �

Example 3.2.2 also shows the essential difference between weighted bisim-
ilarity and generalised weighted bisimilarity: weighted bisimilarity looks at
all the individual transitions, whereas generalised weighted bisimilarity ig-
nores the transitions in between the upper and lower bounds.

It is easy to see that if a relation is a weighted bisimulation, then it must
also be a generalised weighted bisimulation, since if all transition weights
match, then their lower and upper bounds must also match. Hence we get
the following result, relating the two notions of bisimulation.

Theorem 3.2.3.
∼W ⊆ ∼ and ∼W 6= ∼ .

In order to prove the claim that WLWB characterises exactly those states
that are generalised weighted bisimilar, we must restrict ourselves to a cer-
tain class of WTSs, namely those that are image-finite. The notion of image-
finiteness is well-known in the literature, and is also necessary for other
modal logics [3, 7].

Definition 3.2.4. A WTS M = (S,→, `) is said to be image-finite if for any
state s ∈ S there are only finitely many states t ∈ S such that s r−→ t for some
r ∈ R≥0. N
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In other words, a WTS is image-finite if any state can only reach finitely
many other states in one step.

Theorem 3.2.5. For image-finite WTSs, we have

s ∼ t if and only if for all ϕ, s |= ϕ if and only if t |= ϕ.

3.3 Complete Axiomatisation

Having argued for why WLWB is an interesting logical specification language
to consider, we now explore the properties of this language. As a first result,
we will give a sound and complete axiomatisation of WLWB. Along the way,
we will also obtain the finite model property.

The axiomatic system that we will consider is given by the axioms of
propositional logic in addition to the axioms given in Table A.4.1. The axiom
(A1) says that it is not possible to take a transition to where ⊥ holds. Axioms
(A2) and (A2′) give some monotonicity properties of Lr and Mr, whereas
axioms (A3), (A3′), and (A4) show how Lr and Mr distribute over ∧ and ∨.
There is no axiom (A4′), which should be the obvious variant of (A4) with
Mr instead of Lr. This is not because such an axiom would not be sound,
but rather because it can be proved from the remaining axioms. Axioms (A5)
and (A5′) say that if there is no transition to where ψ holds, then the upper
and lower bounds for going to ϕ coincide with the upper and lower bounds
for going to ϕ∨ ψ. Axioms (A6) and (A7) show how the Lr and Mr operators
interact.

The rules (R1) and (R1′) say that if ϕ implies ψ, and we know that there is
some transition to where ϕ holds, then an upper or lower bound for ψ is also
an upper or lower bound for ϕ. Lastly, the rule (R2) says that if ϕ implies ψ,
then if there is a transition to where ϕ holds, there must also be a transition
to where ψ holds.

The axioms of Table 3.3.1 are sound, meaning that anything derived from
the axioms must also be true semantically.

Theorem 3.3.1 (Soundness).

` ϕ implies |= ϕ.

We will say that a formula ϕ is consistent if we can not derive ⊥ from ϕ
using the axioms. For a given consistent formula ϕ, we can construct a finite
modelMϕ with ultrafilters as states such thatMϕ, s |= ϕ for some state s.

Theorem 3.3.2 (Finite model property). For any consistent formula ϕ ∈ L, there
exists a finite WTSM = (S,→, `) and a state s ∈ S such thatM, s |= ϕ.

As an immediate consequence of the finite model property, we get that
our axiomatisation is complete.
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(A1): ` ¬L0⊥
(A2): ` Lr+q ϕ→ Lr ϕ if q > 0
(A2′): ` Mr ϕ→ Mr+q ϕ if q > 0
(A3): ` Lr ϕ ∧ Lqψ→ Lmin{r,q}(ϕ ∨ ψ)

(A3′): ` Mr ϕ ∧Mqψ→ Mmax{r,q}(ϕ ∨ ψ)

(A4): ` Lr(ϕ ∨ ψ)→ Lr ϕ ∨ Lrψ
(A5): ` ¬L0ψ→ (Lr ϕ→ Lr(ϕ ∨ ψ))
(A5′): ` ¬L0ψ→ (Mr ϕ→ Mr(ϕ ∨ ψ))
(A6): ` Lr+q ϕ→ ¬Mr ϕ if q > 0
(A7): ` Mr ϕ→ L0 ϕ
(R1): ` ϕ→ ψ =⇒ ` (Lrψ ∧ L0 ϕ)→ Lr ϕ
(R1′): ` ϕ→ ψ =⇒ ` (Mrψ ∧ L0 ϕ)→ Mr ϕ
(R2): ` ϕ→ ψ =⇒ ` L0 ϕ→ L0ψ

Table 3.3.1: The axioms for our axiomatic system, where ϕ, ψ ∈ L and q, r ∈ Q≥0.

Theorem 3.3.3 (Completeness).

|= ϕ implies ` ϕ.

3.4 Satisfiability and Model Checking

Lastly we will consider some decision problems for WLWB. First we consider
the problem of deciding whether a given formula is satisfiable, i.e. whether
it has a model or not. In order to solve this problem, we will construct a
tableau for a given formula ϕ. If the tableau is successful, meaning that it
contains no inconsistencies, then we can construct a model for ϕ from the
tableau. Otherwise, if the tableau is not successful, then we will know that
there is no model for ϕ.

Given a formula ϕ, we start with the tuple 〈{ϕ}, [0, 0], [0, 0]〉 and then
successively apply the rules of Table 3.4.1 until no further rules can be used.
The (mod) rule may only be applied when no other rules can be applied.

The intuition behind a tuple 〈Γ, IL, IM〉, where Γ is a set of formulas and
IL and IM are intervals, is that the current state must satisfy all the formulas
in Γ, and any transitions to the current state must have a lower bound within
the interval IL and an upper bound within the interval IM. The (mod) rule
signifies a state change, at which point all formulas in Γ have been broken
down into either literals, i.e. formulas of the form p or ¬p where p ∈ AP ,
or modal formulas. The modal formulas then determine what transitions, if
any, there must be from the current state to the next states.
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〈Γ ∪ {ϕ ∧ ψ}, IL, IM〉
(∧)

〈Γ ∪ {ϕ, ψ}, IL, IM〉

〈Γ ∪ {¬(ϕ ∧ ψ)}, IL, IM〉
(¬∧)

〈Γ ∪ {¬ϕ}, IL, IM〉 〈Γ ∪ {¬ψ}, IL, IM〉

〈Γ ∪ {¬¬ϕ}, IL, IM〉
(¬¬)

〈Γ ∪ {ϕ}, IL, IM〉

〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
〈{ψ1}, IL

1 , IM
1 〉 · · · 〈{ψk}, IL

k , IM
k 〉

if Ni ∈ {L, M} for all 1 ≤ i ≤ n, Oj ∈ {L, M} for all 1 ≤ j ≤ n′,
and no formula in Γ is of the form Nr ϕ or ¬Nr ϕ where N ∈
{L, M}.

Table 3.4.1: Tableau rules.

Example 3.4.1. We illustrate how the conclusions in the (mod) rule are con-
structed. Consider the tuple

〈{p1, p2, L2 p1, L4(p1 ∧ p2), L0 p3,¬L5 p2,¬M6 p3}, IL, IM〉.

By letting

Γ = {p1, p2}, Γ′ = {L2 p1, L4(p1 ∧ p2), L0 p3}, and Γ′′ = {¬L5 p2,¬M6 p3},

we get that 〈Γ ∪ Γ′ ∪ Γ′′, IL, IM〉 has the correct form for the hypothesis of
the (mod) rule.

Now, the modal formulas in Γ′ put requirements on the transitions to the
next states. Consider the formulas L2 p1 and L4(p1 ∧ p2). Any successor state
where p1 ∧ p2 holds must also satisfy p1. Hence we will not create two next
states for these two formulas, but only one, which will be the most restrictive
of the formulas, in this case p1 ∧ p2.

So we need two successor states, one that satisfies p1 ∧ p2 and one that
satisfies p3. It only remains to determine the weights on the transitions to
these new states. For the state satisfying p1 ∧ p2, we see that the lower bounds
must be at least 4, and the formula ¬L5 p2 ∈ Γ′′ tells us that the lower bound
must be strictly less than 5. However, since no Mr formulas speak about p1
or p2, the upper bound has no restrictions. Hence the interval for the lower
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bound is IL = [4, 5) and the interval for the upper bound is IM = [0, ∞).
Likewise we see that for the state satisfying p3, the lower bound must be in
the interval [0, ∞), and the upper bound must be in the interval [6, ∞).

Applying the mod rule to the tuple therefore gives the following result.

〈{p1, p2, L2 p1, L4(p1 ∧ p2), L0 p3,¬L5 p2,¬M6 p3}, IL, IM〉
(mod)

〈{p1 ∧ p2}, [4, 5), [0, ∞)〉 〈{p3}, [0, ∞)(6, ∞)〉
�

A tableau constructed from the tableau rules will be said to be success-
ful if we can find a suitable subtree of the tableau such that for each tuple
〈Γ, IL, IM〉 in the subtree, the set of formulas Γ is consistent, and the inter-
vals IL and IM are well-formed intervals.

The significance of the tableau construction follows from the next two
lemmas.

Lemma 3.4.2. ϕ is satisfiable if and only if there exists a successful tableau for ϕ.

Lemma 3.4.3. Given a successful tableau for ϕ, we can construct a model M =
(S,→, `) and a state s ∈ S such thatM, s |= ϕ.

This gives a decision procedure for the satisfiability problem: To deter-
mine whether ϕ is satisfiable, simply construct a tableau from the tableau
rules of Table 3.4.1 starting with the tuple 〈{ϕ}, [0, 0], [0, 0]〉. If the tableau is
successful, then ϕ is satisfiable, otherwise it is not satisfiable. Furthermore,
if the tableau is successful, we can actually construct a model for ϕ from the
successful tableau.

Theorem 3.4.4. The satisfiability problem for WLWB is decidable.

Example 3.4.5. Consider the formula ϕ = ¬(¬(L2 p1 ∧M5L1 p1) ∧ ¬M2 p2)).
Using the tableau rules, we get the following tableau for ϕ.

〈{¬(¬(L2 p1 ∧M5L1 p1) ∧M2 p2)}, [0, 0], [0, 0]〉
(¬∧)

〈{¬¬(L2 p1 ∧M5L1 p1)}, [0, 0], [0, 0]〉
(¬¬)

〈{L2 p1 ∧M5L1 p1}, [0, 0], [0, 0]〉
(∧)

〈{L2 p1, M5L1 p1}, [0, 0], [0, 0]〉
(mod)

〈{p1, L1 p1}, [2, ∞), [5, ∞)〉
(mod)

〈{p1}, [1, ∞), [0, ∞)〉

〈{¬¬M2 p2}, [0, 0], [0, 0]〉
(¬¬)

〈{M2 p2}, [0, 0], [0, 0]〉
(mod)

〈{p2}, [0, ∞), [0, 2]〉

In this case the tableau is successful, every leaf and every node before a (mod)
rule is consistent. From this tableau we can construct a model that satisfies
ϕ. This model is shown in Figure 3.4.1 �

Lastly we consider the model checking problem for WLWB. This problem
asks us to decide for a given model M = (S,→, `), state s ∈ S, and formula
ϕ whetherM, s |= ϕ.
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s

{}
s1

{p1}
s2

{p1}

5

2

1

1

Figure 3.4.1: The model for the successful tableau in Example 3.4.5.

We can solve this problem in polynomial time by adapting the classical
model checking algorithm by Clarke et al. [5] to our setting. This algorithm
constructs a function Fϕ, which assigns to each state the set of subformulas
of ϕ that are true in that state. Fϕ is built iteratively by first considering the
smallest subformulas of ϕ (i.e. atomic propositions), then the second smallest
subformulas (i.e. subformulas of the form ¬p1, p1 ∧ p2, Lr p1, or Mr p1, where
p1, p2 ∈ AP), and so on until we get to ϕ itself. At each step we can use
information about the smaller subformulas that have already been assigned
by Fϕ to determine which formulas must be assigned in the current step.

Lemma 3.4.6. Given a modelM = (S,→, `), state s ∈ S, and formula ϕ, it holds
thatM, s |= ϕ′ if and only if ϕ′ ∈ Fϕ(s) for any subformula ϕ′ of ϕ.

By Lemma 3.4.6, we can therefore decide the model checking problem by
checking whether ϕ ∈ Fϕ(s).

Theorem 3.4.7. The model checking problem for WLWB is decidable in polynomial
time.
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Chapter 4

Trace-Based Faster-Than
Relation

This chapter summarises Paper B “Timed Comparisons of Semi-Markov Pro-
cesses” [12] and paper C “A Faster-Than Relation for Semi-Markov Decision
Processes” [11]. For the full papers, see Part II.

For real-time systems, non-functional requirements such as reliability,
throughput, and response time are important to consider. It is therefore of
interest to improve the worst-case timing guarantees on such systems, which
leads us to investigate how to compare the timing behaviour of systems. In
particular, we want to be able to describe when a system is faster than an-
other, which will allow incremental timing improvements in a system.

Another important aspect of real-time systems is compositionality, which
allows us to describe complex systems in terms of smaller components that
together make up the whole system [3]. This leads to the picture in Fig-
ure 4.0.1, where we have a complex system consisting ofM and the compo-
nent M2, and we have a new component M1 which is faster than M2. The
idea is then to replaceM2 byM1 to obtain a faster system.

However, it is not always the case that replacing a slower component with
a faster one leads to an overall system that is also faster. In other words, a
local increase in timing behaviour may lead to a global decrease in timing
behaviour. This is known as a (parallel) timing anomaly [8, 9]. We therefore
also wish to investigate how to avoid such timing anomalies.

4.1 Faster-Than Relation

We first consider the question of what it means for one system to be faster
than another. In this chapter, the systems we will consider are semi-Markov
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Context

M

Component

M2

slow

Component

M1

fast

Figure 4.0.1: The contextM operates in parallel with the componentM2. If the componentM1
is faster than M2, then if we replace M2 with M1, we would expect the overall behaviour to
also be faster.

processes (SMPs), and we will take a trace-based view of SMPs. Intuitively,
we will say that a state s1 is faster than another state s2 if any sequence of
actions that s2 can do within some time t′, s1 can do within some time t ≤ t′

and with at least the same probability.
In order to do this, we must define the probability of completing a se-

quence of actions within a given time bound. Consider therefore an SMP
M = (S, τ, ρ, `), and recall from Section 2.6.2 that given n sets of states

S1, . . . Sn ∈ 2S,

n sets of time points
R1, . . . , Rn ∈ B,

and n sets of output actions

O1, . . . , On ∈ 2Out,

as well as a scheduler σ : S∗ → D(In), then

Pσ(s)(C(S1 . . . Sn, O1 . . . On, R1 . . . Rn))

is the probability of starting in s, then going to a state s1 ∈ S1 within time
t1 ∈ R1 while outputting o1 ∈ O1, then going from s1 to a state in s2 ∈ S2
within time t2 ∈ R2 while outputting o2 ∈ O2, and so on.

Definition 4.1.1. Given a finite sequence of actions o1, . . . , on ∈ Out and a
time bound t ∈ R≥0, we will say that

C(a1 . . . an, t) = {π ∈ Π(M) | ∀1 ≤ i ≤ n, πJiK = ai and
n

∑
j=1

π〈j〉 ≤ t}

is a time-bounded cylinder. N

A time-bounded cylinder C(a1 . . . an, t) therefore denotes all paths where
the first n steps output the sequence a1 . . . an and are done within time t. For
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Figure 4.1.1: M1 is faster thanM2.

example, the time-bounded cylinder C(aa, 2) denotes that the first two output
labels must be a’s, and that the first two steps must be completed within 2
time units.

We will consider pointed SMPs, meaning that each SMP has a designated
initial state. Given an SMP M, we will write (M, s) to mean that s is the
initial state ofM.

Definition 4.1.2. We will say that s1 is faster than s2 and write s1 � s2 if for
all schedulers σ there exists a scheduler σ′ such that

Pσ′(s1)(C) ≥ Pσ(s2)(C)

for all time-bounded cylinders C.
Given two pointed SMPs (M1, s∗1) and (M2, s∗2), we will say that M1 is

faster thanM2 and writeM1 �M2 if s∗1 � s∗2 . N

Example 4.1.3. Consider the two SMPs M1 and M2 in Figure 4.1.1 and as-
sume that Fµ(t) ≥ Fν(t) for all t ∈ R≥0.

(Case n = 1) In this case we get

P(s1)(C(a, t)) = Fµ(t) and P(s2)(C(a, t)) = Fν(t).

Since we have assumed Fµ(t) ≥ Fν(t), it follows that

P(s1)(C(a, t)) ≥ P(s2)(C(a, t)).

(Case n > 1) In this case we get

P(s1)(C(an, t)) = (µ ∗ ν ∗ η∗(n−2))([0, t])

and
P(s2)(C(an, t)) = (ν ∗ µ ∗ η∗(n−2))([0, t]),

where η∗n is the n-fold convolution of η. However, since convolution is com-
mutative, it follows that

P(s1)(C(an, t)) = P(s2)(C(an, t)).
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Figure 4.1.2: Example showing that the faster-than relation and the simulation relation are in-
comparable.

Thus we have P(s1)(C) ≥ P(s2)(C) for all time-bounded cylinders C, and
therefore s1 � s2. �

4.1.1 Comparison With Simulation and Bisimulation

In this section we compare our notion of a faster-than relation to the standard
notions of simulation and bisimulation. For this, we also introduce the notion
of two processes being equally fast.

Definition 4.1.4. M1 and M2 are equally fast, written M1 ≡ M2, if M1 �
M2 andM2 �M1. N

Example 4.1.5. Consider the SMP in Figure 4.1.2 with the same probability
measure µ in all states. It is easy to see that s is bisimilar to s0, and hence
s0 also simulates s. However, we can show that s 6� s0 in the following way.
Construct the (memoryless) scheduler σ by letting

σ(s0)(a) = 0.5, σ(s0)(b) = 0.5, σ(s1)(a) = 1, and σ(s2)(b) = 1.

Now, for any scheduler σ′, we must have either σ′(s)(a) < 1 or σ′(s)(b) < 1.
If σ′(s)(a) < 1, then σ′(s)(a) > (σ′(s)(a))2 > · · · > (σ′(s)(a))n. Furthermore,
we see that

Pσ(s0)(C(an, t)) = 0.5 · µ∗n(t) and Pσ′(s)(C(an, t)) = (σ′(s)(a))n · µ∗n(t)

for n > 1. Take some n such that (σ′(s)(a))n < 0.5. In that case we get
Pσ′(s)(C(an, t)) < Pσ(s0)(C(an, t)). The same procedure can be used in case
σ′(s)(b) < 1.

For schedulers with memory, notice that, starting from s, in each step
either the probability of a trace consisting only of a’s or the probability of a
trace consisting only of b’s must decrease. After some number of steps, the
probability of one of these two must therefore decrease below 0.5, and then
the rest of the argument is as before. Hence we conclude that s 6� s0, and
therefore also that s 6≡ s0. �
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Example 4.1.6. Consider again Figure 4.1.1 and let Fµ = Exp[θ1] and Fν =
Exp[θ2] with θ1 > θ2 > 0. Then, as shown in Example 4.1.3 we have s1 � s2.
However, we have both s1 6- s2 and s1 6∼ s2. �

From Examples 4.1.5 and 4.1.6, we obtain the following theorem.

Theorem 4.1.7. - and� are incomparable,∼ and� are incomparable, and∼ ( ≡.

4.1.2 Algorithmic Considerations

When discussing algorithms for SMPs, we have to consider how residence-
time distributions are handled by the algorithms. They must be described
by some finite number of rational parameters that can be given as input to
the algorithm, and since we are interested in the faster-than relation, we also
want to be able to make comparisons between the distributions.

Definition 4.1.8. We say that a class of distributions C is effective if for any
ε > 0, b ∈ R≥0, and µ, ν ∈ Conv(C),

{t ∈ R≥0 | µ([0, t]) ≥ ν([0, t])− ε and t ≤ b}

is a semialgebraic set, where Conv(C) is the closure of C under convex com-
binations and convolutions. N

Semialgebraic sets are essentially those sets that can be described in the
first-order theory of the reals, and since this theory is decidable [14], this
allows us to compare distributions.

4.2 Hardness Results

In this section we consider the faster-than problem:

Given s1 and s2, is it the case that s1 � s2?

Unfortunately, this problem turns out to be a difficult one. In particular, the
faster-than problem is undecidable, and even approximating it is impossible.

In order to show these hardness results we rely on a connection to proba-
bilistic automata [13]. A probabilistic automaton is a tuple

A = (Q, A, q0, ∆ : Q× A→ D=1(Q), F),

where Q is a set of states, A is the alphabet, q0 is the initial state, ∆ is the
transition function, and F is a set of accepting states. Many important prob-
lems for probabilistic automata are undecidable [5]. The problem that we
will make use of is the universality problem for probabilistic automata which
asks whether a given automaton A satisfies PA(w) ≥ 1

2 for all words w.
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Here, PA(w) is the probability for A to accept the word w. In other words,
the universality problem asks whether all words are accepted with at least
probability 1

2 . The universality problem is known to be undecidable [7, 10].
Given a probabilistic automaton A, we construct the derived (generative)

discrete-time Markov chain with output alphabet A

M(A) = (S, τ, `),

where

• S = (Q× {`, r}) ∪ {>} for some new state >,

• `(s) = ∅ for all s ∈ S, and

• τ is given by

τ((p, `))((q, `), a) =
1

2|A|∆(p, a)(q) τ((p, `))(>, a) =
1

2|A| if p ∈ F

τ((p, r))((q, r), a) =
1

2|A|∆(p, a)(q) τ((p, r))(>, a) =
1

4|A| .

Now let s1 = (q0, `) and s2 = (q0, r) We then get

P(s1)(C(wa)) =
1

(2|A|)|w|+1
(1 + PA(w))

and

P(s2)(C(wa)) =
1

(2|A|)|w|+1

(
1 +

1
2

)
.

From this it follows that the faster-than problem for generative SMPs is
undecidable, and a small extension of the argument shows that the same is
true for reactive SMPs.

Theorem 4.2.1. The faster-than problem is undecidable for both reactive and gener-
ative SMPs, and hence also for general SMPs.

Note that the undecidability result does not depend on the real-time be-
haviour of the systems, since the derived Markov chain is discrete-time. This
means that the difficulty with the faster-than problem is not actually the
real-time behaviour of the systems, but rather the probabilistic branching
structure.

We discuss three approaches to recover decidability:

• Imposing structural restrictions on the underlying graph,

• restricting the observations (i.e. input and output alphabet), and

• using approximations.
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4.2.1 Structural Restrictions

The undecidability result for probabilistic automata already applies in the
case of acyclic graphs, meaning that the only loops allowed are self-loops.
Hence restricting to acyclic graphs will not help. However, there is another
kind of structural restriction which has proved fruitful for probabilistic au-
tomata, which is that of unambiguous automata [6]. We will show in Sec-
tion 4.4 that this notion also allows us to recover decidability for the faster-
than problem in the case of generative systems.

4.2.2 Observations

The undecidability of the universality problem for probabilistic automata
holds even when the alphabet only has two elements. Interestingly, the decid-
ability of the universality problem is still an open problem when considering
unary probabilistic automata, i.e. probabilistic automata where the alpha-
bet only has a single symbol [2]. However, in this case the problem also
has connections to the positivity problem for linear recurrence sequences [1],
which has been a major open problem for decades. The positivity problem
asks whether all terms of a given linear recurrence sequence are positive. It
has been shown [1] that the universality problem is at least as hard as the
positivity problem. Hence we get the following.

Theorem 4.2.2. For generative processes with one output label, the faster-than prob-
lem is at least as hard as the positivity problem.

Note that we have only been able to show the above for generative pro-
cesses, since in that case the reduction from the universality problem works
for only one symbol. However, in the reactive case the reduction we give
requires us to introduce a new symbol, meaning that we need at least two
symbols.

4.2.3 Approximations

By exploiting once again the connection to probabilistic automata, we can
show that approximating the faster-than problem up to a multiplicative con-
stant is impossible. This result relies on the following impossibility theorem
for probabilistic automata.

Theorem 4.2.3 ([4, 5]). Let 0 < α < β < 1 be two constants. There is no algorithm
which, given a probabilistic automaton A,

• returns YES if for all w we have PA(w) ≥ β and

• returns NO if there exists w such that PA(w) ≤ α.
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This in turn gives us the following impossibility result for approximating
the faster-than problem.

Theorem 4.2.4. Let 0 < ε < 1
3 be a constant. There is no algorithm which, given a

discrete-time Markov chainM and two states s and s′,

• returns YES if for all w we have P(s)(C(w)) ≥ P(s′)(C(w)) and

• returns NO if there exists w such that P(s)(C(w)) ≤ P(s′)(C(w)) · (1− ε).

However, in Section 4.3 we will show that approximation up to an additive
constant can be done for a special kind of residence-time distributions, if we
only consider what happens up to some given point in time.

4.3 Time-Bounded Additive Approximation

Although multiplicative approximation is impossible, we will now show that
time-bounded additive approximation is possible. More precisely, we will
show that the time-bounded additive approximation problem is decidable for a
suitable class of residence-time distributions. This problem asks, given ε > 0,
a time bound b ∈ R≥0, and two states s1 and s2, whether for all schedulers σ
there exists a scheduler σ′ such that

Pσ(s1)(C) ≥ Pσ′(s2)(C)− ε (4.1)

for all time-bounded cylinders C = C(a1 . . . an, t) where t ≤ b.
Our decidability result holds for residence-time distributions that are slow.

The formal definition of slow residence-time distributions is somewhat tech-
nical, but the idea is that slow residence-time distributions must use some
non-zero amount of time to take a transition. This ensures that the process
can not do infinitely many transitions within a given time bound, thus ruling
out so-called Zeno behaviour. Furthermore, this means that the probabil-
ity of time-bounded cylinders above some specific length must be less than
ε > 0 for that given time bound, and hence the inequality in (4.1) is trivially
satisfied. Therefore we only need to consider finitely many time-bounded
cylinders.

Theorem 4.3.1. LetM be an SMP with slow residence-time distributions. For any
state s, ε > 0, time bound b ∈ R≥0, and scheduler σ, there exists N ∈N such that

Pσ(s)(C(a1 . . . an, b)) ≤ ε for all n ≥ N.

Based on this result, we can prove the following theorem using the decid-
ability of the first-order theory of the reals.

Theorem 4.3.2. The time-bounded additive approximation problem is decidable for
SMPs with effective and slow residence-time distributions.
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4.4 Unambiguous Processes

If we consider only generative processes, then we can also recover decid-
ability by restricting to unambiguous processes. Intuitively, an unambiguous
process is one in which a given output label uniquely identifies the successor
state.

Definition 4.4.1. A generative SMP is unambiguous if for every s ∈ S and
a ∈ Out there exists at most one s′ ∈ S such that τ(s)(s′, a) 6= 0.

For an unambiguous SMP, we write T(s, w) for the unique state reached
from s after outputting the word w. N

Now consider the set of “loops” reachable from s and s′, which we denote
by L(s1, s2) ⊆ S2 × Out≤S2

and defined by

L(s1, s2) =

{
(p1, p2, v) | ∃w ∈ Out≤S2

,
T(s1, w) = p1, T(s2, w) = p2,
T(p1, v) = p1, T(p2, v) = p2

}
.

Intuitively, (p1, p2, v) ∈ L(s1, s2) means that there exists a word w such that s1
goes to p1 and s2 goes to p2 when outputting w, and furthermore, whenever
p1 and p2 output the word v, they end up back in p1 and p2. Thus, v makes
p1 and p2 loop back to themselves. We can then prove the following lemma.

Lemma 4.4.2. s1 � s2 if and only if

• P(s1)(C(w, t)) ≥ P(s2)(C(w, t)) for all w ∈ Out≤S2
and t ∈ R≥0 and

• P(p1)(C(v, t)) ≥ P(p2)(C(v, t)) for all (p1, p2, v) ∈ L(s1, s2) and t ∈ R≥0.

Since for a given word, the inequalities in Lemma 4.4.2 can be checked for
effective distributions, and since there are only finitely many words check,
we obtain the following theorem.

Theorem 4.4.3. For unambiguous generative SMPs with effective residence-time
distributions, the faster-than problem is decidable in coNP.

4.5 Logical Characterisation of the Faster-Than Re-
lation

In this section we give a logical characterisation of the faster-than relation
when we restrict to generative SMPs. The language L that we use for this
consists of path formulas

ϕ ::= > | 〈a〉ϕ
and state formulas

ψ ::= P≤t
≥p(ϕ)
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where t, p ∈ Q≥0.
The semantics of L are given in terms of paths π = a1a2 · · · ∈ Out∗ where

we let π[i] = ai be the ith term of of π. Then the semantics of L are as
follows.

π |= > always
π |= 〈a〉ϕ iff π[1] = a and π|2 |= ϕ

s |= P≤t
≥p(ϕ) iff P(s)(C(W(ϕ), t)) ≥ p

where π|2 is the tail of π, and W(ϕ) is the longest common prefix of all paths
which satisfy ϕ.

The language L characterises the faster-than relation in the following
sense.

Theorem 4.5.1. For generative SMPs, it holds that

s1 � s2 if and only if s2 |= ψ implies s1 |= ψ for all ψ ∈ L.

Unfortunately, it is not clear to us how to make the logical characterisation
work for the reactive case. The issue is that the definition of faster-than for
the reactive case has an asymmetry in the quantifiers: For all schedulers σ
there must exist a scheduler σ′. However, when defining the semantics of the
operator, we must choose whether

Pσ(s)(C(W(ϕ), t)) ≥ p

should hold for all σ or just for some σ.
Apart from characterising the faster-than relation, the language L turns

out to be quite simple. In particular, every formula in L is satisfiable, and
even satisfiable by a finite model.

Theorem 4.5.2. Any formula ψ ∈ L is satisfiable by a finite SMP.

This can be easily seen by considering a path formula ϕ = 〈a1〉 . . . 〈an〉>
and letting Mϕ be an SMP with n + 1 states such that state number i has
an ai-transition with probability 1 to state number i + 1, and each state has a
Dirac distribution at 0 as residence-time distribution.

As a corollary, this immediately implies that the satisfiability is trivially
decidable.

Corollary 4.5.3. The satisfiability problem for L is decidable.

Finally, by making use of the existential theory of the reals, we obtain a
PSPACE model checking algorithm for some commonly used residence-time
distributions.

Theorem 4.5.4. The model checking problem for L is decidable for SMPs with
residence-time distributions that are either
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Figure 4.6.1: For different instantiations of µ, ν, µ′, ν′ and η′, the context M together with the
componentsM1 andM2 lead to parallel timing anomalies.

• exponential,

• piecewise polynomial,

• piecewise affine,

• uniform, or

• Dirac.

4.6 Compositionality

Let us now return to the picture in Figure 4.0.1, where a context M is op-
erating in parallel with a component M2, and we wish to replace M2 by a
faster componentM1. We will first give some examples of when this picture
can lead to parallel timing anomalies, meaning that even thoughM1 is faster
than M2, the system M1 ‖?M is actually slower than M2 ‖?M. We will
give timing anomalies for the following types of composition function:

Product composition: F?(µ,ν) = Exp[θ · θ′] if Fµ = Exp[θ] and Fν = Exp[θ′].

Minimum composition: F?(µ,ν)(t) = min{Fµ(t), Fν(t)}.

Maximum composition: F?(µ,ν)(t) = max{Fµ(t), Fν(t)}.

Consider the pointed SMPs (M, s), (M1, s1), and (M2, s2) as depicted in
Figure 4.6.1, and let Fµ = Exp[2], Fν = Exp[0.5], and Fη = Exp[1]. Notice that
this immediately implies thatM1 �M2.
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Example 4.6.1 (Product composition). Let Fµ′ = Exp[10] and Fν′ = Exp[0.1].
We then get

P(s1 ‖? s)(C(aa, 2)) ≈ 0.09

and
P(s2 ‖? s)(C(aa, 2)) ≈ 0.30,

meaning thatM1 ‖?M 6� M2 ‖?M. �

Example 4.6.2 (Minimum composition). Let Fµ′ = Exp[1] and Fν′ = Exp[2].
We then get

P(s1 ‖? s)(C(aa, 2)) ≈ 0.40

and
P(s2 ‖? s)(C(aa, 2)) ≈ 0.51,

so also in this caseM1 ‖?M 6� M2 ‖?M. �

Example 4.6.3 (Maximum composition). Let Fµ′ = Exp[2] and Fν′ = Exp[1].
We then get

P(s1 ‖? s)(C(aa, 2)) ≈ 0.75

and
P(s2 ‖? s)(C(aa, 2)) ≈ 0.91,

so once again we getM1 ‖?M 6� M2 ‖?M. �

4.6.1 Avoiding Parallel Timing Anomalies

We have now seen that parallel timing anomalies can occur for many stan-
dard ways of composing systems. Furthermore, none of the examples we
showed made use of non-determinism or probabilistic branching, showing
that parallel timing anomalies can occur purely as a consequence of the real-
time behaviour of the systems.

We therefore wish to understand under which conditions we can en-
sure that parallel timing anomalies do not occur. We provide a first step
toward such an understanding by identifying a set of conditions which over-
approximate the faster-than relation, and show that this set of conditions is
decidable. Hence, we can algorithmically verify that a system satisfies the
conditions, and give guarantees that the system can not lead to parallel tim-
ing anomalies.

In order to over-approximate the faster-than relation, we require that
M1 ‖?M is pointwise faster thanM1 along all paths (from the initial states).
Likewise, we require that M2 is pointwise faster than M2 ‖?M along all
paths. Since we already know that M1 is faster than M2, this will imply by
transitivity thatM1 ‖?M is faster thanM2 ‖?M, thus ensuring that parallel
timing anomalies can not occur.
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Definition 4.6.4. An reactive SMPM = (S, τ, ρ, `) has a deterministic Markov
kernel if for all s ∈ S and a ∈ In there is at most one state s′ ∈ S such that
τ(s, a)(s′) > 0. N

Definition 4.6.5. Let n ∈ N. We say that ? is n-monotonic in M1, M2, M,
andM′ and write (M1,M)/n

? (M2,M′) ifM′ has a deterministic Markov
kernel and the following holds pointwise along all paths of length up to n:

1. The CDF ofM1 ‖?M is pointwise greater than that ofM.

2. The CDF ofM2 is pointwise greater than that ofM2 ‖?M′.

3. For all schedulers σ there exists a scheduler σ′ such that the transition
probability ofM1 ‖?M under σ′ is greater than that ofM under σ.

4. For all schedulers σ there exists a scheduler σ′ such that the transition
probability ofM2 under σ′ is greater than that ofM2 ‖?M′ under σ.

We will say that ? is monotonic in M1, M2, M, and M′ and write
(M1,M)/? (M2,M′) if (M1,M)/n

? (M2,M′) for all n. N

Theorem 4.6.6. If M1 � M2, M � M′, and (M1,M)/? (M2,M′), then
M1 ‖?M�M2 ‖?M′.

We do not know whether the conditions of monotonicity are decidable,
but if we strength the existential quantifiers of items 3 and 4 in Definition 4.6.5
to universal quantifiers, then we arrive at a notion of strong n-monotonicity,
respectively strong monotonicity, denoted by (M1,M)5n

? (M2,M′), respec-
tively (M1,M)5? (M2,M′).

Since clearly (M1,M)5? (M2,M′) implies (M1,M)/? (M1,M′), we
get the following corollary.

Corollary 4.6.7. If M1 � M2, M � M′, and (M1,M)5? (M2,M′), then
M1 ‖?M�M2 ‖?M′.

The first step in order to decide whether (M1,M) 5? (M2,M′) is to
notice that it is enough to consider paths up to a specific length for finite
systems.

Lemma 4.6.8. LetM1,M2,M, andM′ be finite SMPs and let

m = max{|M1| · |M|, |M2| · |M′|}+ max{|M1|, |M2|, |M|, |M′|}+ 1.

If (M1,M)5m
? (M2,M′), then (M1,M)5? (M2,M′).

We can then make use of the first-order theory of the reals to decide strong
monotonicity.
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Theorem 4.6.9. LetM1,M2,M, andM′ be finite, reactive SMPs. If for all paths
π1 inM1 ‖?M, π2 inM, π3 inM2, and π4 inM2 ‖?M′, the sets

{t ∈ R≥0 | Fπ1[i](t) ≥ Fπ2[i]}

and
{t ∈ R≥0 | Fπ3[i](t) ≥ Fπ4[i]}

are semialgebraic for all 1 ≤ i ≤ m, then it is decidable whether (M1,M) 5?

(M2,M′).

The sets described in Theorem 4.6.9 are semialgebraic for common dis-
tributions such as exponential and uniform distributions, and for common
composition functions such as product, minimum, and maximum composi-
tion.
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Chapter 5

Simulation-Based
Faster-Than Relation

This chapter summarises Paper D “A Hemimetric Extension of Simulation
for Semi-Markov Decision Processes” [3]. For the full paper, see Part II.

We have seen in Chapter 4 how to compare the real-time behaviour of
SMPs by considering their traces. In this chapter we will instead compare
processes through the notion of simulation. Roughly speaking, a process s1
simulates a process s2 if anything that s2 can do, s1 can also do. However, s1
may be able to do more than what s2 can do. When considering the real-time
behaviour of systems, we in addition require that s1 must be faster than s2 in
order for s1 to simulate s2.

Since the real-time behaviour of processes is sensitive to the exact type of
distribution and parameters used to specify the real-time behaviour in each
state, such processes are subject to the approximate modeling problem, which
we discussed in the introduction. We therefore develop a notion of simulation
distance, which quantifies how close a process is to simulating another process
in terms of its real-time behaviour. In order to do this, we first consider how
to quantitatively compare the residence-time distributions of processes. In
this chapter, we only consider reactive processes.

5.1 Comparing Residence-Time Distributions

In order to compare the residence-time distributions of processes, we will
take as our starting point the usual stochastic order from the theory of stochas-
tic orders [4]. A distribution µ is smaller than another distribution ν in the
usual stochastic order if the CDF of µ is point-wise greater than the CDF of
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(a) Exponential (b) Uniform

Figure 5.1.1: When accelerating by a factor ε ≥ 1, the CDF becomes faster. Here the CDFs of
an exponential and a uniform distribution are plotted where the acceleration factor ε takes the
values 1, 2, and 4.

ν, i.e. when
Fµ(t) ≥ Fν(t) for all t ∈ R≥0.

We extend this order to a quantitative notion, and while doing so, we also
shift the focus from the distributions to the CDFs, since we are only interested
in comparing CDFs.

Definition 5.1.1. Let F and G be CDFs and let ε ∈ R>0. We say that F is
ε-faster than G and write F vε G if

F(ε · t) ≥ G(t) for all t ∈ R≥0. N

The name ε-faster-than comes from the fact that if F vε G, then at every
point in time t, F will have a higher probability of having fired a transition
than G, if we accelerate the real-time behaviour of F by the factor ε.

Example 5.1.2. To get a feeling for the significance of the acceleration factor
ε, consider the plots in Figure 5.1.1.

In Figure 5.1.1a, we see the CDF of an exponential distribution with rate
2. When accelerating this CDF by a factor 2, we see that the shape of an
exponential distribution is preserved, but the resulting CDF is faster. The
same happens with acceleration factor 4, except the resulting CDF is even
faster. Thus the net result of accelerating an exponential distribution is to
increase its rate.

In Figure 5.1.1b, we see the CDF of a uniform distribution between 1 and
3. When accelerating this CDF by a factor 2, the shape of a uniform distri-
bution is preserved, but the resulting uniform distribution is between two
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values that are less than the original values, thus making the CDF faster. The
same happens with acceleration factor 4, except now the uniform distribu-
tion is between values that are even smaller, resulting in an even faster CDF.
The result of accelerating a uniform distribution is therefore to decrease the
parameters of the uniform distribution. �

The next three propositions show for what values of ε the ε-faster-than
relation holds between Dirac, uniform, and exponential distributions.

Proposition 5.1.3. Let F be any CDF. The following holds for any ε ∈ R>0.

1. Dirac[0] vε F.

2. If F 6= Dirac[0], then F 6vε Dirac[0].

Proposition 5.1.4.

1. Exp[θ1] vε Exp[θ2], where ε = θ2
θ1

.

2. If c = 0 and a > 0, then Unif [a, b] 6vε Unif [c, d] for any ε ∈ R>0.

3. If c = 0 and a = 0, then Unif [a, b] vε Unif [c, d], where ε = b
d .

4. If c > 0, then Unif [a, b] vε Unif [c, d], where ε = max
{

a
c , b

d

}
.

In all cases, the given ε is the least such that the ε-faster than relation holds.

Proposition 5.1.5.

1. Exp[θ] 6vε Unif [a, b] for all ε ∈ R>0.

2. If a > 0, then Unif [a, b] 6vε Exp[θ] for all ε ∈ R>0.

3. If a = 0, then Unif [a, b] vε Exp[θ], where ε = θ · b. Furthermore, this is the
least ε such that the ε-faster-than relation holds.

Example 5.1.6. Consider the plots in Figure 5.1.2. In Figure 5.1.2a, we see an
exponential distribution with rate 0.5 and a uniform distribution between 0
and 3. Clearly, neither of them is faster than the other, since they cross. How-
ever, Proposition 5.1.5 tells us that if we accelerate the uniform distribution
by a factor ε = 0.5 · 3 = 1.5, then the resulting uniform distribution is faster
than the exponential distribution, and this can also be seen in Figure 5.1.2a.

In Figure 5.1.2b we see two different uniform distributions, one between 1
and 4 and another between 2 and 3. Again, neither of these is faster than the
other, but by Proposition 5.1.4, accelerating the uniform distribution between
1 and 4 by a factor ε = max{ 1

3 , 4
3} =

4
3 results in a uniform distribution that

is faster than the one between 2 and 3, as can be seen in Figure 5.1.2b. �
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(a) Exponential (b) Uniform

Figure 5.1.2: Accelerating the real-time behaviour of a uniform distribution to make it faster
than another uniform distribution or an exponential distribution.

In addition, the ε-faster-than relation enjoys the following properties. The
first property is that the relation is monotonic in ε, and the second property
is that the relation is a congruence with respect to convolution.

Lemma 5.1.7. Let ε ≤ ε′ and assume that F vε G. Then F vε′ G.

Lemma 5.1.8. If Fµ1 vε Fµ2 and Fν1 vε Fν2 , then F(µ1∗ν1)
vε F(µ2∗ν2)

.

5.2 Simulation Distance

We will now use the ε-faster-than relation to extend simulation for SMPs to
a distance between SMPs, which intuitively measures how much one process
needs to be accelerated in order to simulate another process. To do this, first
note that condition (S2) in Definition 2.6.11 of simulation for SMPs is actually
an instance of the usual stochastic order. We can therefore naturally extend
this definition using our notion of ε-faster-than.

Definition 5.2.1. Let M = (S, τ, ρ, `) be an SMP. A ε-simulation relation is a
relation R ⊆ S× S such that s1Rs2 implies

1. `(s1) = `(s2),

2. Fs2 vε Fs1 , and

3. for all a ∈ In there exists a weight function ∆a ∈ D(S× S) such that

(a) ∆a(s, s′) > 0 implies sRs′,

(b) τ(s1, a)(s) = ∑s′∈S ∆a(s, s′), and
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Exp[4]

s1
a : 1

Exp[2]

s2
a : 1

Figure 5.2.1: Two states of an SMPM.

(c) τ(s2, a)(s′) = ∑s∈S ∆a(s, s′).

If there exists an ε-simulation relation R such that s1Rs2, then we say that
s2 ε-simulates s1 and write s1 -ε s2. N

Example 5.2.2. Consider the two states in Figure 5.2.1. Since both states have
exponential residence-time distributions, Proposition 5.1.4 tells us that

s1 -2 s2 and s2 - 1
2

s1. �

If s1 -ε s2 and ε ≤ 1, then this means that s2 already simulates s1, and ε
gives a quantitative measure of how much s2 is faster than s1. On the other
hand, if ε > 1, then s2 does not simulate s1, but if we accelerate the real-
time behaviour of the entire process by ε, and consider s2 in this accelerated
process but s1 still in the original process, then s2 does simulate s1. This is
made precise by the following proposition.

Proposition 5.2.3. For any ε ∈ R>0,

s1 -ε s2 if and only if s1 - (s2)ε

where (s2)ε is a copy of s2 where the entire process is accelerated by ε.

With the notion of ε-faster-than in hand, it is natural to ask what the
smallest ε is such that the ε-faster-than relation holds, or in other words, what
the smallest acceleration factor is that makes one process simulate another
process. This motivates the definition of the simulation distance.

Definition 5.2.4. The simulation distance d : S× S → [1, ∞] from a state s1 to
a state s2 is given by

d(s1, s2) = inf{ε ≥ 1 | s1 -ε s2}. N

For SMPs whose transition function is finitely supported, the simulation
distance has the property that it is a generalisation of simulation in the sense
that s1 - s2 if and only if d(s1, s2) = 1.

The simulation distance itself is not a hemimetric, since it does not satisfy
the triangle inequality. However, it satisfies a multiplicative version of the tri-
angle inequality, which means that if we take the logarithm of the simulation
distance, then we obtain a hemimetric.

Theorem 5.2.5. log d is a hemimetric.
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5.3 Computing the Simulation Distance

Our first result on the simulation distance is that it can be computed, and the
algorithm for computing it has polynomial complexity for the residence-time
distributions we have considered so far. A key part of the algorithm is to
consider, for two CDFs F and G, the value given by

c(F, G) = inf{ε ≥ 1 | F vε G}.

Intuitively, c(F, G) denotes the least acceleration factor required for F to be
faster than G. Furthermore, given an SMPM, let

C(M) = {c(Fs, Fs′) | s, s′ ∈ S}.

We are interested in those SMPs for which we can actually compute c(F, G)
when F and G are residence-time distributions of the SMP.

Definition 5.3.1. An SMPM is c-effective if C(M) is computable. N

Given an SMP M = (S, τ, ρ, `), we will denote by f (l) the complexity of
computing c(Fs, Fs′) for s, s′ ∈ S, where l is the length of the representation
of the residence-time distributions ofM.

Note that by Propositions 5.1.3-5.1.5, any SMP whose residence-time dis-
tributions are Dirac, uniform or exponential is c-effective and f (l) is polyno-
mial.

Lemma 5.3.2. LetM be a finite SMP. If d(s1, s2) 6= ∞, then

• s1 -c s2, for some c ∈ C(M) and

• d(s1, s2) = min{c ∈ C(M) | s1 -c s2}.

Lemma 5.3.2 gives a strategy for computing d(s1, s2). First we compute
C(M), and then we check for each c ∈ C(M) whether s1 -c s2. If there is no
such c, then d(s1, s2) = ∞, otherwise d(s1, s2) will be the smallest c such that
s1 -c s2. Hence we first need an algorithm to decide whether s1 -c s2. We do
this by adapting to our setting the classic algorithm for deciding simulation
for Markov chains [1, 5]. Given an SMP M = (S, τ, ρ, `), let n = |S| be the
number of states, m = |In| the number of input actions, and k = |AP| the
number of atomic propositions.

Theorem 5.3.3. LetM be a finite and c-effective SMP. Given s1, s2 ∈ S and ε ≥ 1,
deciding whether s1 -ε s2 can be done in time O(n2( f (l) + k) + m2n).

Using Theorem 5.3.3, we obtain the algorithm shown in Algorithm 5.3.1,
which uses a bisection method to search through the elements of C(M) and
test them, rather than simply testing them all.

Theorem 5.3.4. Let M be a finite and c-effective SMP. The simulation distance
between any two states can be computed in time O(n2( f (l) + k) + m2n · log n).
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1 Order the elements of C(M) \ {∞} such that c1 < c2 < · · · < cn ;
2 if s1 -c1 s2 then return c1 ;
3 else if s1 6-cn s2 then return ∞ ;
4 else
5 i← 1, j← n ;
6 while i < j do
7 h←

⌈
j−i
2

⌉
;

8 if s1 -cj−h s2 then j← j− h ;
9 else i← i + h ;

10 end
11 return cj ;
12 end
Algorithm 5.3.1: Computing the simulation distance between two
states s1 and s2.

5.4 Compositionality

The simulation distance turns out to behave nicely with respect to composi-
tion. More concretely, we prove that, under mild assumptions, composition
is non-expansive with respective to the simulation distance. This result is a
quantitative generalisation of the fact that simulation is a precongruence with
respect to composition.

In order to obtain this result, we restrict our attention to those residence-
time composition functions that are monotonic in the following sense.

Definition 5.4.1. A residence-time composition function ? is monotonic if

Fµ vε Fν implies F?(µ,η) vε F?(ν,η)

for all ε ≥ 1 and µ, ν, η ∈ D(R≥0). N

This is not a significant restriction, since most of the residence-time com-
position functions that are found in the literature are indeed monotonic. For
monotonic residence-time composition functions we then have the promised
non-expansiveness result.

Theorem 5.4.2. For finite SMPs and monotonic ?,

d(s1, s2) ≤ ε implies d(s1 ‖? s3, s2 ‖? s3) ≤ ε.

The final aspect of compositionality that we will consider is how to com-
pute the distance between composed states. We saw in Section 5.3 that we can
compute the distance if we know how to compute the constants c(F, G). For
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a residence-time composition function on exponential distributions where we
take e.g. the product of the rates, composition poses no problem, since the
CDF of two exponential residence-time distributions composed in this man-
ner is still an exponential distribution, and we know how to compute c(F, G)
for those.

However, when composing residence-time distributions using the point-
wise maximum of their CDFs, the composition of two uniform distributions
need not be a uniform distribution. Likewise, composing a uniform distri-
bution and an exponential distribution in this manner yields a CDF that is
neither uniform nor exponential. Hence we must consider how to compute
c(F, G) for these composed distributions.

Proposition 5.4.3. Let ? be maximum composition. The constants c(Fµ, F?(ν,η))
and c(F?(µ,η), Fν) are computable whenever µ, ν, and η are taken from the set of
exponential, uniform, and Dirac distributions.

The proof of Proposition 5.4.3 is laborious and tedious, because many
combinations and special cases must be considered. Hence we have not ex-
tended the result to a higher number of compositions or to composition on
both sides, although we strongly believe that such a result will hold for many
other kinds of distributions also.

5.5 Logical Properties

If the simulation distance tells us that two processes are close, then we would
also expect them to satisfy almost the same properties. In this section we
make this idea precise by introducing a logical specification language for
specifying properties of SMPs. We show that this language characterises ε-
simulation and that the simulation distance from s1 to s2 is less than ε if and
only if whenever s1 satisfies a formula, s2 satisfies a slight perturbation of the
same formula.

The language we use is a slight extension of Markovian logic [2] which
we call timed Markovian logic (TML). TML has the following syntax, where
α ∈ AP , a ∈ In, p ∈ Q∩ [0, 1], and t ∈ Q≥0.

TML : ϕ ::= α | ¬α | `pt | mpt | La
p ϕ | Ma

p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

α and ¬α speak about atomic propositions, ∧ and ∨ are the usual con-
junction and disjunction, `pt and mpt speak about the timing behaviour of
processes, and La

p and Ma
p speak about the branching behaviour of processes.

This is made precise by the semantics of TML, which are given as follows.
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s |= α iff α ∈ `(s) s |= `pt iff Fs(t) ≥ p
s |= ¬α iff α /∈ `(s) s |= mpt iff Fs(t) ≤ p
s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′ s |= La

p ϕ iff τ(s, a)(JϕK) ≥ p
s |= ϕ ∨ ϕ′ iff s |= ϕ or s |= ϕ′ s |= Ma

p ϕ iff τ(s, a)(JϕK) ≤ p

where JϕK is the set of states satisfying ϕ.
Furthermore, we will consider the following fragments of TML.

TML≥ : ϕ ::= α | ¬α | `pt | La
p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

TML≤ : ϕ ::= α | ¬α | mpt | Ma
p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

In order to connect TML to our simulation distance, we introduce the
notion of ε-perturbance of a formula ϕ ∈ TML, denoted by (ϕ)ε, which is given
by replacing all occurrences of `pt or mpt in ϕ by `pε · t or mpε · t, respectively.
We then get the following result, which shows that the fragments TML≤ and
TML≥ characterise ε-simulation.

Theorem 5.5.1. Let ε ∈ Q≥0 with ε ≥ 1. Then the following holds.

• s1 -ε s2 if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.

• s1 -ε s2 if and only if ∀ϕ ∈ TML≤.s2 |= (ϕ)ε =⇒ s1 |= ϕ.

From this result we get the following corollary, which connects the frag-
ments of TML directly to our simulation distance.

Corollary 5.5.2. Let ε ∈ Q≥0 with ε ≥ 1. For finite SMPs the following holds.

• d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.

• d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≤.s2 |= (ϕ)ε =⇒ s1 |= ϕ.

Another property that is often of interest is that of reachability: Starting
from a given state, can we reach a state which satisfies some property? For
SMPs which have both probabilistic branching and real-time behaviour, a
more interesting reachability problem is:

Starting from a given state s, can we with probability at least p
and before time t reach a state which satisfies property ϕ?

We will now show that the ε-simulation relation also preserves reachabil-
ity properties. In order to do this, we consider the following kind of events.
Let X ⊆ S and t ∈ R≥0. Then we define

♦tX = {π ∈ Π(M) | ∃i ∈N.π[i] ∈ X and
i−1

∑
j=1

π〈j〉 ≤ t}
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as the set of paths that eventually reach a state in X within time t. We can
then prove the following theorem.

Theorem 5.5.3. Let β be a Boolean combination of atomic propositions. If we have
s1 -ε s2, then for any scheduler σ there exists a scheduler σ′ such that

Pσ
s1
(♦tJβK) ≤ Pσ′

s2
(♦ε·tJβK).

In other words, s1 -ε s2 guarantees that whenever s1 can reach a state in
JβK within time t under some scheduler σ, then we can find a scheduler σ′

such that s2 reaches a state in JβK within time ε · t, and with at least as high
probability.

5.6 Topology of the Simulation Distance

In this section we investigate the topology of the simulation distance, in par-
ticular with respect to properties expressible in TML. The question we wish
to answer is whether, given a sequence of states {sk} that converges to a state
s such that si |= ϕ for each state si in the sequence, we can be sure that also
the state s satisfies ϕ. This is the same as asking whether the set JϕK is a
closed set in the topology induced by the simulation distance. Hence, if JϕK
is closed, reasoning in the limit about properties expressible by ϕ is sound.

Recall that the right-centered topology is generated by the open balls

BR
r (s) = {s′ | d(s′, s) < r}

and the left-centered topology is generated by the open balls

BL
r (s) = {s′ | d(s, s′) < r}.

Lemma 5.6.1. The following holds in the right-centered topology.

1. J`ptK is closed.

2. If p = 0, then J`ptK is open.

3. If p > 0, then J`ptK is not open.

4. If p = 1, then JmptK is closed.

5. If p < 1, then JmptK is not closed.

We can then use Lemma 5.6.1 to show that reasoning in the limit is sound
for the right-centered topology.

Theorem 5.6.2. For any ϕ ∈ TML≥, JϕK is closed in the right-centered topology.
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Lemma 5.6.3. The following holds in the left-centered topology.

1. If p = 1, then JmptK is open.

2. If p < 1, then JmptK is not open.

3. If p = 0, J`ptK is closed.

4. If p > 0, J`ptK is not closed.

However, we have not been able to determine whether JmptK is closed
in the left-centered topology or not. If it were closed, then we could prove
that reasoning in the limit is also sound for the left-centered topology. Our
intuition leads us to conjecture that this is the case.

Conjecture 5.6.4. For any ϕ ∈ TML≤, JϕK is closed in the left-centered topology.
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Conclusion

In this thesis we have investigated how to reason about the real-time be-
haviour of stochastic systems, both by expressing and verifying properties in
a given specification language, and by comparing systems through different
notions of behavioural relations. Through this we have developed various
logical specification languages as well as new ways of comparing systems,
and studied the properties of these.

We have introduced weighted logic with bounds (WLWB) as a specifica-
tion language, which allows one to reason about upper and lower bounds on
weights in a weighted transition system. Since many requirements of interest
speak about upper and lower bounds, we argue that this is a useful language
for specifying requirements. Furthermore, this language is less susceptible
to the approximate modelling problem, since it does not speak about exact
weights. We have studied the properties of this language and shown that it
characterises a kind of behavioural equivalence that looks at the upper and
lower bounds of transitions rather than matching each weight exactly. We
have also given a complete axiomatisation of the language, and developed al-
gorithms for deciding both the model checking and the satisfiability problem
for WLWB.

We have defined a notion of a faster-than relation on traces for semi-
Markov processes by requiring that on each trace, the fast process must have
a higher probability of completing that trace within any given time bound
than the slow process. Such a notion is useful, since it allows one to reason
about incremental improvement of a system in the design phase, where the
speed of the system can be gradually improved. It is also useful from a com-
positional perspective. From this perspective, one may identify a component
that is working too slowly, and replace it with a component that is faster.
However, in this case one has to be careful about timing anomalies. We have
shown that such timing anomalies can occur, and we have taken first steps
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toward avoiding them, by identifying conditions that are sufficient for guar-
anteeing the absence of timing anomalies. We have also shown that deciding
the faster-than relation is a difficult problem that is undecidable in general.
Moreover, it can not be approximated up to a multiplicative constant, due
to a close connection to probabilistic automata. Despite this, we have given
an algorithm for approximating a time-bounded variant of the faster-than
problem up to an additive constant, as well as an algorithm for deciding the
faster-than relation exactly when restricting to unambiguous processes.

Since the qualitative answers of the classical notion of simulation for semi-
Markov processes are too rigid for the quantitative nature of these processes,
we have extended the concept of simulation to a quantitative simulation dis-
tance. This distance gives information about how much one should increase
the speed of a process in order for it to become as fast as another process.
This is useful when you have a system which does not satisfy a given prop-
erty, but you have a model of a system which does. Then the distance tells
you how much you need to increase the speed of the original system in order
for it to also satisfy the property. We have shown how to efficiently compute
this distance for some commonly used residence-time distributions, and that
composition is non-expansive with respect to the distance, meaning that tim-
ing anomalies can not occur. Furthermore, we have shown that the distance
can be characterised by a logical specification language which we call timed
Markovian logic, and that it preserves reachability properties. We have also
shown that, in the topology induced by the simulation distance, properties
expressed in timed Markovian logic are preserved in the limit, in the sense
that if a sequence of states has converges to a certain state, and if each state
in the sequence satisfies some property expressed in timed Markovian logic,
then the state to which the sequence converges will also satisfy that property.

The research presented here has been carried out as part of the research
project Approximate Reasoning for Stochastic Markovian Systems, which is
funded by The Danish Council for Independent Research. The content of this
thesis contributes to the project by introducing formalisms and algorithms for
approximating the behaviour of stochastic system, and studying the proper-
ties of these from a logical, topological, as well as computational point of
view.

6.1 Future Work

The work presented here has contributed to our understanding of how to
reason about and compare the stochastic behaviour of systems from a logi-
cal, topological, as well as computational point of view. However, there still
remain many open problems that we intend to investigate in future work. We
discuss here the most important of these.
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Strong completeness and Stone duality. The completeness result we have
shown for WLWB is a weak completeness result, showing that

|= ϕ implies ` ϕ

for any formula ϕ in WLWB. The notion of strong completeness asks that

Φ |= ϕ implies Φ ` ϕ

for any formula ϕ and set of formulas Φ in WLWB. Proving strong complete-
ness would require additional, infinitary axioms such as the rules

{Lq ϕ | q < r} ` Lr ϕ and {Mq ϕ | q < r} ` Mr ϕ

for a given r, which describe the Archimedean property of the reals.
A strong completeness result may also point the way to a Stone duality

result [9, 10, 17], which sheds light on the connection between logic and
topology. Such results have already been developed for Markovian logics [8,
12, 13], which bear some similarity to WLWB.

Extend logical specification languages with temporal operators. The
logical specification languages we have introduced and studied are all quite
parsimonious, although our results show that they are expressive enough
to characterise the relations under consideration. However, when specifying
requirements in an actual engineering situation, it may be useful to introduce
additional constructs in the language in order to allow for more expressivity.
In particular, it would be interesting to add temporal operators like those
found in LTL [15] and CTL [4], such as “until” and “eventually”, or even fix-
point operators like those found in the µ-calculus [11], and investigate how
many of our results carry over to this more expressive language.

Better understanding of timing anomalies. Although we shown that tim-
ing anomalies can occur when reasoning with the faster-than relation, and we
have given conditions that are sufficient to guarantee that no timing anoma-
lies occur, a complete understanding of when and how timing anomalies
occur is still missing. First of all, the conditions that we have given are very
restrictive, and requires that the processes in question are fully deterministic.
Secondly, the conditions impose requirements on all the involved processes,
and not just the context. It would be preferable to have conditions that only
look at the context, since then one could verify the context once and for
all, and then be guaranteed that no timing anomalies occur when swapping
components in and out. One way to try and gain a better understanding of
timing anomalies may be to consider networks of priced timed automata [7]
instead of semi-Markov processes, since the former are more well-suited for
compositional reasoning.
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Another aspect that is missing from our understanding of timing anoma-
lies is what happens in the generative case. We have only considered reactive
processes here, since defining composition for these is more natural than for
generative processes [16]. However, several notions of composition have been
defined for generative processes [2, 5, 6, 18], and we are interested in seeing
how timing anomalies behave and can be avoided in this setting.

Develop algorithms for deciding the faster-than relation for reactive
systems. For both reactive and generative processes, we have shown that the
faster-than relation is undecidable in general. However, for generative pro-
cesses, we have nonetheless been able to develop algorithms for two special
cases, namely those of time-bounded additive approximation and unambigu-
ous processes. These cases do not immediately carry over to the setting of
reactive systems, where the main challenge is that of handling the sched-
ulers involved, of which there may be uncountably many, depending on the
kind of scheduler under consideration [19]. We have extended the result on
time-bounded additive approximation from generative processes to reactive
processes, but only for the case where there are countably many schedulers,
meaning that the schedulers may not take time into account. It is therefore
still unclear to us whether there exists an algorithm for the case of uncount-
ably many schedulers. The same comments also apply to the algorithm for
unambiguous processes.

Take probabilistic branching into account in the simulation distance.
One weakness of the simulation distance is that it only considers differences
in the residence-time distributions and not the differences in the probabilistic
branching. This is because we have chosen to focus on the real-time be-
haviour of systems. However, there are some cases where this is not com-
pletely satisfactory.

Consider for example the semi-Markov process depicted in Figure 6.1.1.
In this case, we have s1 - t1 whenever θ ≤ 5. However, if θ is perturbed just
a little bit above 5, then we get s1 6- t1. For example, consider what happens
when θ = 5.00001. Then it is not difficult to see that the simulation distance
will be

d(s1, t1) =
5.00001

5
= 1.000002.

However, for so small perturbations of θ, one may argue in the following way
that t1 should be considered to be faster than s1. While it is true that t2 is
slower than s2, and that t1 has a non-zero probability of transitioning to t2,
t2 is only marginally slower than s2, and furthermore, t1 transitions only to
t2 10% of the time. The remaining 90% of the time, t1 will transition to t3,
which is significantly faster than s2. Hence, the greater probability of going
to a much faster state should somehow outweigh the small probability of
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Figure 6.1.1: A semi-Markov process where s1 - t1 if θ ≤ 5 and s1 6- t1 if θ > 5.

going to a slightly slower state.
We believe that the kind of reasoning just described will be possible by

taking into consideration also the difference between the probabilistic branch-
ing of the processes in defining the simulation distance. For this, an obvious
possibility would be to incorporate the (non-symmetric) Kantorovich distance
(see e.g. [3]). This is somewhat similar to what has been done for bisimula-
tion distances on continuous-time Markov processes by combining the Kan-
torovich distance and the total variation distance [1]. However, it is not clear
to us at present how the distance between the real-time behaviour in the
states and the distance between the transition distributions should interact.

Consider behavioural distances starting from the topological point of
view. In this thesis and in other works such as [13, 14], topological issues of
simulation and bisimulation distances have been investigated, in particular
how properties of the system behave with respect to the topology. However,
in these cases, the distance comes before the topology in the sense that the
distance is defined and the topology is then investigated. We believe that in
order to understand better the interplay between (bi)simulation, distances,
topology, and logical properties, it will be beneficial to define first the topol-
ogy that characterises (bi)simulation, and then see what distances can metrise
this topology.

6.2 Summary

The research presented in this thesis makes a novel contribution to chal-
lenging problems encountered when dealing with stochastic systems. This
research has deepened our understanding of how to compare and express
properties about stochastic systems, as well as opened new lines of research
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that the author intends to pursue in the future.
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A.1. Introduction

Abstract

We propose a way of reasoning about minimal and maximal values of the weights of
transitions in a weighted transition system (WTS). This perspective induces a no-
tion of bisimulation that is coarser than the classic bisimulation: it relates states that
exhibit transitions to bisimulation classes with the weights within the same bound-
aries. We propose a customised modal logic that expresses these numeric boundaries
for transition weights by means of particular modalities. We prove that our logic is
invariant under the proposed notion of bisimulation. We show that the logic enjoys
the finite model property and we identify a complete axiomatisation for the logic. Last
but not least, we use a tableau method to show that the satisfiability problem for the
logic is decidable.

A.1 Introduction

Weighted transition systems (WTSs) are used to model concurrent and dis-
tributed systems in the case where some resources are involved, such as time,
bandwidth, fuel, or energy consumption. Recently, the concept of a cyber-
physical system (CPS), which considers the integration of computation and
the physical world has become relevant in modeling various real-life situ-
ations. In these models, sensor feedback affects computation, and through
machinery, computation can further affect physical processes. The quantita-
tive nature of weighted transition systems is well-suited for the quantifiable
inputs and sensor measurements of CPSs, but their rigidity makes them less
well-suited for the uncertainty inherent in CPSs. In practice, there is often
some uncertainty attached to the resource cost, whereas weights in a WTS
are precise. Thus, the model may be too restrictive and unable to capture the
uncertainties inherent in the domain that is being modeled.

In this paper, we attempt to remedy this shortcoming by introducing a
modal logic for WTSs that allows for approximate reasoning by speaking
about upper and lower bounds for the weights of the transitions. The logic
has two types of modal operators that reason about the minimal and maxi-
mal weights on transitions, respectively. This allows reasoning about models
where the quantitative information may be imprecise (e.g. due to impreci-
sions introduced when gathering real data), but where we can establish a
lower and upper bound for transitions.

In order to provide the semantics for this logic, we use the set of possible
transition weights from one state to a set of states as an abstraction of the
actual transition weights. The logic is expressive enough to characterise WTSs
up to a relaxed notion of weighted bisimilarity, where the classical conditions
are replaced with conditions requiring that the minimal and maximal weights
on transitions are matched.
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Our main contribution is a complete axiomatisation of our logic, showing
that any validity in this logic can be proved as a theorem from the axiomatic
system. Completeness allows us to transform any validity checking prob-
lem into a theorem proving one that can be solved automatically by modern
theorem provers, thus bridging the gap to the theorem proving community.
The completeness proof adapts the classical filtration method, which allows
one to construct a (canonical) model using maximal consistent sets of for-
mulas. The main difficulty of adapting this method to our setting is that we
must establish both lower and upper bounds for the transitions in this model.
To achieve this result, we demonstrate that our logic enjoys the finite model
property.

Our second significant contribution is a decision procedure for determin-
ing the satisfiability of formulas in our logic. This decision procedure makes
use of the tableau method to construct a tableau for a given formula. If the
constructed tableau is successful, then the formula is satisfiable, and a finite
model for the formula can be generated from the tableau.

Related Work.

In [12], Zoltán Ésik also considered the issue of bisimulation for weighted
transition systems, although in the more general setting of synchronisation
trees with weights in an arbitrary monoid or semiring. Synchronisation trees
arise by unfolding the transitions of a weighted transition system starting in
some state which will become the root of the tree. Both Ésik’s and our notion
of bisimilarity bears some resemblance to probabilistic bisimulation [29], by
considering not only single transitions but transitions to equivalence classes
of states. However, while we require that the upper and lower bounds of
these transitions should match, the bisimilarity of Ésik requires that the sum
of the transitions should be the same. This is motivated by the fact that
the synchronisation trees do not form a category which respects the additive
structure of a semiring. However, as Ésik proves, if one takes the quotient
with respect to his version of weighted bisimilarity, then the category one
obtains does respect the additive structure. Thus, the semiring structure of
the weights is of vital importance to Ésik’s work, but is an aspect that we
have not considered in our work.

Several logics have been proposed in the past to express properties of
quantified (weighted, probabilistic or stochastic) systems. They typically use
modalities indexed with real numbers to express properties such as “ϕ holds
with at least probability b”, “we can reach a state satisfying ϕ with a cost at least r”,
etc.

In the context of weighted automata, weighted monadic second order
logic has been introduced by Droste and Gastin [9] to capture the behaviour
of weighted automata for commutative semirings. This work has been ex-
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tended to many closely related systems [2, 10, 11, 14, 31]. There has also been
work on connecting weighted monadic second order logic with probabilistic
CTL [4]. For weighted transition systems, weighted modal logic has been
introduced by Larsen and Mardare [23] to reason about the consumption of
resources in such a system. This logic has been extended to handle recur-
sion [27, 28] as well as parallel composition and concurrency [25]. For both
the original weighted modal logic and its concurrent extension, complete ax-
iomatisations were developed. A weighted extension of the µ-calculus was
introduced by Larsen et al. in [24], where a complete axiomatisation for this
extension was also given.

While our setting is that of weighted transition systems, our logic and
the development of its theory has more in common with Markovian logic
than with the previously mentioned work on weighted systems. Markovian
logic was introduced by Mardare et al. [5, 30] building on previous work
on probability logics [13, 17, 32]. Markovian logic reasons about probabilis-
tic and stochastic systems using operators Lr and Mr which mean that a
property hold with at least probability r or at most probability r, respectively.
Much of the work on Markovian logic has focused on giving a complete ax-
iomatisation for the logic [22], culminating in a Stone duality for Markov
processes [21]. However, compositional aspects have been considered in [6],
where also an axiomatisation was given for Markovian logic with an operator
for parallel composition.

While our logical syntax resembles that of Markovian logic, our semantics
is different in the sense that we argue not about probabilities, but about an
interval of possible weights. For instance, in the aforementioned logics we
have a validity of type ` ¬Lrφ→ Mrφ saying that the value of the transition
from the current state to φ is either at least r or at most r; on the other hand,
in our logic the formula ¬Lrφ ∧ ¬Mrφ might have a model since Lrφ and
Mrφ express the fact that the lower cost of a transition to φ is at least r and
the highest cost is at most r respectively.

Our completeness proof uses a technique similar to the one used for
weighted modal logic [23] and Markovian logic [5, 22, 30]. It is however
different from these related constructions since our axiomatisation is finitary,
while the aforementioned ones require infinitary proof rules. Our axiomatic
systems are related to the ones mentioned above and the mathematical struc-
tures revealed by this work are also similar to the related ones. This suggest a
natural extension towards a Stone duality result along the lines of [21], which
we will consider in a future work.

Decidability results regarding satisfiability have also been given for some
related logics, such as weighted modal logic [26] and probabilistic versions
of CTL and the µ-calculus [7]. However, the satisfiability problem is known
to be undecidable for other related logics, in particular timed logics such as
TCTL [1] and timed modal logic [18]. This fact suggests that our logic is an
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interesting one which, despite its expressivity, remains decidable.
Our approach of considering upper and lower bounds is related to work

on interval-based formalisms such as interval Markov chains (IMCs) [19]
and interval weighted modal transition systems (WMTSs) [20]. Much like
our approach, IMCs consider upper and lower bounds on transitions in the
probabilistic case. WMTSs add intervals of weights to individual transitions
of modal transition systems, in which there can be both may- and must-
transitions. A main focus of the work both on IMCs and WMTSs have been
a process of refinement, making the intervals progressively smaller until an
implementation is obtained. However, none of these works have explored the
logical perspective up to the level of axiomatisation or satisfiability results,
which is the focus of our paper.

A.2 Model

The models addressed in this paper are weighted transition systems, in which
transitions are labelled with numbers to specify the cost of the corresponding
transition. In order to specify and reason about properties regarding impre-
cision, such as “the maximum cost of going to a safe state is 10” and “the
minimum cost of going to a halting state is 5”, we will abstract away the
individual transitions and only consider the minimum and maximum costs
from a state to another. We will do this by constructing for any two states the
set of weights that are allowed from one to the other.

First we recap the definition of a weighted transition system. Let AP be a
countable set of atomic propositions. A WTS is formally defined as follows:

Definition A.2.1. A weighted transition system (WTS) is a tupleM = (S,→, `),
where

• S is a non-empty set of states,

• →⊆ S×R≥0 × S is the transition relation, and

• ` : S → 2AP is a labelling function mapping to each state a set of atomic
propositions. N

Note that we impose no restrictions on the state space S; it can be un-
countable. We write s r−→ t to mean that (s, r, t) ∈→. We will say that a WTS
is image-finite if for any s ∈ S there are only finitely many t ∈ S such that
s r−→ t for some r ∈ R≥0.

When modeling cyber-physical systems, it is often unreasonable to expect
one to know the exact weights for transitions. However, it is often the case
that one has some bounds on the actual weights, e.g. one might know that
the cost of taking some transition is between 5 and 25. In order to reason
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s1
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{cleaning}

s3

{charging}
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Figure A.2.1: A simple model of a robot vacuum cleaner.

about these bounds, we abstract away the individual transitions, and instead
consider the set of weights between a state and a set of states.

Definition A.2.2. For an arbitrary WTS M = (S,→, `), the function θM :
S→

(
2S → 2R≥0

)
is defined for any state s ∈ S and set of states T ⊆ S as

θM (s) (T) = {r ∈ R≥0 | ∃t ∈ T such that s r−→ t}. N

Thus θM (s) (T) is the set of all possible weights of going from s to a state
in T. We will sometimes refer to θ (s) (T) as the image from s to T or simply
as an image set. In the rest of the paper, we will use the notation

θ− (s) (T) =

{
−∞ if θ (s) (T) = ∅
inf θ (s) (T) otherwise

and

θ+ (s) (T) =

{
∞ if θ (s) (T) = ∅
sup θ (s) (T) otherwise.

Thus θ− (s) (T) is a lower bound on the weights from s to T and θ+ (s) (T) is
an upper bound.

Example A.2.3. Figure A.2.1 shows a simple model of a robot vacuum cleaner
that can be in a waiting state, a cleaning state, or a charging state. This
is an example of a cyber-physical system where the costs of transitions are
necessarily imprecise. The time it takes to recharge the batteries depends
on the condition of the batteries as well as that of the charger; the time it
takes to clean the room depends on how dirty the room is, and how free
the floor is from obstacles; and the time it takes to reach the charger de-
pends on where in the room the robot is when it needs to be recharged. By
constructing the image sets, we can abstract away from the individual transi-
tions. For example, we have θ (s2) ({s1}) = {5, 10, 15}, so θ− (s2) ({s1}) = 5
and θ+ (s2) ({s1}) = 15. �
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We will now establish some useful properties of image sets. In particular,
the transition function is monotonic with respect to set inclusion, and union
distributes over image sets as one might expect.

Lemma A.2.4 (Monotonicity of θ). LetM = (S,→, `) be a WTS and let T1 and
T2 be subsets of S. If T1 ⊆ T2, then θ (s) (T1) ⊆ θ (s) (T2).

Lemma A.2.5. Let M = (S,→, `) be a WTS. For any s ∈ S and T1, T2 ⊆ S, it
holds that

1. θ (s) (T1 ∪ T2) = θ (s) (T1) ∪ θ (s) (T2) and

2. θ (s) (T1 ∩ T2) ⊆ θ (s) (T1) ∩ θ (s) (T2).

As usual we would like some way of relating model states with equivalent
behavior. To this end we define the notion of a bisimulation relation. The
classical notion of a bisimulation relation for weighted transition systems [3],
which we term weighted bisimulation, is defined as follows.

Definition A.2.6. Given a WTS M = (S,→, `), an equivalence relation R ⊆
S× S on S is called a weighted bisimulation relation if and only if for all s, t ∈ S,
sRt implies

• (Atomic harmony) `(s) = `(t),

• (Zig) if s r−→ s′ then there exists t′ ∈ S such that t r−→ t′ and s′Rt′, and

• (Zag) if t r−→ t′ then there exists s′ ∈ S such that s r−→ s′ and s′Rt′. N

We say that s, t ∈ S are weighted bisimilar, written s ∼W t, if and only
if there exists a weighted bisimulation relation R such that sRt. Weighted
bisimilarity, ∼W , is the largest weighted bisimulation relation.

Since it is our goal to abstract away from the exact weights on the tran-
sitions, the bisimulation that we will now introduce does not impose the
classical zig-zag conditions [3] of a bisimulation relation, but instead require
that bounds be matched for any bisimulation class.

Definition A.2.7. Given a WTS M = (S,→, `), an equivalence relation R ⊆
S× S on S is called a generalised weighted bisimulation relation if and only if for
all s, t ∈ S, sRt implies

• (Atomic harmony) `(s) = `(t),

• (Lower bound) θ− (s) (T) = θ− (t) (T), and

• (Upper bound) θ+ (s) (T) = θ+ (t) (T)

for any R-equivalence class T ⊆ S. N
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Given s, t ∈ S we say that s and t are generalized weighted bisimilar,
written s ∼ t, if and only if there exists a generalised weighted bisimulation
relation R such that sRt. We let ∼ denote generalised weighted bisimilarity
which is defined as

∼ =
⋃
{R | R is a generalised weighted bisimulation relation} .

We will now show that generalised weighted bisimilarity, ∼, is the largest
generalised weighted bisimulation relation. To this end, we first need to show
that ∼ is an equivalence relation.

Lemma A.2.8. Generalised weighted bisimilarity, ∼, is an equivalence relation.

Proof. In order to prove that generalised weighted bisimilarity is an equiva-
lence relation, we have to show that it is reflexive, symmetric and transitive.

Reflexivity Consider the identity relation

I = {(s, s) | s ∈ S for some WTSM = (S,→, `)} .

It is trivial to verify that I is a generalised weighted bisimulation rela-
tion, and therefore I ⊆ ∼.

Symmetry Let M = (S,→, `) be a WTS and s, t ∈ S states such that s ∼ t.
Because s ∼ t there must exist a generalised weighted bisimulation
relation R such that sRt. Let R′ = {(t, s) | (s, t) ∈ R}. R′ is clearly
also a generalised weighted bisimulation relation implying R′ ⊆ ∼
and therefore t ∼ s.

Transitivity Let M = (S,→, `) be a WTS and s, t, u ∈ S states such that
s ∼ t and t ∼ u. There must exist generalised weighted bisimulation
relationsR andR′ such that sRt and tR′u. Let R′′ = (R∪R′)+ be the
transitive closure of the union of R and R′. Since R and R′ are both
equivalence relations, R∪R′ is reflexive and symmetric, and since the
transitive closure of a symmetric and reflexive relation is symmetric
and reflexive, we get that R′′ is an equivalence relation. We need to
show that R′′ is a generalised weighted bisimulation relation. Atomic
harmony is trivially satisfied.

Suppose that θ (u) (T′′) 6= ∅ for some T′′ ∈ S/R′′ implying the exis-
tence of a state u′ ∈ T′′ such that θ (u) ({u′}) 6= ∅, further implying the
existence of an equivalence class T′ ∈ S/R′ such that u′ ∈ T′ and thus
θ (u) (T′) 6= ∅. tR′u implies θ (t) (T′) 6= ∅ which further implies the
existence of a state t′ ∈ T′ such that θ (t) ({t′}) 6= ∅. There must exist
an equivalence class T ∈ S/R such that t′ ∈ T implying θ (t) (T) 6= ∅.
Because sRt we must have θ (s) (T) 6= ∅ implying the existence of a
state s′ ∈ T such that θ (s) ({s′}) 6= ∅. s′, t′ ∈ T implies s′Rt′, t′, u′ ∈ T′
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implies t′R′u′, and therefore s′R′′u′ implying s′ ∈ T′′ which further
implies θ (s) (T′′) 6= ∅. Therefore θ (u) (T′′) 6= ∅ implies θ (s) (T′′) 6= ∅
for all T′′ ∈ S/R′′. Symmetric arguments show that θ (s) (T′′) 6= ∅ im-
plies θ (u) (T′′) 6= ∅ for all T′′ ∈ S/R′′, and therefore θ (s) (T′′) = ∅ if
and only if θ (u) (T′′) = ∅ for all T′′ ∈ S/R′′.
Suppose towards a contradiction that θ− (s) (T′′) 6= θ− (u) (T′′) for
some T′′ ∈ S/R′′. We have two cases to consider, namely

θ− (s)
(
T′′
)
< θ− (u)

(
T′′
)

and θ− (s)
(
T′′
)
> θ− (u)

(
T′′
)

.

If θ− (s) (T′′) < θ− (u) (T′′) there must exist a rational number q ∈ Q

such that θ− (s) (T′′) < q < θ− (u) (T′′), implying the existence of a
state s′ ∈ T′′ such that θ− (s) (T′′) ≤ θ− (s) ({s′}) < q. There must
exist T ∈ S/R such that s′ ∈ T implying θ− (s) (T) < q. Because
sRt we must have θ− (s) (T) = θ− (t) (T) implying the existence of a
state t′ ∈ T such that θ− (t) ({t′}) < q. There must exist T′ ∈ S/R′
such that t′ ∈ T′ implying θ− (t) (T′) < q. Because tR′u we must
have θ− (t) (T′) = θ− (u) (T′) implying the existence of a state u′ ∈ T′

such that θ− (u) ({u′}) < q. s′, t′ ∈ T implies s′Rt′, t′, u′ ∈ T′ im-
plies t′Ru′, and therefore s′R′′u′, implying u′ ∈ T′′ and therefore
θ− (u) (T′′) < q, leading to a contradiction. Symmetric arguments show
that also θ− (s) (T′′) > θ− (u) (T′′) leads to a contradiction and there-
fore θ− (s) (T) = θ− (u) (T) for any T ∈ S/R′′.
Similar arguments show that θ+ (s) (T) = θ+ (u) (T) for any T ∈ S/R′′
thus showing that R′′ is a generalised weighted bisimulation relation
implying R′′ ⊆ ∼ and therefore s ∼ t and t ∼ u implies s ∼ u. �

Having established that ∼ is an equivalence relation, we will now show
that it is indeed the largest generalised weighted bisimulation relation.

Theorem A.2.9. Generalised weighted bisimilarity, ∼, is the largest generalised
weighted bisimulation relation.

Proof. We first show that ∼ is a generalised weighted bisimulation relation.
By Lemma A.2.8 we know that ∼ is an equivalence relation. LetM = (S,→
, `) be a WTS and s, t ∈ S states such that s ∼ t. There must exist a gener-
alised weighted bisimulation relationR such that sRt, which trivially verifies
atomic harmony.

Suppose that θ (t) (T) 6= ∅ for some T ∈ S/∼, implying the existence of a
state t′ ∈ T such that θ (t) ({t′}) 6= ∅. There must exist an equivalence class
T′ ∈ S/R such that t′ ∈ T′, which implies that θ (t) (T′) 6= ∅. Because sRt we
must have θ (s) (T′) 6= ∅, implying the existence of a state s′ ∈ T′ such that
θ (s) ({s′}) 6= ∅. Because s′, t′ ∈ T′ we must have s′Rt′ and hence s′ ∼ t′, so
s′ ∈ T and thus θ (s) (T) 6= ∅. Symmetric arguments show that θ (s) (T) 6= ∅
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s{a}

s′{b}

t {a}

t′ {b}

1 2 3 1 3

Figure A.2.2: s ∼ t but s 6∼W t.

implies θ (t) (T) 6= ∅ and therefore θ (s) (T) = ∅ if and only if θ (t) (T) = ∅
for all T ∈ S/∼.

Suppose θ− (s) (T) 6= θ− (t) (T) for some T ∈ S/∼. We have two cases
to consider, namely θ− (s) (T) < θ− (t) (T) and θ− (s) (T) > θ− (t) (T). If
θ− (s) (T) < θ− (t) (T) there must exist a rational number q ∈ Q such that
θ− (s) (T) < q < θ− (t) (T), implying the existence of a state s′ ∈ T such that
θ− (s) (T) ≤ θ− (s) ({s′}) < q. There must exist T′ ∈ S/R such that s′ ∈ T′

and hence θ− (s) (T′) < q. Because sRt we have θ− (s) (T′) = θ− (t) (T′),
which means that there exists a state t′ ∈ T′ such that θ− (t) ({t′}) < q. s′, t′ ∈
T′ implies s′Rt′ which further implies s′ ∼ t′ and therefore θ− (t) (T) < q,
leading to a contradiction. Symmetric arguments show that also θ− (s) (T) >
θ− (t) (T) leads to a contradiction, and therefore θ− (s) (T) = θ− (t) (T) for
all T ∈ S/∼.

Similar arguments show that θ+ (s) (T) = θ+ (t) (T) for any T ∈ S/∼,
thus showing that ∼ is a generalised weighted bisimulation relation.
∼ was defined as the union of all generalised weighted bisimulation rela-

tions, so for any generalised weighted bisimulation relation R we must have
R ⊆ ∼, and hence we conclude that ∼ is the largest generalised weighted
bisimulation relation. �

In what follows, we will use bisimulation to mean generalised weighted
bisimulation and bisimilarity to mean generalised weighted bisimilarity.

Example A.2.10. Consider the WTS depicted in Figure A.2.2. It is easy to see
that {s′, t′} is a ∼-equivalence class, and in fact it is the only ∼-equivalence
class with in-going transitions. Since θ− (s) ({s′, t′}) = θ− (t) ({s′, t′}) = 1
and θ+ (s) ({s′, t′}) = θ+ (t) ({s′, t′}) = 3 we must have s ∼ t, but because

s 2−→ s′ and t 6 2−→ it cannot be the case that s ∼W t. �

The following lemma shows that if two states are weighted bisimilar, then
their image sets match exactly for any weighted bisimulation class.

Lemma A.2.11. LetM = (S,→, `) be a WTS and let s, t ∈ S. s ∼W t implies that
θ (s) (T) = θ (t) (T) for any ∼W-equivalence class T ⊆ S.
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Proof. Assume s ∼W t and let T ⊆ S be a ∼W-equivalence class. If r ∈
θ (s) (T), then there exists some s′ ∈ T such that s r−→ s′. Because s ∼W t,
there must exist some t′ ∈ T such that t r−→ t′ and s′ ∼W t′. Since T is a ∼W-
equivalence class, this means that r ∈ θ (t) (T). A similar argument shows
that if r ∈ θ (t) (T), then r ∈ θ (s) (T). �

We can now show the following relationship between ∼ and ∼W .

Theorem A.2.12. Generalised weighted bisimilarity is coarser than weighted bisim-
ilarity, i.e.

∼W ⊆ ∼ and ∼W 6= ∼ .

Proof. Assume that s ∼W t. We have that `(s) = `(t), and by Lemma A.2.11,
we have that θ (s) (T) = θ (t) (T) for any ∼W-equivalence class T ⊆ S. This
implies in particular that θ− (s) (T) = θ− (t) (T) and θ+ (s) (T) = θ+ (t) (T).
Hence ∼W is a bisimulation relation.

By Example A.2.10, the inclusion is strict. �

This result is not surprising, as our bisimulation relation only looks at the
extremes of the transition weights, whereas weighted bisimulation looks at
all of the transition weights.

A.3 Logic

In this section we introduce a modal logic which is inspired by Markovian
logic [30]. Our aim is that our logic should be able to capture the notion of
bisimilar states as presented in the previous section, and as such it must be
able to reason about the lower and upper bounds on transition weights.

Definition A.3.1. The formulas of the logic L are induced by the abstract
syntax

L : ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lr ϕ | Mr ϕ

where r ∈ Q≥0 is a non-negative rational number and p ∈ AP is an atomic
proposition. N

Lr and Mr are modal operators. An illustration of how Lr and Mr are
interpreted can be seen in Figure A.3.1. Intuitively, Lr ϕ means that the cost
of transitions to where ϕ holds is at least r (see Figure A.3.1a), and Mr ϕ means
that the cost of transitions to where ϕ holds is at most r (see Figure A.3.1b).
We now give the precise semantics interpreted over WTSs.
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θ (s) (JϕK)

r
θ− θ+

(a)M, s |= Lr ϕ

θ (s) (JϕK)

r
θ− θ+

(b)M, s |= Mr ϕ

Figure A.3.1: The semantics of Lr and Mr . IfM, s |= Lr ϕ, then r is to the left of θ− (s) (JϕK), and
ifM, s |= Mr ϕ, then r is to the right of θ+ (s) (JϕK).

Definition A.3.2. Given a WTS M = (S,→, `), a state s ∈ S and a formula
ϕ ∈ L, the satisfiability relation |= is defined inductively as

M, s |= p iff p ∈ `(s),
M, s |= ¬ϕ iff M, s 6|= ϕ,
M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ,
M, s |= Lr ϕ iff θ− (s) (JϕKM) ≥ r,
M, s |= Mr ϕ iff θ+ (s) (JϕKM) ≤ r,

where JϕKM = {s ∈ S | M, s |= ϕ} is the set of all states of M having the
property ϕ. N

We will omit the subscript M from JϕKM whenever the model is clear
from the context. If M, s |= ϕ we say that M is a model of ϕ. A formula is
said to be satisfiable if it has at least one model. We say that ϕ is a validity and
write |= ϕ if ¬ϕ is not satisfiable. In addition to the operators defined by the
syntax of L, we also have the derived operators such as ⊥, →, etc. defined
in the usual way. A literal is a formula that is of the form p or ¬p where
p ∈ AP .

The formula L0 ϕ has special significance in our logic, as this formula
means that there exists some transition to where ϕ holds. In fact, it follows
in a straightforward manner from the semantics that M, s |= L0 ϕ if and
only if θ (s) (JϕK) 6= ∅. We can therefore encode the usual box and diamond
modalities in our logic in the following way.

♦ϕ = L0 ϕ �ϕ = ¬♦¬ϕ.

Notice also that in general, the following schemes do not hold.

Lr ϕ ∧ Lrψ→ Lr(ϕ ∧ ψ)

Mr ϕ ∧Mrψ→ Mr(ϕ ∧ ψ)

The reason that they do not hold in general is that there may be no transition
to where ϕ ∧ ψ holds, i.e. ¬L0(ϕ ∧ ψ). If we assume L0(ϕ ∧ ψ), then both
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schemes hold, as we show in Lemma A.4.1. Another thing to note about the
logic is that the formulas Lr ϕ and Lr¬ϕ can both hold in the same model. To
see this, simply construct a state that has two transitions with weight x ≥ r
to two different states, one where ϕ holds and one where ϕ does not hold.

Example A.3.3. Consider again our model of a robot vacuum cleaner de-
picted in Figure A.2.1. Perhaps we want a guarantee that it takes no more
than one time unit to go from a waiting state to a charging state. This
can be expressed by the formula waiting → M1charging, but since we
know the only waiting state in our model is s1 this can be simplified to
simply checking whether M, s1 |= M1charging. We thus have to check
that θ+ (s1) (JchargingK) ≤ 1. We do this by constructing the image set
θ (s1) (JchargingK). Since we have JchargingK = {s3}, it follows that

θ (s1) (JchargingK) = {1, 2}.

Hence
θ+ (s1) (JchargingK) = 2 6≤ 1,

soM, s1 6|= M1charging. �

Lemma A.3.4. LetM = (S,→, `) be an image-finite WTS and s ∈ S. Let T ⊆ S
be a set such that all elements of T satisfy exactly the same formulas, and furthermore
for any t ∈ T and t′ /∈ T, there exists a formula ϕ such that t |= ϕ and t′ 6|= ϕ.
Then there exists a formula ϕ ∈ L such that θ (s) (T) = θ (s) (JϕK).

Proof. The idea of the proof is to repeatedly use the observation that if t′ /∈ T,
then there exists a formula ϕ such that t′ 6|= ϕ and t |= ϕ for all t ∈ T.
First pick some formula ϕ1 such that t |= ϕ1 for all t ∈ T. Then T ⊆ Jϕ1K,
so θ (s) (T) ⊆ θ (s) (Jϕ1K). If θ (s) (T) ( θ (s) (Jϕ1K), then there must exist
some t1 /∈ T such that s r−→ t1 and t1 |= ϕ1. Since t1 /∈ T, there must exist
some formula ϕ2 such that t1 6|= ϕ2 and t |= ϕ2 for all t ∈ T. We then get
θ (s) (T) ⊆ θ (s) (Jϕ1 ∧ ϕ2K). Again, if θ (s) (T) ( θ (s) (Jϕ1 ∧ ϕ2K), then there
must exist some t2 /∈ T such that s r−→ t2 and t2 |= ϕ2. Since t2 /∈ T, there
must exist some formula ϕ3 such that t1 6|= ϕ3 and t |= ϕ3 for all t ∈ T. Since
M is image-finite, there can only be finitely many states ti /∈ T with s r−→ ti,
so continuing in the same way, we will eventually get a formula ϕ1 ∧ · · · ∧ ϕn
such that θ (s) (T) = θ (s) (Jϕ1 ∧ · · · ∧ ϕnK). �

Next we show that our logic L is invariant under bisimulation, which is
also known as the Hennessy-Milner property. In order to prove this result,
we have to restrict our models to only those that are image-finite, as shown
by the following example.
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Figure A.3.2: s and t satisfy the same logical formulas, but s 6∼ t.
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Example A.3.5. Consider the WTS depicted in Figure A.3.2 with state space
S = N ∪ {ω, s, t} and `(s′) = ∅ for all s′ ∈ S. The transition relation is given

by ω
0−→ ω, s 2−→ ω, t 3−→ ω, and n + 1 0−→ n, s 1−→ n, and t 1−→ n for all n ∈N.

Then we have that s1 ∼ s2 if and only if s1 = s2, since any states in
N∪{ω} can be distinguished by the number of steps they can take, and s and
t can be distinguished by the fact that θ− (s) ({ω}) = 2 6= 3 = θ− (t) ({ω}).
However, s and t satisfy all the same formulas, since any formula that holds
in ω will also hold in n for some n ∈ N, and the weights on the transitions
to ω will therefore be masked by the bounds 1 and 4, and hence any formula
can not distinguish between s and t. �

The proof strategy follows a classical pattern: The left to right direction is
shown by induction on ϕ for ϕ ∈ L. The right to left direction is shown by
constructing a relation R relating those states that satisfy the same formulas
and showing that this relation is a bisimulation relation.

Theorem A.3.6 (Bisimulation invariance). For any WTS M = (S,→, `) and
states s, t ∈ S it holds that

s ∼ t implies [∀ϕ ∈ L.M, s |= ϕ iff M, t |= ϕ] .

Furthermore, ifM is image-finite, then it also holds that

[∀ϕ ∈ L.M, s |= ϕ iff M, t |= ϕ] implies s ∼ t.

Proof. We first show that s ∼ t implies M, s |= ϕ if and only if M, t |= ϕ
for all ϕ ∈ L by induction on ϕ. The Boolean cases are trivial. If ϕ =
Lrψ, then we have θ− (s) (JψK) ≥ r, which implies that θ− (s) (JψK) 6= −∞.
Assume towards a contradiction that θ− (t) (JψK) < r. It can not be the case
that θ− (t) (JψK) = −∞, hence it follows that JψK and θ (t) (JψK) are non-
empty, so there must exist some element t′ ∈ JψK such that θ− (t) (JψK) ≤
θ− (t) ({t′}) < r. Since ∼ is an equivalence relation, there must exists some
∼-equivalence class T such that t′ ∈ T. This means that {t′} ⊆ T, so that
also θ− (t) (T) ≤ θ− (t) ({t′}) < r. By the induction hypothesis we have that
T ⊆ JψK. Because s ∼ t, we have that θ− (s) (T) = θ− (t) (T) < r, so by
monotonicity we get θ− (s) (JψK) ≤ θ− (s) (T) < r, which is a contradiction.
The Mr case is handled similarly.

For the reverse direction, assume thatM is image-finite. We have to show
that if for all ϕ ∈ L,M, s |= ϕ if and only ifM, t |= ϕ then s ∼ t. To this end,
we define a relation R on S as

R = {(s, t) ∈ S× S | ∀ϕ ∈ L.M, s |= ϕ iffM, t |= ϕ} .

R is clearly an equivalence relation and sRt.
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It is clear that `(s) = `(t). Next we show that θ− (s) (T) = θ− (t) (T) and
θ+ (s) (T) = θ+ (t) (T) for any R-equivalence class T. Let T ⊆ S be an R-
equivalence class. We first show that θ (s) (T) = ∅ if and only if θ (t) (T) = ∅.
Assume that θ (s) (T) = ∅. By Lemma A.3.4 there exists a formula ϕ such
that θ (s) (T) = θ (s) (JϕK) = ∅, and therefore s 6|= L0 ϕ. Now assume towards
a contradiction that θ (t) (T) 6= ∅. Since M is image-finite, there must be a
finite subset T′ ⊆ T such that θ (t) (T) = θ (t) (T′). By Lemma A.2.5, we then
get θ (t) (T) =

⋃
t′∈T′ θ (t) ({t′}) 6= ∅, from which it follows that there must

be some t′ ∈ T′ such that θ (t) ({t′}) 6= ∅. Since t′ ∈ T, we must have t′ |= ϕ,
and therefore t |= L0 ϕ, which contradicts the fact that sRt and s 6|= L0 ϕ.

Now assume that θ (s) (T) 6= ∅ and θ (t) (T) 6= ∅. We need to show
that θ− (s) (T) = θ− (t) (T) and θ+ (s) (T) = θ+ (t) (T). We do this by con-
tradiction, which gives us four cases to consider: θ− (s) (T) < θ− (t) (T),
θ− (s) (T) > θ− (t) (T), θ+ (s) (T) < θ+ (t) (T), and θ+ (s) (T) > θ+ (t) (T).

For the case of θ− (s) (T) < θ− (t) (T), there exists q ∈ Q≥0 such that

θ− (s) (T) < q < θ− (t) (T) .

By Lemma A.3.4, there exists a formula ϕ such that θ− (t) (T) = θ− (t) (JϕK).
Since T ⊆ JϕK, we then obtain

θ− (s) (JϕK) ≤ θ− (s) (T) < q < θ− (t) (T) = θ− (t) (JϕK) ,

which implies that s 6|= Lq ϕ but t |= Lq ϕ, and thus we get a contradiction.
The other cases are handled similarly. �

A.4 Metatheory

In this section we propose an axiomatisation for our logic that we prove not
only sound, but also complete with respect to the proposed semantics.

A.4.1 Axiomatic System

Let r, s ∈ Q≥0. Then the deducibility relation `⊆ 2L × L is a classical con-
junctive deducibility relation, and is defined as the smallest relation which
satisfies the axioms of propositional logic in addition to the axioms given in
Table A.4.1. We will write ` ϕ to mean ∅ ` ϕ, and we say that a formula or a
set of formulas is consistent if it can not derive ⊥.

The axioms presented in Table A.4.1 bear some resemblance to the ax-
iomatic systems of [30] and [5]. Notably, our axiom A2 is almost identical
to A2 of these works and capture similar properties about the systems be-
ing studied, with the major difference being that we reason about transition
weights whereas the aforementioned works reason about rates or probabili-
ties of transitions. Also worth noting here is the similarity between the rule
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(A1): ` ¬L0⊥
(A2): ` Lr+q ϕ→ Lr ϕ if q > 0
(A2′): ` Mr ϕ→ Mr+q ϕ if q > 0
(A3): ` Lr ϕ ∧ Lqψ→ Lmin{r,q}(ϕ ∨ ψ)

(A3′): ` Mr ϕ ∧Mqψ→ Mmax{r,q}(ϕ ∨ ψ)

(A4): ` Lr(ϕ ∨ ψ)→ Lr ϕ ∨ Lrψ
(A5): ` ¬L0ψ→ (Lr ϕ→ Lr(ϕ ∨ ψ))
(A5′): ` ¬L0ψ→ (Mr ϕ→ Mr(ϕ ∨ ψ))
(A6): ` Lr+q ϕ→ ¬Mr ϕ if q > 0
(A7): ` Mr ϕ→ L0 ϕ
(R1): ` ϕ→ ψ =⇒ ` (Lrψ ∧ L0 ϕ)→ Lr ϕ
(R1′): ` ϕ→ ψ =⇒ ` (Mrψ ∧ L0 ϕ)→ Mr ϕ
(R2): ` ϕ→ ψ =⇒ ` L0 ϕ→ L0ψ

Table A.4.1: The axioms for our axiomatic system, where ϕ, ψ ∈ L and q, r ∈ Q.

R1 of these works and R1 of our axiomatic system. A notable difference is
that we do not have the additive properties of measures for disjoint sets (since
we are not working with probability measures), as is captured by the axioms
A3 and A4 of these works. Also, in one of the axiomatisations of [30], the
axioms A2 and A2′ are not axioms, but can be derived from the axioms.

Rules R2 and R3 of [30] and [5] reflect the Archimedean property of ra-
tionals, and while similar axioms can be proven sound in our setting, these
were not needed to show our completeness result. We suspect, however, that
if we were to pursue strong completeness, infinitary axioms similar to these
would be needed.

Axiom A1 captures the notion that since ⊥ is never satisfied, we can never
take a transition to where ⊥ holds. Axiom A2 says that if we know some
value is the lower bound for going to where ϕ holds, then any lower value is
also a lower bound for going to where ϕ holds. Axiom A2′ is the analogue
for upper bounds. Axioms A3-A4 show how Lr and Mr distribute over con-
junction and disjunction. The version of axiom A4 where Lr is replaced with
Mr is also sound, but as we show in Lemma A.4.1, it can be proven from
the other axioms. Axioms A5 and A5′ say that if it is not possible to take
a transition to where ψ holds, then including the states where ψ holds does
not change the bounds. Axioms A6 and A7 show the relationship between
Lr and Mr. In particular, A6 ensures that all bounds are well-formed. Notice
also that the contrapositive of axiom A2 and A7 together gives us that ¬L0 ϕ
implies ¬Lr ϕ and ¬Mr ϕ for any r ∈ Q≥0. The rules R1 and R1′ give a sort of
monotonicity for Lr and Mr, and rule R2 says that if ψ follows from ϕ, then
if it is possible to take a transition to where ϕ holds, it is also possible to take
a transition to where ψ holds.
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We now show some of the theorems which can be deduced from the
axioms. T1, T1′, and T5 together complete the distributivity properties for
conjunction and disjunction. T2 and T2′ make precise the intuitively clear
idea that if two formulas are equivalent, then their upper and lower bounds
should also be the same. T3 extends axiom A1 to hold for any r ≥ 0, and T4
then extends this to any ϕ which implies ⊥.

Lemma A.4.1. From the axioms listed in Table A.4.1 we can derive the following
theorems:

(T1): ` (Lr ϕ ∧ Lqψ ∧ L0(ϕ ∧ ψ))→ Lmax{r,q}(ϕ ∧ ψ)

(T1′): ` (Mr ϕ ∧Mqψ ∧ L0(ϕ ∧ ψ))→ Mmin{r,q}(ϕ ∧ ψ)

(T2): ` ϕ↔ ψ =⇒ ` Lr ϕ↔ Lrψ
(T2′): ` ϕ↔ ψ =⇒ ` Mr ϕ↔ Mrψ
(T3): ` ¬Lr⊥, r ≥ 0
(T4): ` ϕ→ ⊥ =⇒ ` ¬Lr ϕ, r ≥ 0
(T5): ` Mr(ϕ ∨ ψ)→ Mr ϕ ∨Mrψ

Proof.

T1 Rule R1 implies

` ¬Lq(ϕ ∧ ψ)→ (¬Lq ϕ ∨ ¬L0(ϕ ∧ ψ)),

so also
` ¬Lq(ϕ ∧ ψ)→ (¬Lq ϕ ∨ ¬L0(ϕ ∧ ψ) ∨ ¬Lrψ).

This is equivalent to

` (Lr ϕ ∧ Lqψ ∧ L0(ϕ ∧ ψ))→ Lq(ϕ ∧ ψ).

T1′ Similar to T1.

T2 Suppose ` ϕ ↔ ψ. We have that ` Lr ϕ → L0 ϕ by A2 and ` L0 ϕ → L0ψ
by R2. Hence ` Lr ϕ → (Lr ϕ ∧ L0ψ), so ` Lr ϕ → Lrψ by R1. A similar
argument shows that ` Lrψ→ Lr ϕ, so ` Lr ϕ↔ Lrψ.

T2′ Similar to T2.

T3 From axiom A1 we know that ` ¬L0⊥ which, by the contrapositive of
A2, implies ` ¬Lr⊥ for any r > 0.

T4 Suppose ` ϕ → ⊥. We know for any ψ ∈ L that ` ⊥ → ψ and therefore
` ϕ → ⊥ =⇒ ` ϕ ↔ ⊥. From A1 we know that ` ¬L0⊥ and from T3
that ` ¬Lr⊥ for any r > 0 implying, by T2, that ` ¬Lr ϕ for any r ≥ 0.

T5 By axiom A7 we get ` Mr(ϕ ∨ ψ)→ L0(ϕ ∨ ψ) and A4 gives

` L0(ϕ ∨ ψ)→ L0 ϕ ∨ L0ψ.
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Hence we get ` Mr(ϕ ∨ ψ)→ (Mr(ϕ ∨ ψ) ∧ L0 ϕ) ∨ (Mr(ϕ ∨ ψ) ∧ L0ψ).
Since ` ϕ→ (ϕ ∨ ψ) and ` ψ→ (ϕ ∨ ψ), rule R1′ then gives

` Mr(ϕ ∨ ψ)→ Mr ϕ ∨Mrψ. �

Next we prove that our axioms are indeed sound.

Theorem A.4.2 (Soundness).

` ϕ implies |= ϕ.

Proof. The soundness of each axiom is easy to show, and many of them use
the distributive property from Lemma A.2.5. Here we prove the soundness
for a few of the more interesting axioms.

A3 Suppose M, s |= Lr ϕ ∧ Lqψ implying that M, s |= Lr ϕ and M, s |= Lqψ,
implying further that θ− (s) (JϕK) ≥ r and θ− (s) (JψK) ≥ q.

By Lemma A.2.5 we must have that

θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK∪ JψK) = θ (s) (JϕK) ∪ θ (s) (JψK)

and because θ− (s) (JϕK) ≥ r and θ− (s) (JψK) ≥ q we must have

θ− (s) (Jϕ ∨ ψK) = inf θ (s) (JϕK) ∪ θ (s) (JψK) ≥ min {r, q}

implyingM, s |= Lmin{r,q}(ϕ ∨ ψ).

A4 SupposeM, s |= Lr(ϕ ∨ ψ) implying that

θ− (s) (Jϕ ∨ ψK) = inf θ (s) (JϕK) ∪ θ (s) (JψK) ≥ r.

This implies that at least one of θ (s) (JϕK) and θ (s) (JψK) is non-empty.
If θ (s) (JϕK) 6= ∅, then θ− (s) (JϕK) ≥ r, and also if θ (s) (JψK) 6= ∅, then
θ− (s) (JψK) ≥ r, so at least one of M, s |= Lr ϕ and M, s |= Lrψ must
hold. HenceM, s |= Lr ϕ ∨ Lrψ.

A6 SupposeM, s |= Lr+q ϕ implying that

θ− (s) (JϕK) = inf θ (s) (JϕK) ≥ r + q.

It is clear that inf θ (s) (JϕK) ≤ sup θ (s) (JϕK), so

θ+ (s) (JϕK) = sup θ (s) (JϕK) ≥ inf θ (s) (JϕK) ≥ r + q > r.

Therefore, it cannot be the case that M, s |= Mr ϕ and thus M, s |=
¬Mr ϕ.
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R1 Suppose |= ϕ → ψ implying that JϕK ⊆ JψK, implying further, by the
monotonicity of θ, that θ (s) (JϕK) ⊆ θ (s) (JψK). Suppose further that
M, s |= Lrψ ∧ L0 ϕ implying M, s |= Lrψ and M, s |= L0 ϕ, implying
further that

θ− (s) (JψK) = inf θ (s) (JψK) ≥ r and θ (s) (JϕK) 6= ∅.

Since θ (s) (JϕK) is non-empty, we then get that

inf θ (s) (JϕK) ≥ inf θ (s) (JψK) ≥ r,

which means thatM, s |= Lr ϕ. �

A.4.2 Finite Model Property and Completeness

With our axiomatisation proven sound we are now ready to present our main
results, namely that our logic has the finite model property and that our
axiomatisation is complete.

To show the finite model property we will adapt the classical filtration
method to our setting. Starting from an arbitrary formula ρ, we define a
finite fragment of our logic, L[ρ], which we then use to construct a finite
model for ρ. The main difference from the classical filtration method is that
we must find an upper and a lower bound for the transitions in the model.
For an arbitrary formula ρ ∈ L we define the following based on ρ:

• Let Qρ ⊆ Q≥0 be the set of all rational numbers r ∈ Q≥0 such that Lr
or Mr appears in the syntax of ρ.

• Let Σρ be the set of all atomic propositions p ∈ AP such that p appears
in the syntax of ρ.

• The granularity of ρ, denoted as gr(ρ), is the least common denominator
of all the elements in Qρ.

• The range of ρ, denoted as Rρ, is defined as

Rρ =

{
∅ if Qρ = ∅
Iρ ∪ {0} otherwise,

where Iρ =
{

q ∈ Q≥0 | ∃j ∈N. q = j
gr(ρ) and min Qρ ≤ q ≤ max Qρ

}
.

Here the granularity is used to pick out finitely many numbers in the
interval. Note that we need to add 0 to Rρ whether or not ρ actually
contains 0 in any of its modalities. This is because, as we have pointed
out before, formulas involving L0 have special significance in our logic.
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• The modal depth of ρ, denoted as md(ρ), is defined inductively as:

md(ρ) =


0 if ρ = p ∈ AP
md(ϕ) if ρ = ¬ϕ

max {md(ϕ1), md(ϕ2)} if ρ = ϕ1 ∧ ϕ2

1 + md(ϕ) if ρ = Lr ϕ or ρ = Mr ϕ.

Since all formulas are finite, the modal depth is always a non-negative integer.
The language of ρ, denoted by L[ρ], is defined as

L[ρ] = {ϕ ∈ L | Rϕ ⊆ Rρ, md(ϕ) ≤ md(ρ) and Σϕ ⊆ Σρ},

and we take L↔[ρ] to be the Lindenbaum algebra of L[ρ], i.e. the quotient
with respect to logical equivalence. The Lindenbaum algebra is a Boolean
algebra with equivalence classes as elements. Note that the quotient

h : L[ρ]→ L↔[ρ]

is a homomorphism between Boolean algebras, and therefore preserves the
structure of L[ρ]. For each element x ∈ L↔[ρ], we fix now a formula ϕ ∈ x
to be the representative of that equivalence class, and we write ϕ̂ for x. The
order ≤ in L↔[ρ] is then given by ϕ̂ ≤ ψ̂ if and only if ` ϕ → ψ. The join
and meet in L↔[ρ] are given by

ϕ̂ ∨ ψ̂ = h(ϕ ∨ ψ) ϕ̂ ∧ ψ̂ = h(ϕ ∧ ψ),

and complement is given by

¬ϕ̂ = h(¬ϕ).

Note here the difference between h(ϕ) and ϕ̂. The quotient h sends ϕ to
its equivalence class x ∈ L↔[ρ]. However, it may be the case that ϕ is not
the representative for x, but some other formula ψ is. In that case we have
h(ϕ) = x = ψ̂. On the other hand, ϕ̂ denotes both that ϕ ∈ ϕ̂, and also that
ϕ is the chosen representative of its equivalence class, which ensures that in
this case we have h(ϕ) = ϕ̂.

The idea is that Σρ ensures that only finitely many atomic propositions are
used, Rρ ensures that only finitely many weights on the modalities are used,
and md(ρ) puts a bound on the modal depth of formulas. The language L[ρ]
itself is not finite, but contains only finitely many logically non-equivalent
formulas. Hence L↔[ρ] must be finite, and as we shall see, it contains all the
information necessary to construct a model for ρ.

Proposition A.4.3. The language L↔[ρ] is finite.
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Proof. Let Ln
↔[ρ] be the subset of L↔[ρ] which only contains formulas of

modal depth n. Then it is clear that

L↔[ρ] =
md(ρ)⋃

i=0

Li
↔[ρ].

We will now prove by induction on the modal depth that for each i, Li
↔[ρ] is

finite.
i = 0: In this case, each element of L0

↔[ρ] is a Boolean combination of

atomic propositions in Σρ. There are 22|Σρ | non-equivalent such formulas, so
this set is finite.

i > 0: Each element of Li
↔[ρ] is a Boolean combination of formulas of

the form Lr ϕ and Mr ϕ, where ϕ ∈ Lj
↔[ρ] for some j < i and r ∈ Rρ. By

induction hypothesis, we know that there are only finitely many such ϕ. We
know from Lemma A.4.1 that if ϕ and ψ are logically equivalent, then Lr ϕ
and Lrψ as well as Mr ϕ and Mrψ are also logically equivalent. Since Rρ is
finite, we conclude that Li

↔[ρ] is finite. �

In order to define the model, we need the standard notions of filters and
ultrafilters on Boolean algebras [15]. A non-empty subset of a Boolean alge-
bra B is called a filter if it is upward-closed with respect to the order, and
closed under finite meets. A filter F is proper if F 6= B. An ultrafilter is a
proper filter which is maximal in the sense of set inclusion.

The following property of ultrafilters is often useful.

Lemma A.4.4. For an ultrafilter F of L↔[ρ] it holds that for any ϕ ∈ L[ρ], either
h(ϕ) ∈ F or ¬h(ϕ) ∈ F, but not both.

We let U [ρ] denote the set of all ultrafilters on L↔[ρ]. Since L↔[ρ] is finite,
U [ρ] is also finite and consequently, any ultrafilter u ∈ U [ρ] must be a finite
set. For any set Φ ⊆ L↔[ρ], the characteristic formula of Φ, denoted LΦM, is
defined as

LΦM =
∧

ϕ̂∈Φ
ϕ.

Note that LΦM ∈ L[ρ] is a finite formula, and that if u ∈ U [ρ], then h(LuM) ∈ u.
We will now construct a (finite) model,Mρ, for ρ with state space U [ρ]. In

order to define the transition relation →ρ⊆ U [ρ]×R≥0 × U [ρ], we consider
any two ultrafilters u, v ∈ U [ρ] and define two functions

L, M : U [ρ]×U [ρ]→ 2Rρ

as

L(u, v) = {r | h(LrLvM) ∈ u} and M(u, v) = {s | h(MsLvM) ∈ u}.
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The following lemma establishes a relationship between L and M, that we
will need to define the transition relation. The lemma is a straightforward
consequence of axiom A7.

Lemma A.4.5. Given any ultrafilters u, v ∈ U [ρ], it can not be the case that
L(u, v) = ∅ and M(u, v) 6= ∅.

Proof. Assume towards a contradiction that L(u, v) = ∅ and M(u, v) 6= ∅.
Then there exists some r ∈ Qρ such that

h(¬L0LvM) ∈ u and h(MrLvM) ∈ u.

However, by axiom A7, this implies that h(L0LvM) ∈ u, which is a contradic-
tion. �

We can now define the transition relation in terms of L(u, v) and M(u, v).
In Figure A.4.1, we have illustrated the different cases that we must consider.
Here, the area between min Qρ and max Qρ is the only part that the restricted
language L[ρ] can speak about. The arches represent the interval within
which transitions with that weight are possible. For any of the arches in the
figure, we have the following correspondence with Lr and Mr.

• If a number r on the real line is contained within the arch, then we have
h(¬LrLvM) ∈ u and h(¬MrLvM) ∈ u.

• If a number r on the real line is to the left of the arch, then we have
h(LrLvM) ∈ u and h(¬MrLvM) ∈ u.

• If a number r on the real line is to the right of the arch, then we have
h(MrLvM) ∈ u and h(¬LrLvM) ∈ u.

In case (a) in Figure A.4.1, we therefore have L(u, v) 6= ∅ and M(u, v) 6= ∅,
so we have all the information we need to define the transition. In case (b)
and (f), we have L(u, v) 6= ∅ and M(u, v) = ∅, since there exist numbers
within the interval [min Qρ, max Qρ] that are to the left of these arches, but
none that are to the right. This means that we have enough information
to define the minimum transition, but we do not know what the maximum
transition is. Note that we can not simply say that the maximum transition
is max Qρ, because that would imply h(Mmax Qρ

LvM) ∈ u, but we know that
M(u, v) = ∅. Hence we need to pick a number that is to the right of max Qρ

as the maximum. In case (d), we have both L(u, v) = ∅ and M(u, v) = ∅. This
implies that h(¬L0LvM) ∈ u, which means that there should be no transition
from u to v. In case (c) and (e), we have L(u, v) = ∅ and M(u, v) 6= ∅, but
according to Lemma A.4.5 these cases can never occur.

We therefore distinguish the following three cases in order to define the
transition relation:
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0
min Qρ max Qρ

(a) (b)(c)

(d)

(e) (f)

Figure A.4.1: When constructing a transition from u to v, we will only have information about
what happens in the region Qρ and at 0. The line represents the non-negative real line and the
arches represent the transitions that would be possible in a full model (i.e. one not restricted
to L[ρ]). The dashed part of the arches represent the part of the transition that we do not have
information about.

1. If L(u, v) 6= ∅ and M(u, v) 6= ∅, then we add the two transitions u
r1−→ v

and u
r2−→ v where r1 = max L(u, v) and r2 = min M(u, v).

2. If L(u, v) 6= ∅ and M(u, v) = ∅, then we add the two transitions u
r1−→ v

and u
r2−→ v where r1 = max L(u, v) and r2 = max Qρ +

1
gr(ρ) .

3. If L(u, v) = ∅ and M(u, v) = ∅, then there is no transition from u to v.

The following lemma tells us that these transitions are well-formed, i.e. that
the lower bound on transitions is less than or equal to the upper bound.

Lemma A.4.6. For any ultrafilters u, v ∈ U [ρ], if L(u, v) 6= ∅ and M(u, v) 6= ∅,
then max L(u, v) ≤ min M(u, v).

Proof. Assume towards a contradiction that max L(u, v) > min M(u, v). Then
there exist q, q′ ∈ Qρ such that q > q′, h(LqLvM) ∈ u and h(Mq′LvM) ∈ u. Since
q > q′, axiom A6 gives h(¬Mq′LvM) ∈ u, which is a contradiction. �

Finally we define the labelling function `ρ : U [ρ] → 2AP for any u ∈ U [ρ]
as `ρ(u) = {p ∈ AP | p ∈ u}. We then have a model Mρ = (U [ρ],→ρ, `ρ),
and it is not difficult to prove that Mρ is a WTS. Before we can prove the
truth lemma, we need the following technical lemma.

Lemma A.4.7. For any consistent formula ϕ ∈ L[ρ], if [Mρ, u |= ϕ iff h(ϕ) ∈ u],
then ∨

v∈JϕK
h(LvM) ∈ u iff h(ϕ) ∈ u.

Proof. Suppose
∨

v∈JϕK h(LvM) ∈ u. Assume towards a contradiction that
h(¬LvM) ∈ u for all v ∈ JϕK. Then, since u is an ultrafilter, we must have∧

v∈JϕK h(¬LvM) ∈ u, which means that ¬∨v∈JϕK h(LvM) ∈ u, which is a contra-
diction. Hence there exists some v′ ∈ JϕK such that h(Lv′M) ∈ u. If ψ̂ ∈ v′,
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then ` Lv′M→ ψ, so ψ̂ ∈ u because u is an ultrafilter. Since v′ ∈ JϕK, we have
by assumption that h(ϕ) ∈ v′, so we get h(ϕ) ∈ u.

Suppose h(ϕ) ∈ u, which by assumption means that u ∈ JϕK, so

` LuM→
∨

v∈JϕK
LvM.

Since u is an ultrafilter, we have h(LuM) ∈ u, and hence
∨

v∈JϕK h(LvM) ∈ u. �

We are now in a position to state and prove the truth lemma, which says
that an ultrafilter satisfies a formula in our model if and only if that formula
is included in the ultrafilter.

Lemma A.4.8 (Truth lemma). If ρ ∈ L is a consistent formula, then for all ϕ ∈
L[ρ] and u ∈ U [ρ] we have

Mρ, u |= ϕ iff h(ϕ) ∈ u.

Proof. The proof is by induction on the structure of ϕ. The Boolean cases are
trivial. For the case ϕ = Lrψ, we proceed as follows.

( =⇒ ) Assume Mρ, u |= Lrψ, meaning that θ− (u) (JψK) ≥ r. It can not
be the case that θ (u) (JψK) = ∅, because otherwise θ− (u) (JψK) = −∞, and
we have assumed θ− (u) (JψK) ≥ r. It also can not be the case that JψK = ∅,
because otherwise θ (u) (JψK) = ∅. We can partition all the ultrafilters v ∈ JψK
as follows. Let E = {v ∈ JψK | L(u, v) = ∅} and N = {v ∈ JψK | L(u, v) 6= ∅}.
We then get that E ∩ N = ∅, E ∪ N = JψK, h(¬L0LvM) ∈ u for all v ∈ E, and
h(LrLvM) ∈ u for all v ∈ N. Because u is an ultrafilter, we then have

h

(∧
v∈E
¬L0LvM∧

∧
v∈N

LrLvM

)
∈ u.

By axiom A3, this implies

h

(∧
v∈E
¬L0LvM∧ Lr

∨
v∈N

LvM

)
∈ u.

Then axiom A5 gives

h

Lr
∨

v∈JψK
LvM

 ∈ u.

By the induction hypothesis, T2, and Lemma A.4.7, we then get h(Lrψ) ∈ u.
(⇐= ) Let h(Lrψ) ∈ u. It follows from A1, A2, and R2 that ψ is consistent.

Hence, by the induction hypothesis, JψK is non-empty. We first show that
θ (u) (JψK) 6= ∅. Assume therefore towards a contradiction that θ (u) (JψK) =
∅. Then for all v ∈ JψK, we must have that case 3 holds, and hence L(u, v) = ∅,
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meaning h(¬LrLvM) ∈ u for all v ∈ JψK. Since there are finitely many v ∈ JψK,
we can enumerate them as v1, v2, . . . , vn. Then, since u is an ultrafilter, we
have

h (¬LrLv1M∧ ¬LrLv2M∧ · · · ∧ ¬LrLvnM) ∈ u.

By De Morgan’s law, this is equivalent to

h (¬(LrLv1M∨ LrLv2M∨ · · · ∨ LrLvnM)) ∈ u.

The contrapositive of axiom A4 then gives that

h (¬Lr(Lv1M∨ Lv2M∨ · · · ∨ LvnM)) ∈ u,

and by the induction hypothesis, T2, and Lemma A.4.7, this is equivalent to
¬h(Lrψ) ∈ u, which is a contradiction.

Now assume towards a contradiction that θ− (u) (JψK) < r. Then there
exists some v ∈ JψK such that θ− (u) ({v}) < r and case 1 or case 2 holds.
In either case we have max L(u, v) < r and hence there exists some q ∈ Qρ

such that h(LqLvM) ∈ u, which implies h(L0LvM) ∈ u by axiom A2. By the
induction hypothesis, h(ψ) ∈ v, which means that ` LvM → ψ. rule R1 then
gives h(LrLvM) ∈ u, but this is a contradiction since max L(u, v) < r.

The Mr case is similar, using axiom A7 instead of A2 to derive h(L0ψ) ∈
u. �

Having established the truth lemma, we can now show that any consistent
formula is satisfied by some finite model.

Theorem A.4.9 (Finite model property). For any consistent formula ϕ ∈ L, there
exists a finite WTSM = (S,→, `) and a state s ∈ S such thatM, s |= ϕ.

Proof. Since ϕ ∈ L is consistent, h(ϕ) 6= h(⊥), and since L↔[ρ] is finite, there
must exist an ultrafilter u ∈ U [ρ] such that h(ϕ) ∈ u. By the truth lemma,
this means thatMϕ, u |= ϕ, and by construction,Mϕ is a finite model. �

We are now able to state and prove our main result, namely that our
axiomatisation is complete.

Theorem A.4.10 (Completeness). For any formula ϕ ∈ L, it holds that

|= ϕ implies ` ϕ.

Proof.
|= ϕ implies ` ϕ

is equivalent to
6` ϕ implies 6|= ϕ,

which is equivalent to

the consistency of ¬ϕ implies the existence of a model for ¬ϕ,

and this is guaranteed by the finite model property. �

133



Paper A.

We have thus established completeness for our logic. There is also a
stronger notion of completeness, often called strong completeness, which as-
serts that Φ |= ϕ implies Φ ` ϕ for any set of formulas Φ ⊆ L. Completeness
is a special case of strong completeness where Φ = ∅. In the case of compact
logics, strong completeness follows directly from completeness. However,
our logic is non-compact.

Theorem A.4.11. Our logic is non-compact, meaning that there exists an infinite
set Φ ⊆ L such that each finite subset of Φ admits a model, but Φ does not.

Proof. Consider the set

Φ = {Lq ϕ | q < r} ∪ {¬Lr ϕ}.

For any finite subset of Φ, it is easy to construct a model. However, ifM, s |=
Lq ϕ for all q < r where q, r ∈ Q≥0, then by the Archimedean property of the
rationals, we also haveM, s |= Lr ϕ. Hence there can be no model for Φ. �

A.5 Model Checking and Satisfiability

We now turn our attention to decision problems related to our logic. First
we consider the model checking problem, which asks us to decide whether
M, s |= ϕ for a given model M, state s, and formula ϕ. We will develop a
polynomial time algorithm for this problem by adapting the classical model
checking algorithm of Clarke et al. [8] to our setting. In what follows, we
will assume that all models have a finite state space, and that each state has
finitely many outgoing transitions. Furthermore, we will assume that the set
AP of atomic propositions is finite.

Given a formula ϕ and a model M = (S,→, `), we construct a function
Fϕ : S → 2L which assigns a set of formulas to each state. Intuitively, Fϕ(s)
will be the set of subformulas of ϕ that are true in s.

In order to do this, we first introduce the following terminology. The
closure of a formula ϕ, denoted cl(ϕ), is given by

cl(ϕ) =


{p} if ϕ = p
cl(ϕ′) ∪ {ϕ} if ϕ = ¬ϕ′, ϕ = Lr ϕ′, or ϕ = Mr ϕ′

cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ} if ϕ = ϕ1 ∧ ϕ2

Definition A.5.1. A formula ϕ′ is said to be a subformula of ϕ if ϕ′ ∈ cl(ϕ).
ϕ′ is said to be a proper subformula of ϕ if it is a subformula and ϕ′ 6= ϕ. N

Definition A.5.2. For a formula ϕ, we define the length of ϕ as follows.

• ϕ has length 1 if it has no proper subformulas.
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• ϕ has length i if its longest proper subformula has length i− 1.

We will denote the length of ϕ by len(ϕ). N

We can now construct the function Fϕ by means of Algorithm A.5.1.

Lemma A.5.3. LetM = (S,→, `) be a model, s ∈ S a state, and ϕ a formula. For
any subformula ϕ′ of ϕ it holds that

M, s |= ϕ′ if and only if ϕ′ ∈ Fϕ(s).

Proof. We will prove this by structural induction on ϕ′.

(ϕ′ = p):

M, s |= p iff p ∈ `(s) (Definition A.3.2)

iff p ∈ Fϕ(s) (Algorithm A.5.1).

(ϕ′ = ¬ψ):

M, s |= ¬ψ iffM, s 6|= ψ (Definition A.3.2)

iff ψ /∈ Fϕ(s) (ind. hyp.)

iff ¬ψ ∈ Fϕ(s) (Algorithm A.5.1).

(ϕ′ = ψ1 ∧ ψ2):

M, s |= ψ1 ∧ ψ2 iffM, s |= ψ1 andM, s |= ψ2 (Definition A.3.2)

iff ψ1 ∈ Fϕ(s) and ψ2 ∈ Fϕ(s) (ind. hyp.)

iff ψ1 ∧ ψ2 ∈ Fϕ(s) (Algorithm A.5.1).

(ϕ′ = Lrψ):

M, s |= Lrψ iff θ− (s) (JψK) ≥ r (Definition A.3.2)

iff θ− (s)
(
Sψ

)
≥ r (ind. hyp.)

iff Sψ 6= ∅ and

min{r′ | ∃s′ ∈ Sψ.s r′−→ s′} ≥ r

iff Lrψ ∈ Fϕ(s) (Algorithm A.5.1).

(ϕ′ = Mrψ):

M, s |= Mrψ iff θ+ (s) (JψK) ≤ r (Definition A.3.2)

iff θ+ (s)
(
Sψ

)
≤ r (ind. hyp.)

iff Sψ 6= ∅ and

max{r′ | ∃s′ ∈ Sψ.s r′−→ s′} ≤ r

iff Mrψ ∈ Fϕ(s) (Algorithm A.5.1).�
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1 Let Fϕ(s) = ∅ for all s ∈ S ;
2 Let Φi be the set of all subformulas of ϕ of length i ;
3 for i = 1, . . . , len(ϕ) do
4 for ϕ′ ∈ Φi do
5 for s ∈ S do
6 if ϕ′ = p then
7 if p ∈ `(s) then
8 Fϕ(s) := Fϕ(s) ∪ {ϕ′} ;
9 end

10 end
11 if ϕ′ = ¬ψ then
12 if ψ /∈ Fϕ(s) then
13 Fϕ(s) := Fϕ(s) ∪ {ϕ′} ;
14 end
15 end
16 if ϕ′ = ψ1 ∧ ψ2 then
17 if ψ1 ∈ Fϕ(s) and ψ2 ∈ Fϕ(s) then
18 Fϕ(s) := Fϕ(s) ∪ {ϕ′} ;
19 end
20 end
21 if ϕ′ = Lrψ then
22 Let Sψ = {s′ ∈ S | ψ ∈ Fϕ(s′)} ;

23 if Sψ 6= ∅ and min{r′ | s r′−→ s′ for some s′ ∈ Sψ} ≥ r then
24 Fϕ(s) := Fϕ(s) ∪ {ϕ′} ;
25 end
26 end
27 if ϕ′ = Mrψ then
28 Let Sψ = {s′ ∈ S | ψ ∈ Fϕ(s′)} ;

29 if Sψ 6= ∅ and max{r′ | s r′−→ s′ for some s′ ∈ Sψ} ≤ r then
30 Fϕ(s) := Fϕ(s) ∪ {ϕ′} ;
31 end
32 end
33 end
34 end
35 end
36 return Fϕ ;

Algorithm A.5.1: Constructing the function Fϕ for a given formula ϕ.
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We can now prove that, given a modelM = (S,→, `) and formula ϕ, the
model checking problem is decidable in polynomial time.

Theorem A.5.4. The model checking problem for our logic is decidable in time

O(|cl(ϕ)| · |S| · (n · log n + |AP|+ |cl(ϕ)|)),

where n is the degree ofM, i.e. the maximum number of outgoing transitions from
a state in S.

Proof. It follows from Lemma A.5.3 that the model checking problem is de-
cidable by constructing the function Fϕ and checking whether ϕ ∈ Fϕ(s). It
therefore remains to argue that Algorithm A.5.1 runs in the claimed time.

The first two loops in Algorithm A.5.1 at line 3 and 4 iterate over all
elements of cl(ϕ), and the third loop iterates over all elements of S. Inside
the third loop, the algorithm enters one of the if-statements depending on
the structure of the current subformula. If it enters the first if-statement at
line 7, then we must search `(s) for p. This takes at most time |AP|. If
it enters the second or third if-statement at line 11 and 16, then we must
search Fϕ(s) for one of the formulas. This takes at most time |cl(ϕ)|, since
the function Fϕ can only label states with subformulas of ϕ. Lastly, if the
algorithm enters the fourth of fifth if-statement at line 21 and 27, then we
must find the corresponding minimum and maximum value. This can be
done using e.g. mergesort in time n · log n.

Together, this analysis of Algorithm A.5.1 gives the claimed run-time. �

Next we will consider the satisfiability problem, which asks us to decide
whether a given formula ϕ has a model or not. The finite model property
gives us a way of deciding this problem. An algorithm would be to enu-
merate all finite models and all theorems derivable from the axioms, which
can be done since there are countably many of each of these. If ϕ is satis-
fiable, it has a model, and by the finite model property, it has a finite one.
So we can check one by one whether a finite model satisfies ϕ by using the
model checking algorithm described previously. On the other hand, if ϕ is
not satisfiable, then ¬ϕ is a theorem, so we can search through all theorems
to see whether ¬ϕ is one of them. Since ϕ is either satisfiable or its negation
is a theorem, one of these two algorithms must eventually halt. By running
these two algorithms in parallel, we have shown that the problem of deciding
satisfiability for a given formula is decidable.

In what follows we do more: We propose an algorithm that constructs
a tableau syntactically from a given formula. By inspecting this tableau, we
can decide whether or not the formula is satisfiable, and if it is satisfiable, we
can construct a model for the formula from the tableau.

As in the previous section, we impose an order on formulas given by
ϕ ≤ ψ if and only if |= ϕ→ ψ. Given a finite set of formulas Γ = {ϕ1, . . . , ϕn},
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〈Γ ∪ {ϕ ∧ ψ}, IL, IM〉
(∧)

〈Γ ∪ {ϕ, ψ}, IL, IM〉

〈Γ ∪ {¬(ϕ ∧ ψ)}, IL, IM〉
(¬∧)

〈Γ ∪ {¬ϕ}, IL, IM〉 〈Γ ∪ {¬ψ}, IL, IM〉

〈Γ ∪ {¬¬ϕ}, IL, IM〉
(¬¬)

〈Γ ∪ {ϕ}, IL, IM〉

〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
〈{ψ1}, IL

1 , IM
1 〉 · · · 〈{ψk}, IL

k , IM
k 〉

if Ni ∈ {L, M} for all 1 ≤ i ≤ n, Oj ∈ {L, M} for all 1 ≤ j ≤ n′,
and no formula in Γ is of the form Nr ϕ or ¬Nr ϕ where N ∈
{L, M}.

Table A.5.1: Tableau rules.

we denote by min(Γ) the set of minimal elements of Γ, i.e.

min(Γ) = {ϕi ∈ Γ | there is no ϕj such that ϕj ≤ ϕi},

and we let

L(Γ) = {ϕi ∈ Γ | there is no j < i such that |= ϕj ↔ ϕi}.

Furthermore, we let ↑Γ(ϕ) be the upward closure of ϕ in Γ, i.e.

↑Γ(ϕ) = {ϕ′ ∈ Γ | ϕ ≤ ϕ′}.

A tableau is a tree with nodes of the form 〈Γ, IL, IM〉 that is constructed
from the rules of Table A.5.1, where the (mod) rule may only be used when
no other rule can be used. For each node 〈Γ, IL, IM〉, Γ is a set of formulas,
and IL and IM are intervals of the form *a, b+ where a ∈ R≥0 ∪ {−∞},
b ∈ R≥0 ∪ {∞}, * ∈ {[, (}, and + ∈ {], )}, subject to the constraint that * = (
if a = −∞ and + = ) if b = ∞. We will say that an interval *a, b+ is consistent
if a < b or a = b and the interval is closed.

For the rule (mod), the objects ψi, IL
i and IM

i in the conclusion are con-
structed as follows. The ψi are given by

{ψ1, . . . , ψk} = min(L({ϕ1, . . . , ϕn})).
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Let Γ′ = {ϕ1, . . . , ϕn} and

L+
i = {r | Lr ϕj = N j

rj ϕj for some j and ϕj ∈ ↑Γ′(ψi)}

M+
i = {r | Mr ϕj = N j

rj ϕj for some j and ϕj ∈ ↑Γ′(ψi)}
as well as

L−i = {r | Lr ϕ′j = Oj
rj ϕ
′
j for some j and |= ψi → ϕ′j}

M−
i = {r | Mr ϕ′j = Oj

rj ϕ
′
j for some j and |= ψi → ϕ′j}.

Then the intervals IL
i and IM

i are given by

IL
i =


[max L+

i , min L−i ) if L+
i 6= ∅ and L−i 6= ∅

[0, min L−i ) if L+
i = ∅ and L−i 6= ∅

[max L+
i , ∞) if L+

i 6= ∅ and L−i = ∅
[0, ∞) if L+

i = ∅ and L−i = ∅

IM
i =


(max M−

i , min M+
i ] if M−

i 6= ∅ and M+
i 6= ∅

[0, min M+
i ] if M−

i = ∅ and M+
i 6= ∅

(max M−
i , ∞) if M−

i 6= ∅ and M+
i = ∅

[0, ∞) if M−
i = ∅ and M+

i = ∅

Informally, one should think of a node m = 〈Γ, IL, IM〉 as satisfying all
the formulas in Γ. Moreover, the (mod)-rule signifies a state transition, where
the new states are given by the nodes in the conclusion, and any transition to
m must have a minimum weight that lies in the interval IL, and a maximum
weight that lies in the interval IM.

Example A.5.5. We now illustrate the use of the (mod) rule through an ex-
ample. Consider the node

m = 〈{p1, p2, L2 p1, L4(p1 ∧ p2), L0 p3,¬L5 p2,¬M6 p3}, IL, IM〉.

We group the formulas as

Γ = {p1, p2}, Γ′ = {L2 p1, L4(p1 ∧ p2), L0 p3}, and Γ′′ = {¬L5 p2,¬M6 p3},

so that m = 〈Γ∪ Γ′ ∪ Γ′′, IL, IM〉. Since Γ only includes literals, it is clear that
we can use no other rules, so we are allowed to use (mod) on m.

We see that |= (p1 ∧ p2) → p1, and hence {ψ1, ψ2} = {p1 ∧ p2, p3}, so
there are two children of m. For the first child, we find

L+
1 = {2, 4} M+

1 = ∅
L−1 = {5} M−

1 = ∅,
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and for the second child we find

L+
2 = {0} M+

2 = ∅
L−2 = ∅ M−

2 = {6}.

Hence the intervals become

IL
1 = [4, 5) IM

1 = [0, ∞)

IL
2 = [0, ∞) IM

2 = (6, ∞),

and our application of the rule becomes

〈{p1, p2, L2 p1, L4(p1 ∧ p2), L0 p3,¬L5 p2,¬M6 p3}, IL, IM〉
(mod)

〈{p1 ∧ p2}, [4, 5), [0, ∞)〉 〈{p3}, [0, ∞)(6, ∞)〉
�

Given a formula ϕ, we will say that a tableau T is a tableau for ϕ if
〈{ϕ}, [0, 0], [0, 0]〉 is the root of T . A node m in a tableau is called a modal
node if the (mod)-rule was applied to m. We will say that a node is a terminal
node if it is either a modal node or a leaf node.

Definition A.5.6. A node m = 〈Γ, *1a, b+1, *2c, d+2〉 is consistent if

• for any p ∈ AP we do not have both p ∈ Γ and ¬p ∈ Γ,

• *1a, b+1 and *2c, d+2 are consistent, and

• either a < d or a = d, *1 = [, and +2 = ]. N

Definition A.5.7. A tableau T is successful if there exists a subtree T ′ of T
such that

• every leaf in T ′ is also a leaf in T ,

• if a modal node m is included in T ′, then every child of m is also
included in T ′, and

• every terminal node in T ′ is consistent. N

Given a successful tableau T , we construct the WTSM(T ) with state sT
using Algorithm A.5.2.

Lemma A.5.8. If T is a successful tableau for ϕ, thenM(T ), sT |= ϕ.

Proof. Let Y be the set of all pairs (s, m) that are added to the stack X by
Algorithm A.5.2 at some point during the construction of M(T ). We wish
to prove that for any (s, 〈Γ, IL, IM〉) ∈ Y we have M(T ), s |= Γ, where we
write M(T ), s |= Γ to mean M(T ), s |= ϕ for all ϕ ∈ Γ. Note that if we can
prove this, then it follows thatM(T ), sT |= ϕ since (sT , 〈{ϕ}, ∅, (0, 0)〉) ∈ Y.
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1 Let T ′ be a witness for the fact that T is successful ;
2 S := {sT },→:= ∅, ` := ∅ ;
3 Let X be a stack and X := ∅ ;
4 X.push((sT , r)) where r is the root of T ′ ;
5 while X 6= ∅ do
6 (s, m) := X.pop ;
7 Let m = 〈Γ, ∆, (a, b)〉 ;
8 if m is not a terminal node then
9 Let m′ be the left-most child of m in T ′ ;

10 X.push((s, m′)) ;
11 end
12 if m is a leaf node then
13 ` := ` ∪ {(s, p) | p ∈ AP and p ∈ Γ} ;
14 end
15 if m is a modal node then
16 ` := ` ∪ {(s, p) | p ∈ AP and p ∈ Γ} ;
17 Let m1 = 〈Γ1, IL

1 , IM
1 〉, . . . , mn = 〈Γn, IL

n , IM
n 〉 be the children of

m in T ′ ;
18 for i = 1, . . . , n do
19 Let IL

i = *ai, bi+ and IM
i = *ci, di+ ;

20 xi := ai ;

21 yi :=

{
max{ai,

di−ci
2 + ci} if di 6= ∞

max{ai, ci + 1} if di = ∞
;

22 S := S ∪ {si} ;
23 →:=→ ∪{(s, xi, si), (s, yi, si)} ;
24 X.push((si, mi)) ;
25 end
26 end
27 end
28 M(T ) := (S,→, `) ;
29 return (M(T ), sT ) ;

Algorithm A.5.2: Constructing the model M(T ) for a successful
tableau T .
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Let (s, m) be an arbitrary element of Y and let l be the length of the longest
path from m to a leaf. We will prove, by induction on l, that M(T ), s |= Γ
where m = 〈Γ, IL, IM〉.

l = 0: In this case, m is a leaf. Hence Γ only contains literals, and by
construction we have p ∈ `(s) if and only if p ∈ Γ. Since m is consistent, we
thus getM(T ), s |= Γ.

l > 0: In this case we consider the different rules that may be applied to
m.

(∧) We have
m = 〈Γ ∪ {ϕ1 ∧ ϕ2}, IL, IM〉

(∧)
m′ = 〈Γ ∪ {ϕ1, ϕ2}, IL, IM〉

By induction hypothesis we get M(T ), s |= Γ ∪ {ϕ1, ϕ2}. This implies
thatM(T ), s |= ϕ1 andM(T ), s |= ϕ2, soM(T ), s |= Γ ∪ {ϕ1 ∧ ϕ2}.

(¬∧) We have

m = 〈Γ ∪ {¬(ϕ1 ∧ ϕ2)}, IL, IM〉
(¬∧)

m1 = 〈Γ ∪ {¬ϕ1}, IL, IM〉 m2 = 〈Γ ∪ {¬ϕ2}, IL, IM〉

We have three cases to consider; either m1 is included in T ′, m2 is in-
cluded in T ′, or both m1 and m2 are included in T ′. If m1 is included in
T ′ we get, by the induction hypothesis, that M(T ), s |= Γ ∪ {¬ϕ1}
implying that M(T ), s 6|= ϕ1. If m2 is included in T ′ we get, by
the induction hypothesis, that M(T ), s |= Γ ∪ {¬ϕ2} implying that
M(T ), s 6|= ϕ2. In either case we get that M(T ), s 6|= ϕ1 ∧ ϕ2 and
M(T ), s |= Γ, and therefore M(T ), s |= Γ ∪ {¬(ϕ1 ∧ ϕ2)}. The last
case follows trivially from the preceding arguments.

(¬¬) We have
m = 〈Γ ∪ {¬¬ϕ′}, IL, IM〉

(¬¬)
m′ = 〈Γ ∪ {ϕ′}, IL, IM〉

By induction hypothesis we know thatM(T ), s |= Γ ∪ {ϕ′}, and hence
M(T ), s |= Γ ∪ {¬¬ϕ′}.

(mod) We have

m = 〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
m1 = 〈{ψ1}, IL

1 , IM
1 〉 · · · mk = 〈{ψk}, IL

k , IM
k 〉

Γ must consist only of literals, because otherwise the (mod) rule could
not be used. As in the case for l = 0, we then get M(T ), s |= Γ since
m is consistent. Let Ψ = {ψ1, . . . , ψk}, and for any 1 ≤ j ≤ k, let IL

j =
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*aj, bj+ and IM
j = *cj, dk+. By the induction hypothesis, we know that

M(T ), sj |= ψj for all j ∈ {1, . . . , k}, and, by construction, sj is the only
successor of s that satisfies ψj. Now consider a formula Ni

ri
ϕi. There

must exist a subset Ψϕi ⊆ Ψ such that θ (s) (JϕiK) = θ (s)
(⋃

ψ′∈Ψϕi
Jψ′K

)
.

We first consider the case where Ni = L. Because Ψϕi is finite, there

exists ψ′j ∈ Ψϕi such that θ− (s) (JϕiK) = θ− (s)
(
Jψ′jK

)
, implying the

existence of ψj ∈ Ψ such that θ− (s) (JϕiK) = θ− (s)
(
JψjK

)
= aj. We

must have aj ≥ ri implying θ− (s) (JϕiK) ≥ ri, and thus M(T ), s |=
Lri ϕi. In the case where Ni = M we can, similarly to the previous case,
find ψj ∈ Ψ such that θ+ (s) (JϕiK) = θ+ (s)

(
JψjK

)
, and we know that

di 6= ∞ implying

θ+ (s)
(
JψjK

)
= max

{
aj,

dj − cj

2
+ cj

}
≤ dj ≤ ri.

Therefore, θ+ (s) (JϕK) ≤ ri and thusM(T ), s |= Mri ϕi.

Lastly we consider a formula ¬Oi
r′i

ϕ′i. If there is no ψj ∈ Ψ such that

|= ψj → ϕ′i, then, by the construction of M(T ), there is no succes-
sor s′ of s such that M(T ), s |= ϕ′i. Therefore, θ− (s)

(
Jϕ′iK

)
= ∞ and

θ+ (s)
(
Jϕ′iK

)
= −∞, and thus M(T ), s |= ¬Oi

r′i
ϕ′i is trivially satisfied

for Oi ∈ {L, M}. Suppose |= ψ′j → ϕ′i for some ψ′j ∈ Ψ. We first

consider the case where Oi = L. There must exist ψj ∈ Ψ such that
θ− (s)

(
Jϕ′iK

)
= θ− (s)

(
JψjK

)
= aj. By the assumption that T is suc-

cessful, we must have that mj is consistent. Therefore, aj < bj ≤ ri′

implying θ− (s)
(
Jϕ′iK

)
< r′i , and thus M(T ), s |= ¬Lr′i

ϕ′i. In the case

where Oi = M we must be able to find ψj ∈ Ψ such that θ+ (s)
(
Jϕ′iK

)
=

θ+ (s)
(
JψjK

)
. We have to consider dj = ∞ and dj 6= ∞ separately. If

dj = ∞ we have

θ+ (s)
(
JψjK

)
= max

{
aj, cj + 1

}
> cj ≥ r′i .

If dj 6= ∞ we have

θ+ (s)
(
JψjK

)
= max

{
aj,

dj − cj

2
+ cj

}
> cj ≥ r′i .

In either case we have that θ (s)
(
Jϕ′iK

)
> r′i , soM(T ), s |= ¬Mr′i

ϕ′i. �

Lemma A.5.9. Let T1 and T2 be tableaux for ϕ. Then it holds that T1 is successful
if and only if T2 is successful.

Proof. Assume that T1 is a successful tableau. Let T ′1 be a subtree of T1 which
witnesses the fact that T1 is successful. If T ′1 is also a subtree of T2, then we
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are done. If not, let d be the smallest number such that T ′1 differs at depth
d from any subtree of T2 with the same root as T2. Note that we must have
d > 0 because T ′1 and T2 have the same root. Denote by T ′1 |n the restriction
of T ′1 to depth n. Then T ′1 |d−1 is a subtree of T2.

Let X be the set of all terminal nodes that are in T ′1 at depth d or below.
Then every node in X is also a node in T2, and furthermore, every node in
X is reachable in T2 from T ′1 |d−1. Hence, if we extend T ′1 |d−1 to include all
paths leading to an element in X, then this extension is a subtree of T2 that
witnesses the fact that T2 is successful. �

Lemma A.5.10. ϕ is satisfiable if and only if there exists a successful tableau for ϕ.

Proof. ( =⇒ ) Assume ϕ is satisfiable, meaning that M, s |= ϕ for some
M = (S,→, `) and s ∈ S.

Let T be a tableau for ϕ, and note that such a tableau always exists by
applying the tableau rules to 〈{ϕ}, [0, 0], [0, 0]〉. Now construct a marking
M ⊆ S× T as follows.

• (s, r) ∈M where r is the root of T .

• If (s′, m) ∈ M and (∧) or (¬¬) was applied to m, add (s′, m′) to M,
where m′ is the child of m.

• If (s′, m) ∈M and (¬∧) was applied to m, meaning that

m = 〈Γ ∪ {¬(ϕ1 ∧ ϕ2)}, IL, IM〉
(¬∧)

m1 = 〈Γ ∪ {¬ϕ1}, IL, IM〉 m2 = 〈Γ ∪ {¬ϕ2}, IL, IM〉

then add (s′, m1) to M if s′ ∈ J¬ϕ1K and add (s′, m2) to M if s′ ∈ J¬ϕ2K.

• If (s′, m) ∈M and (mod) was applied to m, meaning that

m = 〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
m1 = 〈{ψ1}, IL

1 , IM
1 〉 · · · mk = 〈{ψk}, IL

k , IM
k 〉

then add (t′, mi) to M if t′ ∈ JψiK and s′ r−→ t′ for some r ∈ R≥0.

We will first argue that for any (s′, 〈Γ, IL, IM〉) ∈ M we have M, s′ |= Γ,
meaning M, s′ |= ϕ′ for all ϕ′ ∈ Γ. We prove this by induction on the depth
d of m.

d = 0: We have (s′, 〈Γ, IL, IM〉) = (s, r) = (s, 〈{ϕ}, [0, 0], [0, 0]〉), and by
assumption we getM, s |= ϕ.

d > 0: We consider which rule was applied to the parent of m.
(∧):

m′ = 〈Γ ∪ {ϕ1 ∧ ϕ2}, IL, IM〉
(∧)

m = 〈Γ ∪ {ϕ1, ϕ2}, IL, IM〉
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By induction hypothesis, we haveM, s′ |= Γ ∪ {ϕ1 ∧ ϕ2}, soM, s′ |= ϕ1 and
M, s′ |= ϕ2, and henceM, s′ |= Γ ∪ {ϕ1, ϕ2}.

(¬∧):

m′ = 〈Γ ∪ {¬(ϕ1 ∧ ϕ2)}, IL, IM〉
(¬∧)

m1 = 〈Γ ∪ {¬ϕ1}, IL, IM〉 m2 = 〈Γ ∪ {¬ϕ2}, IL, IM〉

If m = m1, then by the way M was constructed we get M, s′ |= ¬ϕ1, and
hence by induction hypothesis,M, s′ |= Γ∪ {¬ϕ1}. Likewise we getM, s′ |=
Γ ∪ {¬ϕ2} if m = m2.

(¬¬):
m′ = 〈Γ ∪ {¬¬ϕ′}, IL, IM〉

(¬¬)
m = 〈Γ ∪ {ϕ′}, IL, IM〉

By induction hypothesis we have M, s′ |= Γ ∪ {¬¬ϕ′}, which is equivalent
toM, s′ |= Γ ∪ {ϕ′}.

(mod):

m′ = 〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
m1 = 〈{ψ1}, IL

1 , IM
1 〉 · · · mk = 〈{ψk}, IL

k , IM
k 〉

We must have m = mi for some 1 ≤ i ≤ k. By construction of M we know
thatM, mi |= ψi.

Now let T ′ be the subtree of T consisting of those nodes m where there
exists a state s′ such that (s′, m) ∈M. We will now prove that T ′ satisfies the
three conditions in Definition A.5.7.

For the first condition we prove the contrapositive: If m is not a leaf in T ,
then it is not a leaf in T ′. Hence we assume that m is not a leaf in T . If m is
not a node in T ′, then it is also not a leaf node in T ′. If m is a node in T ′,
then there must exist some state s′ such that (s′, m) ∈ M. We now consider
which rule was applied to m in T .

(∧) or (¬¬) In these cases, m has a child m′ in T , and by construction of M,
we get (s′, m′) ∈M, so m′ is a child of m in T ′.

(¬∧)
m = 〈Γ ∪ {¬(ϕ1 ∧ ϕ2)}, IL, IM〉

(¬∧)
m1 = 〈Γ ∪ {¬ϕ1}, IL, IM〉 m2 = 〈Γ ∪ {¬ϕ2}, IL, IM〉

We know thatM, s′ |= Γ∪ {¬(ϕ1 ∧ ϕ2)}, so we must haveM, s′ |= ¬ϕ1
orM, s′ |= ¬ϕ2. By construction of M, this means that (s′, m1) ∈M or
(s′, m2) ∈M, and hence m1 or m2 must be a child of m in T ′.
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(mod)

m = 〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
m1 = 〈{ψ1}, IL

1 , IM
1 〉 · · · mk = 〈{ψk}, IL

k , IM
k 〉

For each mi there must exist some j such that N j
rj ϕj = N j

rj ψi. Then we

know thatM, s′ |= N j
rj ψi, and hence

θ−
(
s′
)
(JψiK) ≥ rj or θ+

(
s′
)
(JψiK) ≤ rj.

In either case there must exist some t′ ∈ JψiK such that s′ r−→ t′ for some
r. Hence (t′, mi) ∈M and mi is a child of m in T ′.

For the second condition, let (s′, m) ∈M where m is a modal node, mean-
ing that

m = 〈Γ ∪ {N1
r1

ϕ1, . . . , Nn
rn ϕn} ∪ {¬O1

r′1
ϕ′1, . . . ,¬On′

r′
n′

ϕ′n′}, I
L, IM〉

(mod)
m1 = 〈{ψ1}, IL

1 , IM
1 〉 · · · mk = 〈{ψk}, IL

k , IM
k 〉

For every ψi we must have N j
rj ϕj = N j

rj ψi for some j, soM, s′ |= N j
rj ψi, which

implies that there exists t′ ∈ JψiK such that s′ r−→ t′ for some r. Hence we get
(t′, mi) ∈ M. Since this holds for any i, we get that every mi is included in
T ′.

For the third condition, let m = 〈Γ, IL, IM〉 be a terminal node in T ′. We
check the conditions of Definition A.5.6. There must exist a state s′ such that
(s′, m) ∈M, which means thatM, s′ |= Γ. Hence s′ satisfies all the literals in
Γ, which can only happen if the first condition is satisfied. The second and
third condition are satisfied because of the way the intervals of the children
are constructed in the (mod) rule.

(⇐= ) This follows from Lemma A.5.8. �

Theorem A.5.11. The satisfiability problem for our logic is decidable.

Proof. By Lemma A.5.10, to decide whether a formula ϕ is satisfiable, it is
enough to check whether there exists a successful tableau for ϕ. Furthermore,
by Lemma A.5.9 it is enough to only check a single tableau for ϕ: If the
tableau is successful, then all tableaux for ϕ are successful, and if it is not
successful, then no tableau for ϕ is successful.

One can construct such a tableau for ϕ by applying the tableau rules of
Table A.5.1 to the tuple 〈{ϕ}, ∅, (0, 0)〉 until no more rules can be applied. We
will now argue that there is an effective procedure for constructing such a
tableau by induction on the modal depth of ϕ.
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sT

{}
s1

{p1}
s2

{p1}

5

2

1

1

Figure A.5.1: The modelM(T ) for the successful tableau T in Example A.5.12.

md(ϕ) = 0: In this case, the (mod) rule is never used when constructing
the tableau. Hence the procedure proceeds by syntactically checking which
rules can be used at a given moment, and choosing a valid rule to apply.

md(ϕ) > 0: In this case we proceed as for the case where md(ϕ) = 0,
except that now the (mod) rule may also be applied, in which case we need
to be able to compute the ψi, ∆i and (ai, bi). The difficulty lies in computing
the set {ψ1, . . . , ψk} = min(L({ϕ1, . . . , ϕn})) and the sets

L−i = {r | Lr ϕ′j = Oj
rj ϕ
′
j for some j and |= ψi → ϕ′j}

M−
i = {r | Mr ϕ′j = Oj

rj ϕ
′
j for some j and |= ψi → ϕ′j}.

However, note that all ϕi and ϕ′i and have modal depth less than md(ϕ).
Therefore, by induction hypothesis, we have an effective procedure to decide
whether |= ϕi → ϕj and |= ϕi ↔ ϕj, which is exactly what we need to
compute the aforementioned sets. Given this we can compute the values
needed for the intervals IL

i and IM
i . �

Example A.5.12. Consider the formula ϕ = ¬(¬(L2 p1 ∧M5L1 p1)∧¬M2 p2)).
Using the tableau rules, we get the following tableau T for ϕ.

〈{¬(¬(L2 p1 ∧M5L1 p1) ∧M2 p2)}, [0, 0], [0, 0]〉
(¬∧)

〈{¬¬(L2 p1 ∧M5L1 p1)}, [0, 0], [0, 0]〉
(¬¬)

〈{L2 p1 ∧M5L1 p1}, [0, 0], [0, 0]〉
(∧)

〈{L2 p1, M5L1 p1}, [0, 0], [0, 0]〉
(mod)

〈{p1, L1 p1}, [2, ∞), [5, ∞)〉
(mod)

〈{p1}, [1, ∞), [0, ∞)〉

〈{¬¬M2 p2}, [0, 0], [0, 0]〉
(¬¬)

〈{M2 p2}, [0, 0], [0, 0]〉
(mod)

〈{p2}, [0, ∞), [0, 2]〉

In this case the tableau is successful, since all terminal nodes are consistent.
In fact, there are three distinct subtrees witnessing this fact: one that chooses
the left branch, one that chooses the right branch, and one that chooses both
branches. In Figure A.5.1 we show the resulting modelM(T ) for the witness
that chooses the left branch. �
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Example A.5.13. Consider the formula ϕ = p1 ∧ L4 p1 ∧ ¬L3 p1 ∧ L2 p2. Using
the tableau rules, we get the following tableau T for ϕ.

〈{p1 ∧ L4 p1 ∧ ¬L3 p1 ∧ L2 p2}, [0, 0], [0, 0]〉
(∧)

〈{p1, L4 p1 ∧ ¬L3 p1 ∧ L2 p2}, [0, 0], [0, 0]〉
(∧)

〈{p1, L4 p1,¬L3 p1 ∧ L2 p2}, [0, 0], [0, 0]〉
(∧)

〈{p1, L4 p1,¬L3 p1, L2 p2}, [0, 0], [0, 0]〉
(mod)

〈{p1}, [4, 3), [0, ∞]〉 〈{p2}, [2, ∞), [0, ∞)〉

In this case the interval [4, 3) is not consistent, and hence the tableau is not
successful, so we can conclude that ϕ is not satisfiable. �

A.6 Concluding Remarks

Our contributions in this paper have been to define a new bisimulation rela-
tion for weighted transition systems (WTSs), which relates those states that
have similar behavior with respect to their minimum and maximum weights
on transitions, as well as an accompanying modal logic to reason about the
upper and lower bounds of weights on transitions. We have shown that this
logic characterises exactly those states that are bisimilar for image-finite sys-
tems. Furthermore, we have provided a complete axiomatisation of our logic,
and we have shown that it enjoys the finite model property. Based on this
finite model property, we have developed an algorithm which decides the
satisfiability of a formula in our logic and constructs a finite model for the
formula if it is satisfiable.

This work could be extended in different ways. Since our logic is non-
compact, strong completeness does not follow directly from weak complete-
ness, and hence it would be interesting to explore a strong-complete axioma-
tisation of the proposed logic. Such an axiomatisation would need additional,
infinitary axioms. Examples of such axioms would be

{Lq ϕ | q < r} ` Lr ϕ and {Mq ϕ | q < r} ` Mr ϕ,

which are easily proven sound and describe the Archimedean property dis-
cussed in Theorem A.4.11.

Although we have shown that our logic is expressive enough to capture
bisimulation, it would also be of interest to extend our logic with a kind of
fixed-point operator or standard temporal logic operators such as until in or-
der to increase its expressivity, and hence its practical use. We envisage two
ways in which such a logic could be given semantics: either by accumulating
weights or by taking the maximum or minimum of weights. In the accumu-
lating case in particular, one could also allow negative weights to model that
the system gains resources.
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B.1. Introduction

Abstract

Semi-Markov processes are Markovian processes in which the firing time of the tran-
sitions is modelled by probabilistic distributions over positive reals interpreted as the
probability of firing a transition at a certain moment in time.

In this paper we consider the trace-based semantics of semi-Markov processes, and
investigate the question of how to compare two semi-Markov processes with respect
to their time-dependent behaviour. To this end, we introduce the relation of being
“faster than” between processes and study its algorithmic complexity. Through a
connection to probabilistic automata we obtain hardness results showing in particular
that this relation is undecidable. However, we present an additive approximation
algorithm for a time-bounded variant of the faster-than problem over semi-Markov
processes with slow residence-time functions, and a coNP algorithm for the exact
faster-than problem over unambiguous semi-Markov processes. Finally, we give a
logical characterisation of the faster-than relation and show that satisfiability and
model checking are decidable for this logic.

B.1 Introduction

Semi-Markov processes are Markovian stochastic systems that model the fir-
ing time of transitions as probabilistic distribution over positive reals; thus,
one can encode the probability of firing a certain transition within a certain
time interval. For example, continuous-time Markov processes are particu-
lar case of semi-Markov processes where the timing distributions are always
exponential.

Semi-Markov processes have been used extensively to model real-time
systems such as power plants [16] and power supply units [17]. For such
real-time systems, non-functional requirements are becoming increasingly
important. Many of these requirements, such as response time and through-
put, depend heavily on the timing behaviour of the system in question. It is
therefore natural to understand and be able to compare the timing behaviour
of different systems.

Moller and Tofts [13] proposed the notion of a faster-than relation for sys-
tems with discrete-time in the context of process algebras. Their goal was
to be able to compare processes that are functionally behaviourally equiva-
lent, except that one process may execute actions faster than the other. This
line of study was continued by Lüttgen and Vogler [12], who moreover con-
sidered upper bounds on time, in order to allow for reasoning about worst-
case timing behaviours. For timed automata, Guha et al. [10] introduced a
bisimulation-like faster-than relation and studied its compositional proper-
ties. For continuous-time probabilistic systems, Baier et al. [3] considered a
simulation relation where the timing distribution on each state is required
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s

Exp(4) Exp(2) Exp(1) Exp(4)

s′
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a, 1 a, 1 a, 1 a, 1

Figure B.1.1: A semi-Markov process where s is faster than s′. The states of the process are
annotated with their timing distributions and each action-labelled transition is decorated with
its probability to be executed.

to stochastically dominate the other. They introduced both a weak and a
strong version of their simulation relation, and gave a logical characterisation
of these in terms of the logic CSL.

In the literature, less attention has been drawn to trace-based notions
of faster-than relations although trace equivalence and inclusion are impor-
tant concepts when considering linear-time properties such as liveness or
safety [2]. In this paper we propose a simple and intuitive notion of trace
inclusion for semi-Markov processes, which we call faster-than relation, that
compares the relative speed of processes with respect to the execution of
arbitrary sequences of actions.

Differently from trace inclusion, our relation does not make a step-wise
comparison of the timing delays for each individual action in a sequence, but
over the overall execution time of the sequence. As an example, consider the
semi-Markov process in Fig. B.1.1. The states s and s′, although performing
the same sequences of actions, are not related by trace inclusion because
the first two actions in any sequence are individually executed at opposite
order of speeds (here governed by exponential-time distributions). Instead,
according to our relation, s is faster-than s′ (but not vice versa) because it
executes single-action sequences at a faster rate than s′, and action sequences
of length greater than one at the same speed – this is due to the fact that
the execution time of each action is governed by random variables that are
independent of each other and the sum of independent random variables is
commutative.

In this paper we investigate the algorithmic complexity of various prob-
lems regarding the faster-than relation, emphasising their connection with
classical algorithmic problems over Rabin’s probabilistic automata. In partic-
ular, we prove that the faster-than problem over generic semi-Markov pro-
cesses is undecidable and that it is Positivity-hard when restricted to pro-
cesses with only one action label. The reduction from the Positivity problem
is important because it relates the faster-than problem to the Skolem prob-
lem, an important problem in number theory, whose decidability status has
been an open problem for at least 80 years [1, 14].

We show that undecidability for the faster-than problem can not be tack-
led even by approximation techniques: via the same connection with proba-
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bilistic automata we are able to prove that the faster-than problem can not be
approximated up to a multiplicative constant. However, as a positive result,
we show that a time-bounded variant of the faster-than problem, which com-
pares processes up to a given finite time bound, although still undecidable,
admits approximated solutions up to an additive constant over semi-Markov
processes with slow residence-time distributions. These include the impor-
tant cases of uniform and exponential distributions. As a second positive re-
sult, we present a coNP algorithm for solving the faster-than problem exactly
over unambiguous semi-Markov processes, where a process is unambiguous
if every transition to a next state is unambiguously determined by the label
that it outputs.

Finally, we give a logical characterisation of the faster-than relation in
terms of a very simple logic. Every formula in this logic is satisfiable in some
finite model, and hence the satisfiability problem for the logic is trivially
decidable. Furthermore, we show that the model checking problem for the
logic is also decidable for many common residence-time distributions.

B.2 Definitions

For a finite set S we let D(S) denote the set of (sub)distributions over S,
i.e. functions δ : S → [0, 1] such that ∑s∈S δ(s) ≤ 1. The subset of total
distributions is D=1(S).

We let N denote the natural numbers and R≥0 denote the non-negative
real numbers. We equip R≥0 with the Borel σ-algebra B, so that (R≥0,B)
is a measurable space. Let D(R≥0) denote the set of (sub)distributions over
(R≥0,B), i.e. measures µ : B → [0, 1] such that µ(R≥0) ≤ 1. Throughout the
paper we will write µ(t) for µ([0, t]).

To avoid confusion we will refer to µ in D(R≥0) as timing distributions,
and to δ in D(S) as distributions.

Definition B.2.1 (Semi-Markov process). A semi-Markov process, usually writ-
tenM, is given by:

• S is a (finite) set of states,

• Out is a (finite) set of output labels,

• ∆ : S→ D(S× Out) is a transition function,

• ρ : S→ D(R≥0) is a residence-time function. N

The operational behaviour of a semi-Markov process can be described as
follows. In a given state s ∈ S, the process fires a transition within time t
with probability ρ(s)(t), leading to the state s′ ∈ S while outputting the label
a ∈ Out with probability ∆(s)(s′, a).
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We aim at defining PM(s, w, t), the probability that from the state s, the
output of the semi-Markov processM within time t starts with the word w. It
is important to note here that time is accumulated: we sum together the time
spent in all states along the way, and ask that this total time is less than the
specified bound t. A full and formal definition of the probability can be done
through the usual cylinder construction. However, we will spare the reader
this well-known construction and give seemingly ad-hoc definitions in this
conference version.

In order to account for the accumulated time in the probability, we need
the notion of convolution. The convolution of two timing distributions µ and
ν is µ ∗ ν defined by

(µ ∗ ν)(E) =
∫ ∞

0
ν(E− x)µ(dx)

for any Borel set E. Convolution is both associative and commutative. Let X
and Y be two independent random variables with timing distributions µ and
ν, i.e. P(X ∈ E) = µ(E) and P(Y ∈ E) = ν(E), then

P(X + Y ∈ E) = (µ ∗ ν)(E).

Definition B.2.2 (Probability). Consider a semi-Markov process M. We de-
fine the timing distribution PM(s, w) inductively: PM(s, ε) = 1 for the empty
word ε, where 1 is the function such that 1(t) = 1 for all t in R≥0, and for a
word w in Out∗, a letter a in Out and a state s,

PM(s, aw) = ∑
s′∈S

∆(s)(s′, a) ·
(
ρ(s) ∗PM(s′, w)

)
.

We will then write PM(s, w, t) to mean PM(s, w)(t). N

B.2.1 Timed Comparisons

We introduce the following relation which will be the focus of our paper.

Definition B.2.3 (Faster-than relation). Consider a semi-Markov process M
and two states s and s′. We say that s is faster than s′, denoted s � s′, if for all
w, for all t,

PM(s, w, t) ≥ PM(s′, w, t). N

The algorithmic problem we consider in this paper is the faster-than prob-
lem: given a semi-Markov process and two states s and s′, determine whether
s � s′.
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B.2.2 Algorithmic Considerations

The definition we use for semi-Markov processes is very general, because we
allow for any residence-time function. The aim of the paper is to give generic
algorithmic results which apply to effective classes of timing distributions, a
notion we define now. Recall that a residence-time function associates with
each state a timing distribution. We first give some examples of classical
timing distributions.

• The prime example is exponential distributions, defined by the timing
distribution µ(t) = 1− e−λt for some parameter λ > 0 usually called
the rate.

• Another interesting example is that of piecewise polynomial distribu-
tions. Consider finitely many polynomials P1, . . . , Pn and a finite set of
pairwise disjoint intervals I1 ∪ I2 ∪ · · · ∪ In covering [0, ∞) such that for
every k, Pk is non-negative over Ik and ∑k

∫
Ik

Pk = 1. This induces the
timing distribution

µ(t) = ∑
k

∫
Ik∩[0,t]

Pk(t).

• A special case of the previous example is given by piecewise affine
distributions, where the polynomials are affine functions.

• Another important special case of piecewise polynomial distributions
are the uniform distributions with parameters 0 ≤ a < b defining the
timing distribution

µ(t) =


1 if t < a,
t−a
b−a if t ∈ [a, b)
0 if x ≥ b.

• The simplest example is given by Dirac distributions defined for the
parameter a by µ(E) = 1 if a is in E, and 0 otherwise.

The following definition captures these examples, and more. For a class C
of timing distributions, we let Convex(C) be the smallest class of timing dis-
tributions containing C and closed under convex combinations, and similarly
Conv(C) adding closure under convolutions.

Lemma B.2.4. Let C be a class of timing distributions. Consider a semi-Markov
processM whose residence-time function uses timing distributions from C, a state s
and a word w, then PM(s, w) ∈ Conv(C).

Lemma B.2.4 is established by a straightforward induction on the word w
using the definition of PM(s, w).
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In the rest of the paper we will consider only distributions that are suit-
able for algorithmic manipulation. Clearly, we must be able to give them
as input to a computational device, so we assume they can be described by
finitely many rational parameters. Moreover, we require that testing inequal-
ities between them is decidable, since this is essential for determining the
faster-than relation. The next definition formalises this intuition.

Definition B.2.5 (Effective timing distributions). A class C of timing distribu-
tions is effective if, for any ε ≥ 0, b ∈ R≥0 ∪ {∞}, and µ1, µ2 ∈ Conv(C), it is
decidable whether µ1(t) ≥ µ2(t)− ε, for all t ≤ b. N

Many common classes of timing distributions are effective, and can be
decided using the existential theory of the reals. To show this, we make use
of the following lemma.

Lemma B.2.6. Let F1, F2 : R≥0 → [0, 1] be given timing distributions. If there
exists a surjective function T : [0, 1] → R≥0 such that the functions F1 ◦ T and
F2 ◦ T are semialgebraic, then it is decidable whether F1(t) ≥ F2(t) for all t ∈ R≥0.

Proof. Since F1 ◦ T and F2 ◦ T are semialgebraic, the formula ϕ defined by

ϕ = ∀t.((0 ≤ t ≤ 1) =⇒ F1(T(t)) ≥ F2(T(t)))

is expressible in the existential theory of the reals (or rather, its negation
is), so we can decide whether ϕ is true by exploiting the decidability of the
existential theory of the reals [18]. We now claim that F1(t) ≥ F2(t) for all t
is true if and only if ϕ is true.

Assume that F1(t) ≥ F2(t) for all t ∈ R≥0 is true. Pick an arbitrary
t′ ∈ [0, 1]. Then T(t′) ∈ R≥0, so we know that F1(T(t′)) ≥ F2(T(t′)), and
hence ϕ is true.

Next assume that ϕ is true and pick an arbitrary t′ ∈ R≥0. Because T is
surjective, there must be some y ∈ [0, 1] such that t′ = T(y). Hence we know
that

F1(t′) = F1(T(y)) ≥ F2(T(y)) = F2(t′). �

In Lemma B.2.6, T is a transformation or variable change which turns the
given functions into piecewise polynomial functions. The requirement that
the transformation be surjective ensures that deciding the inequality between
the transformed functions is equivalent to deciding it between the original
functions.

Proposition B.2.7. The following classes of timing distributions are effective:

• exponential distributions with rational rates,

• piecewise polynomial distributions,
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• piecewise affine distributions,

• uniform distributions,

• Dirac distributions.

Proof. Let C be a class of timing distributions. We want to decide whether

(µ1 ∗ · · · ∗ µn)(t) ≥ (ν1 ∗ · · · ∗ νn)(t) for all t ∈ R≥0

whenever µ1, . . . , µn, ν1, . . . , νn ∈ C. If we let F1(t) = (µ1 ∗ · · · ∗ µn)(t) and
F2(t) = (ν1 ∗ · · · ∗ νn)(t), then Lemma B.2.6 tells us that we can decide
whether F1(t) ≥ F2(t) for all t ∈ R≥0 by finding an appropriate surjective
function T : [0, 1]→ R≥0.

When C is either the class of Dirac distributions, the class of piecewise
affine distributions, or the class of piecewise polynomial distributions, this is
trivial, since these are all already semialgebraic. Hence we can simply take T
to be the identity function. Although it is perhaps less obvious, the same is
also true when C is the class of uniform distributions [11].

This leaves the case when C is the class of exponential distributions with
rational rates. Assume that each µi has rate λi and each νi has rate λ′i. It was
shown in [4] that F1 has the following closed form. Assume that there are
m distinct rates among λ1, . . . , λn and reorder λ1, . . . , λn such that λ1, . . . , λr1

are identical, λr1+1, . . . , λr1+r2 are identical, and so forth. This reordering
does not change the values of F1 because convolution is both associative and
commutative. Now let α1 = λr1 , α2 = λr1+r2 , . . . , αm = λr1+···+rm . The closed
form of F1 is then given by

F1(t) = 1−
m

∑
k=1

rk

∑
l=1

C1(k, l) · e−λk ·t,

where C1(k, l) is an expression that depends on k and l, but not on t. Note
also that C1(k, l) is expressible in the existential theory of the reals. Likewise,
F2 will have a closed form

F2(t) = 1−
m′

∑
k=1

r′k

∑
l=1

C2(k, l) · e−βk ·t.

Now let T : [0, 1]→ R≥0 be given by

T(x) =

{
0 if x = 0
− 1

gcd(λ1,...,λn ,λ′1,...,λ′n)
· ln(x) otherwise.

For convenience, we let θ = gcd(λ1, . . . , λn, λ′1, . . . , λ′n). Then T is surjective,
for if y ∈ R≥0, then x = e−θ·y ∈ [0, 1] and T(x) = y. Furthermore,

F1(T(x)) = 1−
m

∑
k=1

rk

∑
l=1

C1(k, l) · x
αk
θ ,
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and because θ divides αk for each k, it follows that F1 ◦ T is a polynomial
and hence semialgebraic. In a similar fashion we can show that F2 ◦ T is also
semialgebraic. �

Proposition B.2.7 relies on decidability results for the existential theory of
the reals [5, 18], implying that the most demanding operations above can be
performed in polynomial space.

An effective class C of timing distributions induces the set of semi-Markov
processes whose residence-time functions use timing distributions from C.
Furthermore, a given semi-Markov process has only finitely many states, and
hence can only use finitely many timing distributions. For our decidability
results we will therefore focus on finite classes of timing distributions. This
paper gives algorithmic results for generic effective classes of timing distribu-
tions. In our complexity analyses, we will always assume that the operations
on the timing distributions have a unit cost.

B.3 Hardness Results

We start the technical part of this article by hardness results inherited from
Markov processes. A Markov process is a semi-Markov process without the
residence-time function, and for a Markov process M = (S, Out, ∆), we de-
fine the probability

PM(s, aw) = ∑
s′∈S

∆(s)(s′, a) ·PM(s′)(w)

and
PM(s, ε) = 1

for the empty word. The faster-than relation for Markov processes is then
s � s′ if for all w we have PM(s, w) ≥ PM(s′, w).

We show that the faster-than problem for Markov processes, and hence
also for semi-Markov processes, is undecidable in general, can not be multi-
plicatively approximated, and relates to an open problem in number theory
even in a restricted case. These limitations shape and motivate our positive
results, which will be the topic of the remaining sections.

We first explain how hardness results for Markov processes directly imply
hardness results for semi-Markov processes. The following lemma formalises
the two ways semi-Markov processes subsume Markov processes.

Lemma B.3.1. Consider a semi-Markov processM = (S, Out, ∆, ρ) and its induced
Markov processM′ = (S, Out, ∆).

• If ρ is constant, i.e. for all s, s′ we have ρ(s) = ρ(s′), then for all w, for all t,
we have PM(s, w, t) = PM′(s, w) · (ρ(s) ∗ · · · ∗ ρ(s)︸ ︷︷ ︸

|w| times

)(t).
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• If for all s, ρ(s) is the Dirac distribution for 0, then for all w, for all t, we have
PM(s, w, t) = PM′(s, w).

In particular in both cases, the following holds: for s, s′ two states, we have s � s′ in
M if, and only if, s � s′ inM′.

We will use Lemma B.3.1 to draw corollaries about semi-Markov pro-
cesses from hardness results of Markov processes.

The hardness results of this section will be based on a connection to prob-
abilistic automata. A probabilistic automaton is given by

A = (Q, A, q0, ∆ : Q× A→ D=1(Q), F),

where Q is the state space, A is the alphabet, q0 is an initial state, ∆ is the
transition function, and F is a set of final or accepting states. Any probabilis-
tic automaton A induces the probability PA(w) that a run over w ∈ A∗ is
accepting, i.e. starts in q0 and ends in F. The key property of probabilistic
automata that we will exploit is the undecidability of the universality prob-
lem, which was proved in [15], see also [9]. The universality problem is as
follows: given a probabilistic automaton A, determine whether for all words
w in A+ we have PA(w) ≥ 1

2 .
We describe a construction which given a probabilistic automaton A, con-

structs the derived Markov process M(A). The set of states of M(A) is
Q × {`, r} ∪ {>}, where > is a new state. Let s = (q0, `) and s′ = (q0, r),
where q0 is the initial state of A. The set of output labels is A, and the
transition function ∆′ is defined as follows:

∆′((p, `))((q, `), a) =
1

2|A|∆(p, a)(q) ∆′((p, `))(>, a) =
1

2|A| if p ∈ F

∆′((p, r))((q, r), a) =
1

2|A|∆(p, a)(q) ∆′((p, r))(>, a) =
1

4|A| .

Lemma B.3.2.

PM(A)(s, wa) =
1

(2|A|)|w|+1
(1 + PA(w))

and

PM(A)(s
′, wa) =

1
(2|A|)|w|+1

(
1 +

1
2

)
.

Proof. First observe that it can easily be proven by induction that

PM(A)(s, w) = ∑
s1∈S
· · · ∑

sn∈S
∆′(s)(s1, w1) · · ·∆′(sn−1)(sn, wn)

where w = w1 . . . wn by simply unfolding the inductive definition of P.
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For the first equality, we therefore have

PM(A)(s, wa)

= ∑
s1∈S
· · · ∑

sn+1∈S
∆′(s)(s1, w1) · · ·∆′(sn−1)(sn, wn) · ∆′(sn)(sn+1, a)

= ∑
s1∈Q×{`}

· · · ∑
sn+1∈Q×{`}

1
2|A|∆(s, w1)(s1) · · ·

1
2|A|∆(sn, a)(sn+1)

+ ∑
s1∈Q×{`}

· · · ∑
sn∈Q×{`}

1
2|A|∆(s, w1)(s1) · · ·∆′(sn)(>, a)

=
1

(2|A|)|w|+1
+

1
(2|A|)|w|+1

·PA(w)

=
1

(2|A|)|w|+1
(1 + PA(w)) .

For the second equality, we get

PM(A)(s
′, wa)

= ∑
s1∈S
· · · ∑

sn+1∈S
∆′(s)(s1, w1) · · ·∆′(sn−1)(sn, wn) · ∆′(sn)(sn+1, a)

= ∑
s1∈Q×{r}

· · · ∑
sn+1∈Q×{r}

1
2|A|∆(s, w1)(s1) · · ·

1
2|A|∆(sn, a)(sn+1)

+ ∑
s1∈Q×{r}

· · · ∑
sn∈Q×{r}

1
2|A|∆(s, w1)(s1) · · ·

1
4|A|

=
1

(2|A|)|w|+1
+

1
(2|A|)|w|

· 1
4|A|

=
1

(2|A|)|w|+1

(
1 +

1
2

)
. �

Theorem B.3.3. The faster-than problem is undecidable for Markov processes.

Proof. Given a probabilistic automaton A, we construct the derived Markov
process M(A). Thanks to the equalities in Lemma B.3.2, A is universal if,
and only if, s � s′. �

We discuss three approaches to recover decidability.
A first approach is to look for structural restrictions on the underlying

graph. However, the undecidability result above for probabilistic automata is
quite robust in this aspect, as it already applies when the underlying graph is
acyclic, meaning that the only loops are self-loops. In spite of this, we present
in Section B.5 an algorithm to solve the faster-than problem for unambiguous
semi-Markov processes.
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A second approach is to restrict the observations. The undecidability result
above holds already when there are two different output letters, hence a nat-
ural question is to look at what happens when we only have one output letter.
Interestingly, specialising the construction above yields a reduction from the
Positivity problem. This problem appears in various contexts, prominently
in number theory, and its decidability status has been an open problem for
at least 30 years [14]. Formally, the Positivity problem reads: given a linear
recurrence sequence, are all terms of the sequence non-negative? It has been
shown that the universality problem for probabilistic automata with one let-
ter alphabet is equivalent to the Positivity problem [1]. Thus, using again the
derived Markov process M(A) for a probabilistic automaton A with only
one label, we obtain the following result.

Theorem B.3.4. The faster-than problem is Positivity-hard over Markov processes
with one output label.

A third approach is approximations. However, we can exploit further the
connection we made with probabilistic automata, obtaining an impossibility
result for multiplicative approximation. We rely on the following celebrated the-
orem for probabilistic automata due to Condon and Lipton [6]. The following
formulation of their theorem is described in detail in [7].

Theorem B.3.5 ([6]). Let 0 < α < β < 1 be two constants. There is no algorithm
which, given a probabilistic automaton A,

• if for all w we have PA(w) ≥ β, returns YES,

• if there exists w such that PA(w) ≤ α, returns NO.

Theorem B.3.6. Let 0 < ε < 1
3 be a constant. There is no algorithm which, given a

Markov processM and two states s, s′,

• if for all w we have PM(s, w) ≥ PM(s′, w), returns YES,

• if there exists w such that PM(s, w) ≤ PM(s′, w) · (1− ε), returns NO.

Proof. Assume towards a contradiction that there exists an algorithm as de-
scribed in the theorem. We then construct an algorithm satisfying the speci-
fications of Theorem B.3.5.

Let α = 1
2 −

3ε
2 and β = 1

2 , and let A be a probabilistic automaton. We
now run the algorithm on the derived Markov processM(A).

• If for all w we have PM(A)(s, w) ≥ PM(A)(s′, w), then the algorithm
returns YES. Indeed, this is equivalent to PA(w) ≥ β.

• If there exists w such that PM(A)(s, w) ≤ PM(A)(s′, w) · (1− ε), then
the algorithm returns NO. Indeed, this is equivalent to PA(w) ≤ α.

165



Paper B.

Hence we constructed an algorithm satisfying the specifications of Theo-
rem B.3.5, a contradiction. �

These hardness results for Markov processes together with Lemma B.3.1,
gives us the following hardness results for semi-Markov processes.

Corollary B.3.7. The following holds for semi-Markov processes for any class of
timing distributions.

• The faster-than problem is undecidable.

• The faster-than problem with only one output label is Positivity-hard.

• The faster-than problem can not be multiplicatively approximated.

B.4 Time-Bounded Additive Approximation

Instead of considering multiplicative approximation, we can also consider
additive approximation, meaning that we want to decide whether for all w
and t we have PM(s, w, t) ≥ PM(s′, w, t) − ε for some constant ε > 0. In
this section, we present an algorithm to solve the problem of approximating
additively the faster-than relation with two assumptions:

• time-bounded: we only look at the behaviours up to a given bound b in
R≥0,

• slow residence-time functions: each transition takes some time to fire.

As we will show, the combination of these two assumptions imply that the
relevant words have bounded length. This is in contrast to the impossibility
of approximating the faster-than relation multiplicatively that we showed in
Sect. B.3. More precisely, we consider the time-bounded variant of the faster-
than problem: given a time bound b in R≥0, a semi-Markov process, and
two states s and s′, determine whether for all t ≤ b and w it holds that
PM(s, w, t) ≥ PM(s′, w, t).

We first observe that this restriction of the faster-than problem does not
make any of the problems in Sect. B.3 easier for semi-Markov processes.
Indeed, if the residence-time functions are all Dirac distributions on 0, then
all transitions are fired instantaneously, and the time-bounded restriction is
immaterial. Thus we focus on distributions that do not fire instantaneously,
as made precise by the following definition.

Definition B.4.1 (Slow distributions). We say that a class C of timing distribu-
tions is slow if for all finite subset C0 of C, there exists a computable function
ε : N×R≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈ Convex(C0) we
have (µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0. N
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Given a slow and effective class C of timing distributions, we can do addi-
tive approximation of the time-bounded faster-than problem in the following
way. We introduce the following notation. Fix a semi-Markov processM. Let
CM = Convex({ρ(s) | s ∈ S}), and n in N. We define the timing distribution
FM,n by FM,n(t) = 1 if n = 0 and otherwise

FM,n(t) = sup {(µ1 ∗ · · · ∗ µn)(t) | µ1, . . . , µn ∈ CM} .

Lemma B.4.2. For all s and all w, we have PM(s, w) ≤ FM,|w|.

Proof. We proceed by induction on the length of w. It is clear for |w| = 0.

PM(s, aw) = ∑
s′∈S

∆(s)(s′, a) · ρ(s) ∗PM(s′, w)

≤ ∑
s′∈S

∆(s)(s′, a) · ρ(s)︸ ︷︷ ︸
∈CM

∗FM,|w|

≤ FM,|w|+1.

This concludes. �

Theorem B.4.3. There exists an additive approximation algorithm for the time-
bounded faster-than problem over semi-Markov processes for all slow and effective
classes of timing distributions.

In other words, for a constant ε > 0, there exists an algorithm which, given a
semi-Markov processM, two states s, s′, and a bound b in R≥0, determines whether

∀w, ∀t ≤ b, PM(s, w, t) ≥ PM(s′, w, t)− ε.

Proof. Let CM = Convex({ρ(s) | s ∈ S}), since S is finite there exists a com-
putable function ε : N×R≥0 → [0, 1] such that for all n, t, and µ1, . . . , µn ∈
CM we have (µ1 ∗ · · · ∗ µn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0. Given ε > 0,
there exists N such that ε(N, b) < ε. Let n ≥ N. By assumption

(µ1 ∗ · · · ∗ µn)(b) ≤ ε(n, b) ≤ ε(N, b) < ε

for all µ1, . . . , µn ∈ CM. Taking the supremum over µ1, . . . , µn, we then get
FM,n(b) < ε, and by Lemma B.4.2, this means that for all w of length at least
N, we have PM(s′, w, b) < ε. Hence it holds trivially that for all t ≤ b and w
of length at least N, we have PM(s, w, t) ≥ PM(s′, w, t)− ε.

Thus the algorithm checks whether for all words of length less than N, for
all t ≤ b, we have PM(s, w, t) ≥ PM(s′, w, t)− ε, which is decidable thanks
to the effectiveness of C. �

Next we show that there are interesting classes of timing distributions that
are indeed slow. For this we introduce a class of timing distributions that are
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not just slow, but furthermore are guaranteed to converge to zero rapidly.
We say that a timing distribution µ is very slow if there exists a computable
function ε : R≥0 → [0, 1] such that limt→0

ε(t)
t = 0 and for all t, we have

µ(t) ≤ ε(t). In order to show that very slow timing distributions are slow, we
need the following lemma.

Lemma B.4.4. Let µ1, . . . , µn be timing distributions. Then

(µ1 ∗ µ2 ∗ · · · ∗ µn)(t) ≤
n

∑
i=1

µi

(
t
n

)
.

Proof. We proceed by induction on n. The case of n = 1 is trivial. Recall that
for any non-negative function f and measure µ we have∫

E
f (x)µ(dx) ≤ µ(E) · (sup

E
f (x)). (B.1)

Let µ = µ1 ∗ · · · ∗ µn.

(µ1 ∗ · · · ∗ µn+1)(t)

=
∫ t

0
µ(t− x)µn+1(dx)

=
∫ nt

n+1

0
µ(t− x)µn+1(dx) +

∫ t

nt
n+1

µ(t− x)µn+1(dx)

=
∫ nt

n+1

0
µ(t− x)µn+1(dx) +

∫ t
n+1

0
µ

(
t

n + 1
− u

)
µn+1(du)

≤ µ

(
nt

n + 1

)
+ µn+1

(
t− nt

n + 1

)
≤

n

∑
i=1

µi

(
n

n + 1
t
n

)
+ µn+1

(
t

n + 1

)
=

n+1

∑
i=1

µi

(
t

n + 1

)
.

The third equality is the change of variable u = x− nt
n+1 . The first inequality

uses for each summand the inequality (B.1). The second inequality is by
induction hypothesis. �

We can now prove the following theorem.

Theorem B.4.5. The following classes of timing distributions are slow:

• very slow distributions,

• uniform distributions, and

• exponential distributions.
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Proof. Let C be a class of very slow timing distributions, and

C0 = {µ1, . . . , µn}

a finite subset of C. Since every timing distribution in C is very slow, for
every i ∈ {1, . . . , n} there exists a function εi such that µi(t) ≤ εi(t) for all
t. Let ε(n, t) = n ·max

{
εi
( t

n
)
| i ∈ {1, . . . , n}

}
. Note that limn→∞ ε(n, t) = 0.

Let ν1, . . . , νn in Convex(C0), we have (ν1 ∗ · · · ∗ νn)(t) ≤ ∑n
i=1 νi

( t
n
)

thanks to
Lemma B.4.4. This implies that (ν1 ∗ · · · ∗ νn)(t) ≤ ε(n, t), which concludes.

For exponential distributions, we proceed as follows. Let C0 be a finite
class of exponential distributions. Let λ > 0 be the rate of the slowest expo-
nential distributions appearing in C0, and let µ(t) = 1− e−λt. Then for any
µ1, . . . , µn in Convex(C0) we have

(µ1 ∗ · · · ∗ µn)(t) ≤ (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t).

The distribution µ ∗ · · · ∗ µ is called the Gamma (or more precisely, Erlang)
distribution, and there is a computable closed form for it. In particular, if we
let

ε(n, t) = (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t),

we have limn→∞ ε(n, b) = 0, so exponential distributions are slow.
Uniform distributions can be handled using a similar way as for expo-

nential distributions. Let C0 be a finite class of uniform distributions with
parameters ai and bi for i ∈ {1, . . . , n}. Let a be the smallest ai and b the
smallest bi, and let µ be the uniform distribution with parameters a and b.
Then it follows that

(µ1 ∗ · · · ∗ µn)(t) ≤ (µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

)(t) = ε(n, t).

Then (µ ∗ · · · ∗ µ) also has a nice closed form [11] and limn→∞ ε(n, b) = 0. �

B.5 Unambiguous Semi-Markov Processes

In order to regain decidability of the faster-than relation, we can look at struc-
turally simpler special cases of semi-Markov processes. Here we will focus
on semi-Markov processes such that each output word induces at most one
trace of states. More precisely, we will say that a semi-Markov process is un-
ambiguous if for every s in S and a in Out, there exists at most one s′ in S such
that ∆(s)(s′, a) 6= 0. A related notion of bounded ambiguity has been utilised
to obtain decidability results in the context of probabilistic automata [8]. We
introduce the following notation for unambiguous semi-Markov processes:
T(s, w) is the state reached after emitting w from s.
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s1

s2 s3

a, 1
2

b, 1
2

a, 1
a, 1

3b, 2
3

Figure B.5.1: An example of an unambiguous semi-Markov process.

Example B.5.1. Figure B.5.1 gives an example of an unambiguous semi-
Markov process. For each of the three states, there is at most one state that
can be reached by a given output label. However, there need not be a transi-
tion for each output label from every state. In this example, the state s2 has
no b-transition, so for instance T(s1, ab) = s2, but T(s1, abb) is undefined. �

Theorem B.5.2. The faster-than problem is decidable in coNP over unambiguous
semi-Markov processes for all effective classes of timing distributions.

Theorem B.5.2 follows from the next proposition.

Proposition B.5.3. Consider an unambiguous semi-Markov process M and two
states s, s′. Let L(s, s′) be the set of loops reachable from (s, s′):{

(p, p′, v) ∈ S2 × Out≤S2
∣∣∣∣ ∃w ∈ Out≤S2

,
T(s, w) = p, T(s′, w) = p′,
T(p, v) = p, T(p′, v) = p′

}
.

We have s � s′ if, and only if

• for all w in Out≤S2
, we have PM(s, w) ≥ PM(s′, w), and

• for all (p, p′, v) in L(s, s′), we have PM(p, v) ≥ PM(p′, v).

Before going into the proof, we explain how to use Proposition B.5.3 to
construct an algorithm solving the faster-than problem over unambiguous
semi-Markov processes.

1. The first step is to compute L(s, s′), which can be done in polynomial
time using a simple graph analysis,

2. The second step is to check the two properties, which both can be re-
duced to exponentially many queries of the form: µ1 ≥ µ2 for µ1, µ2 in
Conv(C).

To obtain a coNP algorithm, in the second step we guess which of the two
properties is not satisfied and a witness of polynomial length, which is either
a word of quadratic length for the first property, or two states and a word of
quadratic length for the second property.

We split the proof of Proposition B.5.3 into two lemmas, each proving one
direction of the proposition. The following lemma gives the first direction.
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Lemma B.5.4. If s � s′, then, for all (p, p′, v) ∈ L(s, s′), PM(p, v) ≥ PM(p′, v).

Proof. Assume that s is faster than s′ and let (p, p′) be in L(s, s′). There exist
w, v in Out∗ such that T(s, w) = p, T(s′, w) = p′, T(p, v) = p, T(p′, v) = p′.
Let n in N. Since s is faster than s′, we have PM(s, wvn) ≥ PM(s′, wvn). We
have

PM(s, wvn) = PM(s, w) ∗PM(p, v) ∗ · · · ∗PM(p, v)︸ ︷︷ ︸
n times

PM(s′, wvn) = PM(s′, w) ∗PM(p′, v) ∗ · · · ∗PM(p′, v)︸ ︷︷ ︸
n times

.

Let Xs,w be the random variable measuring the time elapsed from s emitting
w. Similarly, we define Xp,v, Ys′ ,w and Yp′ ,v. We have: for all n in N, for all t,

PM(Xs,w + nXp,v ≤ t) ≥ PM(Ys′ ,w + nYp′ ,v ≤ t),

Dividing both sides by n yields

PM

(
Xs,w

n
+ Xp,v ≤

t
n

)
≥ PM

(
Ys′ ,w

n
+ Yp′ ,v ≤

t
n

)
.

We make the change of variables x = t
n : for all n in N, for all x we have

PM

(
Xs,w

n
+ Xp,v ≤ x

)
≥ PM

(
Ys′ ,w

n
+ Yp′ ,v ≤ x

)
.

Letting n→ ∞, we then obtain, for all x

PM(Xp,v ≤ x) ≥ PM(Yp′ ,v ≤ x),

which is equivalent to PM(p, v) ≥ PM(p′, v). �

The following lemma gives the converse implication of Proposition B.5.3.

Lemma B.5.5. Assume that

• for all w in Out≤S2
, we have PM(s, w) ≥ PM(s′, w), and

• for all (p, p′, v) in L(s, s′), we have PM(p, v) ≥ PM(p′, v).

Then s � s′.

Proof. We prove that for all w, we have PM(s, w) ≥ PM(s′, w) by induction
on the length of w.

For w of length at most S2, this is ensured by the first assumption. Let w
be a word longer than S2. There exist two states p, p′ such that p is reached
by s and p′ by s′ after emitting i letters of w and again after emitting j letters
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of w, with j at most S2. Let w = w1 v w2 where v starts at position i and ends
at position j. By construction (p, p′, v) is in L(s, s′). We have

PM(s, w) = PM(s, w1) ∗PM(p, v) ∗PM(p, w2)

= PM(s, w1) ∗PM(p, w2) ∗PM(p, v)

= PM(s, w1w2) ∗PM(p, v)

≥ PM(s′, w1w2) ∗PM(p′, v)

= PM(s′, w1) ∗PM(p′, w2) ∗PM(p′, v)

= PM(s′, w1) ∗PM(p′, v) ∗PM(p′, w2)

= PM(s′, w).

The equalities use the associativity and commutativity of the convolution.
The inequality PM(s, w1w2) ≥ PM(s′, w1w2) holds by induction hypothesis,
because w1w2 is shorter than w. The inequality PM(p, v) ≥ PM(p′, v) holds
thanks to the second assumption. �

B.6 Logic

In this section we give a logical characterisation of the faster-than relation.
The logic needed for this turns out to be quite simple, and it therefore pos-
sesses many nice properties. In particular, every formula is satisfiable by a
finite model.

The logic L consists of path formulas

ϕ ::= > | 〈a〉ϕ

and state formulas
ψ ::= P≤t

≥p(ϕ)

where t, p ∈ Q≥0.
For the semantics of L, we consider paths π = a1a2 · · · ∈ Out∗ to be

infinite sequences of output labels, and we let π[i] = ai be the ith label of π.
The semantics are then given by

π |= > always
π |= 〈a〉ϕ iff π[1] = a and π|2 |= ϕ

M, s |= P≤t
≥p(ϕ) iff PM(s,W(ϕ))(t) ≥ p

where π|2 is the tail of π, and W(ϕ) is the longest common prefix of all paths
which satisfy ϕ.

Theorem B.6.1. s � s′ if and only ifM, s′ |= ψ impliesM, s |= ψ, for all ψ ∈ L.
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Proof. ( =⇒ ) Let s � s′ and assume M, s′ |= P≤t
≥p(ϕ). One can easily prove

by structural induction on ϕ that PM(s′,W(ϕ)) = PM(s′, a1 . . . an) for some
a1, . . . , an. Hence we know that

PM(s′,W(ϕ))(t) = PM(s′, a1 . . . an)(t) ≥ p,

and since s � s′, this implies that

PM(s, a1 . . . an)(t) ≥ PM(s′, a1 . . . an)(t) ≥ p,

so PM(s,W(ϕ))(t) ≥ p.
(⇐= ) We show the contrapositive. Assume that s 6� s′, meaning that

there exists a1 . . . an and t such that

PM(s, a1 . . . an)(t) < PM(s′, a1 . . . an)(t).

Then we can find a rational q such that

PM(s, a1 . . . an)(t) < q < PM(s′, a1 . . . an)(t).

Now let ε = q−P(s, a1 . . . an)(t) > 0. By right-continuity, there exists some
δ > 0 such that t < x < t + δ implies

PM(s, a1 . . . an)(x)−PM(s, a1 . . . an)(t) < ε.

Choose a rational q′ such that t < q′ < t + δ in order to obtain

PM(s, a1 . . . an)(q′) < q ≤ PM(s′, a1 . . . an)(q′).

But then we have

M, s′ |= P≤q′
≥q (〈a1〉 . . . 〈an〉>) and M, s 6|= P≤q′

≥q (〈a1〉 . . . 〈an〉>). �

Next we show that every formula has a finite model, which also implies
that every formula is satisfiable.

Theorem B.6.2 (Finite model property). Any formula ψ ∈ L has a finite semi-
Markov process satisfying it.

Proof. For any path formula ϕ = 〈a1〉 . . . 〈an〉>, we construct the model
Mϕ = (S, τ, ρ) as follows. Let S = {s1, . . . sn+1}, and let

τ(si)(si+1, a) =

{
1 if a = ai

0 otherwise.

Finally, let ρ(s) = δ0 be the Dirac distribution at 0 for all states.
Now it is easy to see thatMϕ, s1 |= P≤t

≥p(ϕ) for any t and q. �
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Corollary B.6.3. Every formula ψ is satisfiable, and hence the satisfiability problem
is trivially decidable.

Lastly we consider the model checking problem for L. This problem can
be solved by once more making use of the existential theory of the reals, thus
giving a PSPACE algorithm.

Theorem B.6.4. The model checking problem is decidable for any semi-Markov pro-
cess with residence-time distributions from one of the following classes of timing
distributions.

• Exponential distributions,

• piecewise polynomial distributions,

• piecewise affine distributions,

• uniform distributions, or

• Dirac distributions.

Proof. This essentially follows from Proposition B.2.7, by letting the right-
hand side of the inequality be a constant. �

B.7 Conclusion and Open Problems

We studied the model of semi-Markov processes where the timing behaviour
can be described by arbitrary timing distributions. We have introduced a
trace-based relation called the faster-than relation which asks that for any
prefix and any time bound, the probability of outputting a word with that
prefix within the time bound is higher in the faster process than in the slower
process. We have shown through a connection to probabilistic automata that
the faster-than relation is highly undecidable. It is undecidable in general,
and remains Positivity-hard even for one output label. Furthermore, approx-
imating the faster-than relation up to a multiplicative constant is impossible.

However, we constructed algorithms for special cases of the faster-than
problem. We have shown that if one considers approximating up to an addi-
tive constant rather than a multiplicative constant, and if one gives a bound
on the time up to which one is interested in comparing the two processes,
then approximation can be done for timing distributions in which we are
sure to spend some amount of time to take a transition. In addition, we have
shown that the faster-than relation is decidable and in coNP for unambigu-
ous processes, in which there is a unique successor state for every output
label. Furthermore, we have given a logical characterisation of the faster-
than relation and shown that both the satisfiability and the model checking
problem for this logic are decidable.
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B.8. References

In this paper, we have focused on the generative model, where the labels
are treated as outputs. An alternative viewpoint is the reactive model, where
the labels are instead treated as inputs [19]. While all the undecidability and
hardness results we have shown can also easily be shown to hold for the
reactive case, the same is not true for the algorithms we have constructed.
It is non-trivial to extend these algorithms to the reactive case, and the main
obstacle in doing so is that for reactive systems, one has to also handle sched-
ulers, often uncountably many.
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C.1. Introduction

Abstract

When modeling concurrent or cyber-physical systems, non-functional requirements
such as time are important to consider. In order to improve the timing aspects of
a model, it is necessary to have some notion of what it means for a process to be
faster than another, which can guide the stepwise refinement of the model. To this
end we study a faster-than relation for semi-Markov decision processes and com-
pare it to standard notions for relating systems. We show that checking whether a
system is faster than another one is undecidable, but as a positive result we give a
decision procedure for approximating it. Furthermore, we consider the compositional
aspects of this relation, and show that the faster-than relation is not a precongruence
with respect to parallel composition, hence giving rise to so-called parallel timing
anomalies. We take the first steps toward understanding this problem by identifying
decidable conditions sufficient to avoid parallel timing anomalies in the absence of
non-determinism.

C.1 Introduction

Timing aspects are important when considering real-time or cyber-physical
systems. For example, they are of interest in real-time embedded systems
when one wants to verify the worst-case execution time for guaranteeing
minimal system performance or in safety-critical systems when one needs to
ensure that unavoidable rigid deadlines will always be met [12].

Semi-Markov decision processes are continuous-time Markov decision
processes where the residence-time on states is governed by generic distri-
butions on the positive real line. These systems have been extensively used
to model real-time cyber-physical systems [16, 26].

For reasoning about timing aspects it is important to understand what
it formally means for a real-time or cyber-physical system to operate faster
than another. To this end we define the notion of faster-than relation for semi-
Markov decision processes. The definition of faster-than relation we propose
in this paper is a reactive version of an analogous notion of faster-than re-
lation previously introduced in [19] for the case of generative systems. Ac-
cording to our relation, a semi-Markov decision process is faster than another
one when it reacts to any sequence of inputs with equal or higher probability
than the slower process, within the same time bound.

Similarly to [19], we show that also the faster-than relation on semi-
Markov decision processes is undecidable. However, by extending the ap-
proximation algorithm from [19], we obtain an approximation algorithm for
the case where we only consider timed events within some fixed time bound.
The extension of the algorithm in [19] is not a trivial task, because the defi-
nition of faster-than relation on semi-Markov decision processes requires us
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Context

W

Component

V

slow

Component

U

fast

Figure C.1.1: The context W operates in parallel with the component V. If the component U is
faster than V, then if we replace V with U, we would expect the overall behaviour to also be
faster.

to deal with universal and existential quantifications over schedulers, which
were not present in the original definition in [19] for the case of generative
systems.

Often, complex cyber-physical systems are organised as concurrent sys-
tems of multiple components running in parallel and interacting with each
other. Such systems are better analysed compositionally, that is, by breaking
them into smaller components that are more easily examined [4]. However, it
is not always the case that an analysis on the components carries over to the
full composite system. A well known example of this, occurring in real-time
systems such as scheduling for processors [3, 13], are timing anomalies, that is,
when locally faster behaviour leads to a globally slower behaviour [11].

In this paper we study the compositional aspects of the faster-than rela-
tion for semi-Markov decision processes. The situation we are interested in
is depicted in Figure C.1.1 where we have a composite system consisting of
a context W and a component V, and we want to understand what happens
when we replace V with another component U that is faster than V. We
consider some common notions of parallel composition, and show that tim-
ing anomalies can occur using our faster-than relation, even in the absence
of non-determinism. This shows that timing anomalies are not caused by
non-determinism, but arise from the linear timing behaviour of processes.

We then take a first step toward recovering compositional reasoning for
the faster-than relation, by identifying conditions sufficient for avoiding tim-
ing anomalies, which we call monotonicity. Presently we do not know whether
these conditions are decidable, however we introduce another set of condi-
tions, called strong monotonicity, which are decidable. Unfortunately, strong
monotonicity only applies to processes which have no non-determinism.

Related Work.

The notion of a faster-than relation has been studied in many different con-
texts throughout the literature. The work most closely related to ours is that
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of Pedersen et al. [19], which considers a generative version of the faster-than
relation, whereas we study the reactive version. The focus of [19] is on decid-
ability issues, and the faster-than relation is proved undecidable. However,
positive results are also given in the form of an approximation algorithm,
and a decidability result for unambiguous processes. Baier et al. [1] de-
fine, among other relations, a simulation relation for continuous-time Markov
chains which can be interpreted as a faster-than relation, and study its log-
ical characterisation. However, none of these works consider compositional
aspects.

For process algebras, discrete-time faster-than relations have been defined
for variations of Milner’s CCS, and shown to be precongruences with respect
to parallel composition [5, 14, 17, 22]. Lüttgen and Vogler [15] attempt to
unify some of these process algebraic approaches and also consider the issue
of parallel timing anomalies. For Petri nets, Vogler [27, 28] considers a testing
preorder as a faster-than relation and shows that this is a precongruence
with respect to parallel composition. Geilen et al. [6] introduces a refinement
principle for timed actor interfaces under the slogan “the earlier, the better”,
which can also be seen as an example of a faster-than relation.

Work on timing anomalies date back to at least 1969 [8], but the most
influential paper in the area is probably that of Lundqvist and Stenström
[13], in which they show that timing anomalies can occur in dynamically
scheduled processors, contrary to what most people assumed at the time.
More recent work has focused on compositional aspects [11] and defining
timing anomalies formally, using transition systems as the formalism [3, 21].

C.2 Notation and Preliminaries

In this section we fix some notation and recall concepts that are used through-
out the rest of the paper. Let N denote the natural numbers and let R≥0 de-
note the non-negative real numbers, which we equip with the standard Borel
σ-algebra B. For any set X, let D(X) denote the set of probability measures
on X, and let D≤(X) denote the set of subprobability measures on X. For an
element x ∈ X of some set X, we will use δx to denote the Dirac measure at
x defined as δx(y) = 1 if x = y and δx(y) = 0 otherwise. We fix a non-empty,
countable set L of labels or actions and equip them with the discrete σ-algebra
ΣL.

For a probability measure µ ∈ D(R≥0), we denote by Fµ its cumulative
distribution function (CDF) defined as Fµ(t) = µ([0, t]), for all t ∈ R≥0. We
will denote by Exp[θ] the CDF of an exponential distribution with rate θ > 0.
The convolution of two probability measures µ, ν ∈ D(R≥0), written µ ∗ ν, is
the probability measure on R≥0 given by (µ ∗ ν)(B) =

∫ ∞
−∞ ν(B− x) µ(dx),

for all B ∈ B [2]. Convolution is associative, i.e., µ ∗ (ν ∗ η) = (µ ∗ ν) ∗ η, and
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commutative, i.e., µ ∗ ν = ν ∗ µ.

C.3 Semi-Markov Decision Processes

In this section we recall the definition of semi-Markov decision processes.

Definition C.3.1. A semi-Markov decision process (SMDP) is a tuple M =
(S, τ, ρ) where

• S is a non-empty, countable set of states,

• τ : S× L→ D≤(S) is a transition probability function, and

• ρ : S→ D(R≥0) is a residence-time probability function. N

The operational behaviour of an SMDP M = (S, τ, ρ) is as follows. The
process in the state s ∈ S reacts to an external input a ∈ L provided by
the environment by changing its state to s′ ∈ S within time t ∈ R≥0 with
probability τ(s, a)(s′) · ρ(s)([0, t]).

Notice that Markov decision processes are a special case of SMDPs where
for all s ∈ S, ρ(s) = δ0 (i.e. transitions happen instantaneously), and that
continuous-time Markov decision processes are also a special case of SMDPs
where, for all states s ∈ S, Fρ(s) = Exp[θs] for some rate θs ∈ R≥0.

The executions of an SMDP M = (S, τ, ρ) are infinite timed transition
sequences of the form π = (s1, t1, a1)(s2, t2, a2) · · · ∈ (S×R≥0 × L)ω, repre-
senting the fact that M waited in state si for ti time units after the action ai
was input. We will refer to executions of an SMDP as timed action paths. For
i ∈ N, let π[i] = si, π〈i〉 = ti, πJiK = ai, π|i = (s1, t1, a1) . . . (si, ti, ai), and
π|i = (si, ti, ai)(si+1, ti+1, ai+1) . . . . We let Π(M) denote the set of all timed
action paths in M, and denote by Πn(M) = {π|n | π ∈ Π(M)} the set of
all prefixes of length n. Hereafter, we refer to timed action paths simply as
paths, unless we wish to distinguish between different kinds of paths.

Next we recall the standard construction of the measurable space of paths.
A cylinder set of rank n ≥ 1 is the set of all paths whose nth prefix is contained
in a common subset E ⊆ Πn(M), and is given by

C(E) = {π ∈ Π(M) | π|n ∈ E}.

It will be convenient to denote rectangular cylinders of the form

C(S1 × L1 × R1 × · · · × Sn × Ln × Rn),

for Si ⊆ S, Li ⊆ L, and Ri ⊆ R≥0, as

C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn).
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We denote by (Π(M), Σ) the measurable space of timed action paths, where
Σ is the smallest σ-algebra generated by the cylinders of the form

C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn)

for Si ∈ 2S, Li ∈ 2L, and Ri ∈ B.
In this paper we assume that external choices are resolved by means of

memoryless stochastic schedulers, however all the results we present still
hold for memoryful schedulers.

Definition C.3.2. Given an SMDP M = (S, τ, ρ), a scheduler for M is a func-
tion σ : S → D(L) that assigns to each state a probability distribution over
action labels. N

We will use the notation τσ(s, a)(s′) as shorthand for τ(s, a)(s′) · σ(s)(a) to
denote the probability of moving from state s to s′ under the stochastic choice
of a given by σ. Given an SMDP M and a scheduler σ for it, the probabilistic
execution of a path starting from the state s is governed by the probability
Pσ

M(s) on (Π(M), Σ) defined as follows.

Definition C.3.3. Let M = (S, τ, ρ) be an SMDP. Given a scheduler σ for M
and a state s ∈ S, Pσ

M(s) is defined as the unique (sub)probability measure1

on (Π(M), Σ) such that for all Si ∈ 2S, Li ∈ 2L, and Ri ∈ B, with 1 ≤ i ≤ n,
we have

Pσ
M(s)(C(S1, L1, R1)) = ρ(s)(R1) · ∑

a∈L1

∑
s′∈S1

τσ(s, a)(s′)

and

Pσ
M(s)(C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn))

= ρ(s)(R1) · ∑
a∈L1

∑
s′∈S1

τσ(s, a)(s′) ·Pσ
M(s′)(C(S2 . . . Sn, L2 . . . Ln, R2 . . . Rn)).

N

Intuitively, to get the probability Pσ
M(s)(C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn)),

we first take the probability that s takes a transition at a time point in R1,
given by ρ(s)(R1), after which we sum over the probabilities of all the possi-
ble transitions that can be taken by choosing a label a ∈ L1 and a state s′ ∈ S1,
and then the rest of the probability is given inductively by continuing on s′.
For the rest of the paper, we will omit the subscript M in Pσ

M whenever it is
clear from the context which SMDP is being referred to.

1Existence and uniqueness is guaranteed by the Hahn-Kolmogorov theorem [24].
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Figure C.4.1: If Fµ(t) ≥ Fν(t) for all t, then U is faster than V in the first states, and after that
their probabilities are the same, so U is faster than V.

C.4 A Faster-Than Relation

Our aim is to define a relation that formalises the intuitive idea of an SMDP
U being “faster than” another SMDP V. For a process U to be faster than
V, it must be able to execute any sequence of actions a1, . . . , an in less time
than V. Since we are dealing with probabilistic systems, we must speak of
the probability of executing a sequence of actions within some time bound.

Consider the two simple SMDPs U and V in Figure C.4.1 with just a
single transition label and initial states u0 and v0, respectively. Here µ, ν, η
are arbitrary probability measures on R≥0, representing the residence-time
distributions at each state. An arrow with label (p, a) means that when a is
chosen as the action, then the SMDP takes the transition given by the arrow
with probability p. The only finite sequences of actions that can be executed
in these SMDPs are of the form an for n > 0.

For U to be faster than V, it should be the case that for any time bound t
and no matter which scheduler σ we choose for V, we must be able to find
a scheduler σ′ for U such that there is an earlier time bound t′ ≤ t which
allows U to execute any sequence an within time t′ with higher or equal
probability than that of V executing the same sequence of actions within time
t. Formally, this amounts to saying that Pσ′(u0)(C(an, t′)) ≥ Pσ(v0)(C(an, t)),
where C(a1 . . . an, t) denotes the event of executing the sequence of actions
a1, . . . , an within time t. Hence, the type of events on which we want to focus
are the following.

Definition C.4.1. For any finite sequence of actions a1, . . . , an, and t ∈ R≥0,
we say that

C(a1 . . . an, t) = {π ∈ Π(M) | ∀1 ≤ i ≤ n, πJiK = ai and
n

∑
j=1

π〈j〉 ≤ t}

is a time-bounded cylinder. The length of a time-bounded cylinder is the length
of the sequence of actions in the time-bounded cylinder. N
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Note that C(a1 . . . an, t) is measurable in (Π(M), Σ), since

f : Πn(M)→ Sn × Ln ×Rn
≥0

given by

f ((s1, o1, t1), . . . , (sn, on, tn)) = (s1, . . . , sn), (o1, . . . , on), (t1, . . . , tn)

and
resn : Π(M)→ Πn(M)

given by
resn(π) = π|n

are both measurable, and hence

( f ◦ resn)
−1(Sn × {(a1, . . . , an)} × Bn

t ) = C(a1 . . . an, t)

is measurable, where Bn
t = {(r1, . . . , rn) ∈ Rn

≥0 | ∑n
i=1 ri ≤ t}.

Example C.4.2. The time-bounded cylinder C(aa, 2) denotes the set of all
paths where the first two output labels are both a’s, and the first two steps of
the path are completed within 2 time units. �

We will use the notation (M, s0) to indicate that M = (S, τ, ρ) is an SMDP
with initial state s0 ∈ S and call it pointed SMDP. For the rest of the paper,
we fix three SMDPs M = (S, τ, ρ), U = (SU , τU , ρU), and V = (SV , τV , ρV),
with initial states s0 ∈ S, u0 ∈ SU , v0 ∈ SV , respectively. Now we are ready
to define what it means for an SMDP to be “faster than” another one.

Definition C.4.3 (Faster-than). We say that U is faster than V, written U �
V, if for all schedulers σ for V, time bounds t, and sequences of actions
a1 . . . an, there exists a scheduler σ′ for U and time bound t′ ≤ t, such that
Pσ′(u0)(C(a1 . . . an, t′)) ≥ Pσ(v0)(C(a1 . . . an, t)). N

Clearly, the faster-than relation � is a preorder. The following proposition
gives a characterisation of the faster-than relation that is often easier to work
with.

Proposition C.4.4. U � V if and only if for all schedulers σ for V there exists
a scheduler σ′ for U such that Pσ′(u0)(C) ≥ Pσ(v0)(C), for all time-bounded
cylinders C.

Proof. Clearly, if for all schedulers σ for V there exists a scheduler σ′ for U
such that Pσ(u0)(C) ≥ Pσ′(v0)(C) for all time-bounded cylinders C, then
U � V by taking C′ = C. If U � V, then consider an arbitrary scheduler
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σ, and time-bounded cylinder C = C(a1 . . . an, t). There exists a scheduler σ′

and t′ ∈ R≥0 such that t ≥ t′ and

Pσ′(u0)(a1 . . . an, t′) ≥ Pσ(v0)(a1 . . . an, t).

By monotonicity, t ≥ t′ implies that

Pσ′(u0)(a1 . . . an, t) ≥ Pσ′(u0)(a1 . . . an, t′),

and hence Pσ′(u0)(C) ≥ Pσ(v0)(C). �

Before showing an example of an SMDP being faster than another one,
we provide an analytic solution for computing the probability over time-
bounded cylinders in terms of convolutions of the residence time distribu-
tions.

Proposition C.4.5. For any SMDP M, scheduler σ for M, and s ∈ S, we have

Pσ(s)(C(S1 . . . Sn, L1 . . . Ln, R1 . . . Rn))

= ∑
sn∈Sn

∑
an∈Ln

· · · ∑
s1∈S1

∑
a1∈L1

τσ(s, a1)(s1) · · · τσ(sn−1, an)(sn)

· ρ(s)× ρ(s1)× · · · × ρ(sn−1)(R1 × R2 × · · · × Rn).

Proof. The proof is by induction on the length n of the cylinder. If the cylinder
has length n = 1 then

Pσ(s)(C(S1, L1, R1)) = ∑
s1∈S1

∑
a1∈L1

τσ(s, a1)(s1) · ρ(s)(R1).

If the cylinder has length n = k + 1, then

Pσ(s)(C(S1 . . . Sk+1, L1 . . . Lk+1, R1 . . . Rk+1))

= ρ(s)(R1) · ∑
s1∈S1

∑
a1∈L1

τσ(s, a1)(s1)·

Pσ(s1)(C(S2 . . . Sk+1, L2 . . . Lk+1, R2 . . . Rk+1))

= ρ(s)(R1) · ∑
s1∈S1

∑
a1∈L1

τσ(s, a1)(s1)

· ∑
sk+1∈Sk+1

∑
ak+1∈Lk+1

· · · ∑
s2∈S2

∑
a2∈L2

τσ(s1, a2)(s2) · · · τσ(sk, ak+1)(sk+1)

· ρ(s1)× · · · × ρ(sk+1)(R2 × · · · × Rk+1)

= ∑
sk+1∈Sk+1

∑
ak+1∈Lk+1

· · · ∑
s1∈S1

∑
a1∈L1

τσ(s, a1)(s1) · · · τσ(sk, ak+1)(sk+1)

· ρ(s)× ρ(s1)× · · · × ρ(sk+1)(R1 × · · · × Rk+1). �
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Corollary C.4.6. For any SMDP M, scheduler σ for M, s ∈ S, and Borel set
B ∈ Rn

≥0 we have

Pσ(s)(C(S . . . S, {a1} . . . {an}, B))

= ∑
sn∈S
· · · ∑

s1∈S
τσ(s, a1)(s1) · · · τσ(sn−1, an)(sn)

· ρ(s)× ρ(s1)× · · · × ρ(sn−1)(B).

Proposition C.4.7. For any SMDP M = (S, τ, ρ), scheduler σ for M, and s ∈ S
we have

Pσ(s)(C(a1 . . . an, t))

= ∑
s1∈S
· · · ∑

sn∈S
τσ(s, a1)(s1) · · · τσ(sn−1, an)(sn)

· (ρ(s) ∗ ρ(s1) ∗ · · · ∗ ρ(sn−1))([0, t]).

Proof. By Corollary C.4.6, we know that

Pσ(s)(C(a1 . . . an, t))

= ∑
sn∈S
· · · ∑

s1∈S
τσ(s, a1)(s1) · · · τσ(sn−1, an)(sn)

· ρ(s)× ρ(s1)× · · · × ρ(sn−1)(Bn
t ).

Hence, if we can show that

ρ(s)× ρ(s1)× · · · × ρ(sn−1)(Bn
t ) = (ρ(s) ∗ ρ(s1) ∗ · · · ∗ ρ(sn−1))([0, t]),

the proof is done.
The proof now proceeds by induction on the length n of the time-bounded

cylinder C(a1 . . . an, t). If n = 1, then

ρ(s)(B1
t ) = ρ(s)([0, t]).

If n = k + 1, then

(ρ(s)× ρ(s1)× · · · × ρ(sk))(Bk+1
t )

=
∫ t

0
(ρ(s1)× · · · × ρ(sk))(Bk

t−x) ρ(s)(dx) (Fubini)

=
∫ t

0
(ρ(s1) ∗ · · · ∗ ρ(sk))([0, t− x]) ρ(s)(dx) (ind. hyp.)

= (ρ(s) ∗ (ρ(s1) ∗ · · · ∗ ρ(sk)))([0, t]) (def. of convolution)

= (ρ(s) ∗ ρ(s1) ∗ · · · ∗ ρ(sk))([0, t]). (associativity) �
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Proposition C.4.7 intuitively says that the absorption-time of any path of
length n through the SMDP is distributed as the n-fold convolution of its
residence-time probabilities. Therefore, the probability of doing transitions
with labels a1, . . . , an within time t is the sum of the probabilities of taking
a path of length n with labels a1, . . . , an through the SMDP, weighted by the
probability of reaching the end of each of these paths within time t. This is
similar in spirit to a result on phase-type distributions, see e.g. [20, Proposi-
tion 2.11].

From Proposition C.4.7 we can also derive the following which gives a
more direct inductive definition of the probability on time-bounded cylin-
ders. If we fix a1 . . . an and let t vary, we get a CDF

Pσ(s)(a1 . . . an)([0, t]) = Pσ(s)(C(a1 . . . an, t)).

Proposition C.4.8. The CDF Pσ(s)(a1 . . . an) can be characterised inductively by

Pσ(s)(a1)([0, t]) = ∑
s′∈S

τσ(s, a1)(s′) · ρ(s)([0, t]),

Pσ(s)(a1 . . . an)([0, t]) = ∑
s′∈S

τσ(s, a1)(s′) · (ρ(s) ∗Pσ(s′)(a2 . . . an))([0, t]).

Proof. For n = 1 we have

Pσ(s)(a)([0, t]) = Pσ(s)(C(a, t)) = ∑
s′∈S

τσ(s, a)(s′) · ρ(s)([0, t]).

For n = k + 1 we have

Pσ(s)(a1 . . . an)

= ∑
s1∈S
· · · ∑

sn∈S
τσ(s, a1)(s1) · · · τσ(sk, an)(sn) · (ρ(s) ∗ · · · ∗ ρ(sn))([0, t])

= ∑
s1∈S
· · · ∑

sn∈S
τσ(s, a1)(s1) · · · τσ(sk, an)(sn)

·
∫ t

0
(ρ(s1) ∗ · · · ∗ ρ(sn))(t− x) ρ(s)(dx)

= ∑
s1∈S

τσ(s, a1)(s1) · (ρ(s) ∗Pσ(s1)(a2 . . . an))([0, t]). �

Proposition C.4.8 also shows that our definition of faster-than coincides
with the one from [19], except ours is reactive rather than generative.

Example C.4.9. Consider the pointed SMDPs (U, u0) and (V, v0) that are
depicted in Figure C.4.1. Assuming that Fµ(t) ≥ Fν(t) for all t, we now show
that U � V. To compare U and V, first notice that we only need to consider
time-bounded cylinders of the form C(an, t), for n ≥ 1. Since the set of actions
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is L = {a}, the only possible valid scheduler σ for both U and V is the one
assigning the Dirac measure δa to all states. We consider two cases.

(Case n = 1) In this case we get

Pσ(u0)(C(a, t)) = Fµ(t) and Pσ(v0)(C(a, t)) = Fν(t).

Since we assumed Fµ(t) ≥ Fν(t) for all t, this implies

Pσ(u0)(C(a, t)) ≥ Pσ(v0)(C(a, t)).

(Case n > 1) By Proposition C.4.7 we have both

Pσ(u0)(C(an, t)) = (µ ∗ ν ∗ η∗(n−2))([0, t])

and
Pσ(v0)(C(an, t)) = (ν ∗ µ ∗ η∗(n−2))([0, t]),

where η∗n is the n-fold convolution of η, defined inductively by η∗0 = δ0 and
η∗(n+1) = η ∗ η∗n. Since convolution is commutative and associative, and δ0
is the identity for convolution, we obtain

Pσ(u0)(C(an, t)) = Pσ(v0)(C(an, t)).

We therefore conclude that U � V. �

C.4.1 Comparison With Simulation and Bisimulation

The standard notions used to compare processes are bisimulation [18] and
simulation [1]. We next recall their definitions, naturally extended to our
setting of SMDPs.

Definition C.4.10. For an SMDP M, a relation R ⊆ S × S is a bisimulation
relation (resp. simulation relation) on M if for all (s1, s2) ∈ R we have

• Fρ(s1)
(t) = Fρ(s2)

(t) (resp. Fρ(s1)
(t) ≤ Fρ(s2)

(t)) for all t ∈ R≥0 and

• for all a ∈ L there exists a weight function ∆a : S× S→ [0, 1] such that

– ∆a(s, s′) > 0 implies (s, s′) ∈ R,

– τ(s1, a)(s) = ∑s′∈S ∆a(s, s′) for all s ∈ S, and

– τ(s2, a)(s′) = ∑s∈S ∆a(s, s′) for all s′ ∈ S.

If there is a bisimulation relation (resp. simulation relation) R such that
(s1, s2) ∈ R, then we say that s1 and s2 are bisimilar (resp. s2 simulates s1) and
write s1 ∼ s2 (resp. s1 - s2). N
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µ

u0
U

(1, a)(1, b)
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v0
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v1
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(1, a) (1, b)

(1, a)(1, b) (1, a)(1, b)

Figure C.4.2: Example showing that the faster-than relation and the simulation relation are
incomparable.

We lift bisimulation and simulation relations to two different SMDPs by
considering the disjoint union of the two and comparing their initial states.
We denote by ∼ the largest bisimulation relation and by - the largest simu-
lation relation. Furthermore, we say that U and V are equally fast and write
U ≡ V if U � V and V � U.

Example C.4.11. Consider the two SMDPs U and V in Figure C.4.2 with the
same probability measure µ in all states. It is easy to see that U is bisimilar
to V, and hence V also simulates U. However, we show that U 6� V in the
following way. Construct the scheduler σ for V by letting

σ(v0)(a) = 0.5, σ(v0)(b) = 0.5, σ(v1)(a) = 1, and σ(v2)(b) = 1.

Now, for any scheduler σ′ for U, we must have either σ′(u0)(a) < 1 or
σ′(u0)(b) < 1. If σ′(u0)(a) < 1, then

σ′(u0)(a) > (σ′(u0)(a))2 > · · · > (σ′(u0)(a))n.

Furthermore, we see that

Pσ(v0)(C(an, t)) = 0.5 · µ∗n(t) and Pσ′(u0)(C(an, t)) = (σ′(u0)(a))n · µ∗n(t)

for n > 1. Take some n such that (σ′(u0)(a))n < 0.5. In that case we get
Pσ′(u0)(C(an, t)) < Pσ(v0)(C(an, t)). The same procedure can be used in
case σ′(u0)(b) < 1. Hence we conclude that U 6� V, and therefore also that
U 6≡ V. �

Example C.4.11 also works for schedulers with memory, although the ar-
gument has to be modified a bit. In that case, in each step either the probabil-
ity of a trace consisting only of a’s or the probability of a trace consisting only
of b’s must decrease in U, so after some number of steps, the probability of
one of these two must decrease below 0.5, and then the rest of the argument
is the same.

Example C.4.12. Consider the SMDPs U and V in Figure C.4.1 and let Fµ =
Exp[θ1] and Fν = Exp[θ2] be exponential distributions with rates θ1 > θ2 > 0.
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Then, as shown in Example C.4.9, it holds that U � V. However, we have
both U 6- V and U 6∼ V. �

From Examples C.4.11 and C.4.12, we get the following theorem.

Theorem C.4.13. - and � are incomparable, ∼ and � are incomparable, and we
have ∼ 6⊆≡.

C.5 Approximation

It has been shown in [19] that the faster-than relation is undecidable for the
generative case. A small modification of the argument shows that the same
is true for the reactive case.

Theorem C.5.1. It is undecidable whether U � V.

Proof. The result follows from the fact that U � V is undecidable for the
generative case. Let U = (SU , τ, ρ) be a generative Markov process with set
of actions L and construct the reactive Markov process V = (SV , τ′, ρ′) as
follows. Let L′ = L ∪ {]}, where ] is a new symbol not in L. For every state
s ∈ SU , we let sa ∈ SV for every symbol a ∈ L′.

τ′
(
sa

1, a′
)(

sa′′
2

)
=

{
τ(s1)(a′, s2) if a = a′ ∈ L and a′′ = ]

1
|L′ | if a = a′ = ] and a′′ ∈ L.

So each state sa only has one outgoing action, namely a, and hence controllers
play no role in the probabilities of V. Finally, let ρ′(sa) = ρ(s). Then we have

PU(s)(C(a1 . . . an, t)) = |L′|nPV

(
s]
)
(C(]a1] . . . ]an, t)),

and hence
PU(s1)(C(a1 . . . an, t)) ≥ PU(s2)(C(a1 . . . an, t))

if and only if

PV

(
s]1
)
(C(]a1] . . . ]an, t)) ≥ PV

(
s]2
)
(C(]a1] . . . ]an, t)).

This means that s1 ≤ s2 if and only if s]1 ≤ s]2. �

In view of Theorem C.5.1, we can extend the approximation algorithm
for the generative case from [19] to the reactive case. In order to do this, we
need to also consider the schedulers that are necessary for reactive systems.
Instead of deciding the faster-than relation, we consider the time-bounded
approximation problem, which asks the following: Given ε > 0, a time bound
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b ∈ R≥0, and two SMDPs U and V, determine whether for all schedulers σ
there exists a scheduler σ′ such that

Pσ′(u0)(C) ≥ Pσ(v0)(C)− ε (C.1)

for all time-bounded cylinders C = C(a1 . . . an, t) where t ≤ b.
First we identify the kind of distributions for which our algorithm will

work. Given a class C of distributions, we let Convex(C) denote the closure
of C under convex combinations, and Conv(C) denote the closure of C under
both convex combinations and convolutions.

Definition C.5.2. A class of distributions C is effective if for any ε > 0, b ∈
R≥0, and µ1, µ2 ∈ Conv(C), {t ∈ R≥0 | µ1([0, t]) ≥ µ2([0, t])− ε and t ≤ b} is
a semialgebraic set. N

A semialgebraic set is essentially one that can be expressed in the first-
order theory of the reals, and hence membership in such a set can be decided
by utilising the decidability of the first-order theory of reals [25]. In addition
to effectiveness, we will also require residence-time distributions to take some
non-zero amount of time to fire. This requirement is made precise by the
following definition.

Definition C.5.3. A class C of distributions is slow if for any finite subset
C0 ⊆ C, there exists a computable function ε : N×R≥0 → [0, 1] such that for
all n ∈N, t ∈ R≥0 and µ1, . . . , µn ∈ Convex(C0) we have

(µ1 ∗ · · · ∗ µn)([0, t]) ≤ ε(n, t)

and limn→∞ ε(n, t) = 0. N

It has been shown in [19] that the class of uniform distributions and the
class of exponential distributions are both effective and slow. The impor-
tance of the closure under convex combinations and convolutions in Defini-
tion C.5.2 is explained by the following lemma.

Lemma C.5.4. Let C be a class of distributions, and let U be a SMDP with residence-
time distributions taken from C. Then Pσ(s)(a1 . . . an) ∈ Conv(C) for any sched-
uler σ, state s, and a1, . . . , an ∈ L.

Proof. The lemma follows essentially from Proposition C.4.8. For n = 1 we
get

Pσ(s)(a) = ∑
s′∈S

τσ(s, a)(s′) · ρ(s) ∈ Conv(C).

For n > 1 we get

Pσ(s)(a1 . . . an) = ∑
s′∈S

τσ(s, a)(s′) · (ρ(s) ∗Pσ(s′)(a2 . . . an)),

and since Pσ(s′)(a2 . . . an) ∈ Conv(C) by induction hypothesis, it follows that
Pσ(s)(a1 . . . an) ∈ Conv(C). �
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Lemma C.5.4 shows that, for fixed schedulers σ and σ′, we can decide
whether Pσ(u)(C) ≥ Pσ′(v)(C) whenever U and V have effective residence-
time distributions using the first-order theory of reals.

The following theorem shows that, again for fixed schedulers, we can find
an N ∈N such that the probability of any time-bounded cylinder with length
greater than N is less than ε. Therefore any such time-bounded cylinder
trivially satisfies the inequality (C.1) and can thus be disregarded.

Theorem C.5.5 ([19, Theorem 5]). Let U be a SMDP with slow residence-time
distributions. For any state s ∈ S, ε > 0, b ∈ R≥0, and scheduler σ, there exists
N ∈N such that Pσ(s)(C(a1 . . . an, b)) ≤ ε for all n ≥ N.

All that is left now is to consider schedulers. However, since we only need
to consider time-bounded cylinders up to some finite length, we can also
represent a scheduler as a collection of finitely many probability distributions
over the action labels. Each such distribution can in turn be represented
as a collection of real variables that must sum to no more than 1. Hence
schedulers can also be represented in the first-order theory of reals.

Theorem C.5.6. Let U be a SMDP with slow residence-time distributions. Then
the time-bounded approximation problem is decidable.

Proof. By Theorem C.5.5, we can find some N ∈N such that Pσ′(v0)(C)− ε ≤
0 for any scheduler σ′ and any time-bounded cylinder bounded by b and of
length n ≥ N. This means that for any such time-bounded cylinder, we
trivially have

Pσ(u0)(C) ≥ Pσ′(v0)(C)− ε

for any scheduler σ. It is therefore enough to only consider time-bounded
cylinders of length n ≤ N.

Now let σ be a scheduler. We can represent σ in the first-order theory of
reals as follows. For each state s and label a (recall there are finitely many
of these), let xs,a be a real variable. Then we interpret xs,a to be the proba-
bility σ(s)(a), and we impose the constraint ∑a∈L xs,a ≤ 1. The whole time-
bounded approximation problem can therefore be encoded in the first-order
theory of reals, and is thus decidable. �

C.6 Compositionality

Next we introduce the notion of composition of SMDPs. As argued in [23],
the style of synchronous CSP composition is the most natural one to consider
for reactive probabilistic systems, so this is the one we will adopt. However,
we leave the composition of the residence-times as a parameter, so that we
can compare different kinds of composition.
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Definition C.6.1. A function ? : ∆(R≥0) × ∆(R≥0) → ∆(R≥0) is called a
residence-time composition function if it is commutative, i.e. ?(µ, ν) = ?(ν, µ)
for all µ, ν ∈ ∆(R≥0). N

One example of such a composition function is when ? is a coupling,
which is a joint probability measure such that its marginals are µ and ν. A
simple special case of this is the product measure ?(µ, ν) = µ× ν, which is
defined by (µ× ν)(B1 × B2) = µ(B1) · ν(B2) for all Borel B1 and B2.

In order to model the situation in which we want the composite system
only to take a transition when both components can take a transition, it is
natural to take the minimum of the two probabilities, which corresponds to
waiting for the slowest of the two. In that case, we let

F?(µ,ν)(t) = min{Fµ(t), Fν(t)},

and we call this minimum composition. Likewise, if we only require one of
the components to be able to take a transition, then it is natural to take the
maximum of the two probabilities by letting

F?(µ,ν)(t) = max{Fµ(t), Fν(t)},

which we call maximum composition. A special case of minimum composition
is the composition on rates used in PEPA [10], and a special case of maximum
composition is the composition on rates used in TIPP [7].

Further knowledge about the processes that are being composed lets one
define more specific composition functions. As an example, if we know that
the components only have exponential distributions, then we can define com-
position functions that work directly on the rates of the distributions. If
Fµ = Exp[θ] and Fν = Exp[θ′], then one could for example let ?(µ, ν) be such
that

F?(µ,ν) = Exp
[
θ · θ′

]
.

This corresponds to the composition on rates that is used in SPA [9], and we
will call it product composition. Note that product composition is not given by
the product measure.

Definition C.6.2. Let ? be a residence-time composition function. Then the
?-composition of U and V, denoted by U ‖? V = (S, τ, ρ), is given by

• S = U ×V,

• τ((u, v), a)((u′, v′)) = τU(u, a)(u′) · τV(v, a)(v′) for all a ∈ L and (u′, v′)
∈ S, and

• ρ((u, v)) = ?(ρU(u), ρV(v)). N

When considering the composite SMDP U ‖? V of two SMDPs U and V,
we will also write u ‖? v to denote the composite state (u, v) of U ‖? V where
u ∈ SU and v ∈ SV .

196



C.6. Compositionality

µ′

w0

ν′

w1

η′

w2
W

(1, a) (1, a)
(1, a)

Figure C.6.1: For different instantiations of µ′, ν′, and η′, the context W leads to parallel timing
anomalies for product, minimum, and maximum rate composition, respectively.

C.6.1 Parallel Timing Anomalies

If we have two components U and V, and we know that U is faster than V,
then if V is in parallel with some context W, we would expect this composi-
tion to become faster when we replace the component V with the component
U. However, sometimes this fails to happen, and we will call such an occur-
rence a parallel timing anomaly.

In this section we show that parallel timing anomalies can occur for some
of the kinds of composition discussed in Section C.6. We do this by giving
different contexts W for the SMDPs U and V from Figure C.4.1, for which it
was shown in Example C.4.9 that U � V. Our examples of parallel timing
anomalies make no use of non-determinism or probabilistic branching, thus
showing that the parallel timing anomalies are caused inherently by the tim-
ing behaviour of the SMDPs. For ease of presentation, we let the set of labels
L consist only of the label a in this section.

Consider the two SMDPs U and V depicted in Figure C.4.1. For the ex-
amples in this section, let Fµ = Exp[2], Fν = Exp[0.5], and let η be arbitrary.

Example C.6.3 (Product composition). Let ? be product composition and let
the context (W, w0) be given by Figure C.6.1, where Fµ′ = Exp[10], Fν′ =
Exp[0.1] and η = η′. In U ‖? W, the rates in the first two states will then be 20
and 0.05, and in V ‖? W they will be 5 and 0.5. Consider the time-bounded
cylinder C(aa, 2). Then we see that

P(u0 ‖? w0)(C(aa, 2)) ≈ 0.09 and P(v0 ‖? w0)(C(aa, 2)) ≈ 0.30,

showing that U ‖? W 6� V ‖? W. Hence we have a parallel timing anomaly.
What happens is that in the process V ‖? W the probability of taking a transi-
tion before time 2 with rate 5 is already very close to 1, so the process U ‖? W
does not gain much by having a rate of 20, whereas in the next step, V ‖? W
gains a lot of probability by having a rate of 0.5 compared to the rate 0.05 of
U ‖? W. �

Example C.6.4 (Minimum composition). Let ? be minimum composition and
let the context (W, w0) be given by Figure C.6.1, where Fµ′ = Exp[1], Fν′ =
Exp[2], and η = η′. The rates of U ‖? W are then 1 and 0.5, whereas they are
0.5 and 2 in V ‖? W. Then

P(u0 ‖? w0)(C(aa, 2)) ≈ 0.40 and P(v0 ‖? w0)(C(aa, 2)) ≈ 0.51,
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so U ‖? W 6� V ‖? W. What happens in this example is that in the second step,
U ‖? W has the same rate as V ‖? W had in the first step. This means that
U ‖? W must be proportionally faster in the second step. However, V ‖? W
has a rate of 2 in the second step, but U ‖? W only had a rate of 1 in the first
step. �

Example C.6.5 (Maximum composition). Let ? be maximum composition and
let the context (W, w0) be given by Figure C.6.1, where Fµ′ = Exp[2], Fν′ =
Exp[1], and η = η′. U ‖? W then has rates 2 and 1, and V ‖? W has rates 2 and
2. Then

P(u0 ‖? w0)(C(aa, 2)) ≈ 0.75 and P(v0 ‖? w0)(C(aa, 2)) ≈ 0.91,

so U ‖? W3 6� V ‖? W3. The reason for the timing anomaly in this case is clear:
V ‖? W simply has a higher rate in each step than U ‖? W does. �

C.6.2 Avoiding Parallel Timing Anomalies

We have seen in the previous section that parallel timing anomalies can occur.
We now wish to understand what kind of contexts do not lead to timing
anomalies. In this section we assume that the set L of transition labels is
a finite set. Also, we fix a residence-time composition function ? and two
additional SMDPs (W, w0) = (SW , τW , ρW) and (W ′, w′0) = (SW ′ , τW ′ , ρW ′)
which should be thought of as contexts. Next we identify conditions on
(W, w0) such that U � V will imply U ‖? W � V ‖? W.

We first give conditions that over-approximate the faster-than relation be-
tween the composite systems by requiring that when U and W are put in par-
allel, then the composite system is point-wise faster than U along all paths.
Likewise, we require that when V and W are put in parallel, the compos-
ite system is point-wise slower than V along all paths. If we already know
that U is faster than V, this will imply by transitivity that U ‖? W is faster
than V ‖? W. We have already seen in Example C.4.9 that a process U need
not be point-wise faster than V along all paths in order for U to be faster
than V. However, by imposing this condition, we do not need to compare
convolutions of distributions, but can compare the distributions directly.

We first introduce some terminology. We will say that a SMDP M has a
deterministic Markov kernel if for all states s and labels a, there is at most one
state s′ such that τ(s, a)(s′) > 0.

Definition C.6.6. A state path in M is a sequence of states s1, s2, . . . where for
all i ∈ N there exists a label a ∈ L such that τ(si, a)(si+1) > 0. For a state
path π = s1, s2, . . . , we let π[i] = si, π|i = si, si+1, . . . , π|i = s1, s2, . . . , si, and
we let Π[M] denote the set of all state paths in M. For a state s ∈ S, we let
Π[s] = {π ∈ Π[M] | π[1] = s} and we let Πn[s] = {π|n | π ∈ Π[s]}. N
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Definition C.6.7. Let n ∈N. We say that ? is n-monotonic in U, V, W, and W ′,
written (U, W)/n

? (V, W ′), if W ′ has a deterministic Markov kernel and

• Fρ(πU [i]‖?πW [i])(t) ≥ FρU(πU [i])(t) and FρV(πV [i])(t) ≥ Fρ(πV [i]‖?πW′ [i])
(t) for

all t ∈ R≥0 and 1 ≤ i ≤ n,

• for all schedulers σU for U there exists a scheduler σU,W for U ‖? W such
that we have

τσU,W (πU [i] ‖? πW [i], a)(πU [i + 1] ‖? πW [i + 1]) ≥ τ
σU
U (πU [i], a)(πU [i + 1]),

and

• for all schedulers σV,W ′ for V ‖? W ′ there exists a scheduler σV for V
such that we have

τσV
V (πV [i], a)(πV [i + 1]) ≥ τσV,W′ (πV [i] ‖? πW ′ [i], a)(πV [i + 1] ‖? πW ′ [i + 1])

for all state paths πU ∈ Πn[u0], πV ∈ Πn[v0], πW ∈ Πn[w0], and πW ′ ∈
Πn[w′0], and for all a ∈ L and 1 ≤ i < n. Furthermore, we will say that ? is
monotonic in U, V, W, and W ′ and write (U, W)/? (V, W ′), if it is n-monotonic
in U, V, W, and W ′ for all n ∈N. N

Clearly, if (U, W)/n
? (V, W ′), then (U, W)/m

? (V, W ′) for all m ≤ n. The
next result shows that if (U, W)/? (V, W ′), then we are guaranteed to avoid
parallel timing anomalies.

Theorem C.6.8. If (U, W)/? (V, W ′) as well as U � V and W � W ′, then we
have U ‖? W � V ‖? W ′.

Proof. Let C(a1 . . . an, x) be an arbitrary time-bounded cylinder, and let σV,W ′

be an arbitrary scheduler for V ‖? W ′. Because (U, W)/? (V, W ′), there exists
a scheduler σV for V and a path π such that

P
σV,W′ (v0 ‖? w′0)(C(a1 . . . an, t))

= τσV,W′ (π[1], a1)(π[2]) · · · τσV,W′ (π[n], an)(π[n + 1])

· (ρ(π[1]) ∗ · · · ∗ ρ(π[n]))([0, t])

≤ τσV
V (πV [1], a1)(πV [2]) · · · τσV

V (πV [n], an)(π[n + 1])

· (ρV(πV [1]) ∗ · · · ∗ ρV(πV [n]))([0, t])

≤ ∑
π∈Πn+1[v0]

τσV
V (π[1], a1)(π[2]) · · · τσV

V (π[n], an)(π[n + 1])

· (ρV(π[1]) ∗ · · · ∗ ρV(π[n]))([0, t])

= PσV (v0)(C(a1 . . . an, t)),

Since U � V, there must exist some scheduler σU for U such that

PσV (v0)(C(a1 . . . an, t))) ≤ PσU (u0)(C(a1 . . . an, t)).

199



Paper C.

Again, since (U, W)/? (V, W ′), there exists a scheduler σU,W for U ‖? W such
that

PσU (u0)(C(a1 . . . an, t))

= ∑
π∈Πn+1[u0]

τ
σU
U (π[1], a1)(π[2]) · · · τσU

U (π[n], an)(π[n + 1])

· (ρU(π[1]) ∗ · · · ∗ ρU(π[n]))([0, t])

≤ ∑
πW∈Πn+1[w0]

∑
π∈Πn+1[u0]

τ
σU
U (π[1], a1)(π[2]) · · · τσU

U (π[n], an)(π[n + 1])

· (ρU(π[1]) ∗ · · · ∗ ρU(π[n]))([0, t])

≤ ∑
π∈Πn+1[u0‖?w0]

τσU,W (π[1], a1)([2]) · · · τσU,W ([n], an)([n + 1])

· (ρ(π[1]) ∗ · · · ∗ ρ(π[n]))([0, t])

= PσU,W (u0 ‖? w0)(C(a1 . . . an, t)). �

The special case where W = W ′ shows that this condition is sufficient to
avoid parallel timing anomalies. We do not know if it is decidable whether
(U, W)/? (V, W ′). However, there is a stronger condition which is decidable
in the case of finite SMDPs. We present it in the next definition.

Definition C.6.9. We say that ? is strongly n-monotonic in U, V, W, and W ′

and write (U, W)5n
? (V, W ′) if W ′ has a deterministic Markov kernel and for

all state paths πU ∈ Πn[u0], πV ∈ Πn[v0], πW ∈ Πn[w0], and πW ′ ∈ Πn[w′0],
the first condition of Definition C.6.7 is satisfied and

• for all schedulers σU for U and all schedulers σU,W for U ‖? W, it is the
case that

τσU,W (πU [i] ‖? πW [i], a)(πU [i + 1] ‖? πW [i + 1]) ≥ τ
σU
U (πU [i], a)(πU [i + 1]),

and

• for all schedulers σV,W ′ for V ‖? W ′ and all schedulers σV for V, it is the
case that

τσV
V (πV [i], a)(πV [i + 1]) ≥ τσV,W′ (πV [i] ‖? πW ′ [i], a)(πV [i + 1] ‖? πW ′ [i + 1])

for all a ∈ L and 1 ≤ i < n. If (U, W)5n
? (V, W ′) for all n ∈ N, we say that ?

is strongly monotonic in U, V, W, and W ′ and write (U, W)5? (V, W ′). N

The conditions of Definition C.6.9 are the second and third conditions
from Definition C.6.7 with the existential quantifier strengthened to a univer-
sal quantifier. It is obvious that (U, W)5? (V, W ′) implies (U, W)/? (V, W ′),
and hence we get the following corollary.
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Corollary C.6.10. If (U, W)5? (V, W ′) as well as U � V and W � W ′, then
U ‖? W � V ‖? W ′.

Example C.6.11. Let U and V be given by Figure C.4.1 with Fµ ≥ Fν as in
Example C.4.9. Let ? be minimum rate composition and consider the context
W from Figure C.6.1, where µ′ = µ, ν′ = ν, and η′ = η. There is only one
possible scheduler σ, which is the Dirac measure at a, and hence it is clear
that the second and third conditions are satisfied. We also find that

Fρ(u0‖?w0)
(t) = FρU(u0)

(t) FρV(v0)
(t) = Fρ(v0‖?w0)

(t)

Fρ(u1‖?w1)
(t) = FρU(u1)

(t) FρV(v1)
(t) = Fρ(v1‖?w1)

(t)

Fρ(u2‖?w2)
(t) = FρU(u2)

(t) FρV(v2)
(t) = Fρ(v2‖?w2)

(t)

and hence the first condition is also satisfied, so (U, W)5? (V, W). �

Example C.6.12. All the examples we gave in Section C.6.1 are not monotonic,
and hence also not strongly monotonic, since they all violate condition 1 of
monotonicity.

In Example C.6.3, this is because

Fρ(v0)
(t) = Exp[0.5] (t) < Exp[5] (t) = Fρ(v0‖?w0)

(t)

for any t > 0. Likewise, in Example C.6.4 we have

Fρ(u0‖?w0)
(t) = Exp[1] (t) < Exp[2] (t) = Fρ(u0)

(t)

for any t > 0. Finally, in Example C.6.5 we have

Fρ(v0)
(t) = Exp[0.5] (t) < Exp[2] (t) = Fρ(v0‖?w0)

(t)

for any t > 0. �

We now wish to show that it is decidable whether (U, W)5? (V, W ′) for fi-
nite SMDPs, thereby giving a decidable condition for avoiding timing anoma-
lies. To do this, we first show that in order to establish strong monotonicity,
it is enough to consider paths up to length

m = max{|SU | · |SW |, |SV | · |SW ′ |}+ max{|SU |, |SV |, |SW |, |SW ′ |}+ 1,

due to the fact that they start repeating.

Lemma C.6.13. Let U and V be two finite, pointed SMDPs. For any state paths
πU and πV of length l > |SU | · |SV |, there will be i < j ≤ |SU | · |SV |+ 1 such that
πU [i] = πU [j], πV [i] = πV [j].
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Proof. Since there are |SU | · |SV | ways of choosing a pair (ui, vj) ∈ SU × SV
of states from U and V, if we pair the states of πU and πV such that we get
the pairs (πU [1], πV [1]), (πU [2], πV [2]), . . . , (πU [l], πV [l]), there must be two
of these pairs that are the same because l > |SU | · |SV |. Hence we get states
πU [i] = πU [j] and πV [i] = πV [j] with i < j ≤ n. It also follows that i and j
can be chosen so that i < j ≤ |SU | · |SV |, because otherwise we would have
j− i > |SU | · |SV | different pairs

(πU [i], πV [i]), (πU [i + 1], πV [i + 1]), . . . , (πU [j], πV [j]),

contradicting the fact that there are only |SU | · |SV | such different pairs. �

Lemma C.6.14. Let (U, u0), (V, v0), (W, w0), and (W ′, w′0) be finite, pointed
SMDPs. If (U, W)5m

? (V, W ′), then (U, W)5? (V, W ′).

Proof. Assume that (U, W)5m
? (V, W ′). Then (U, W)5k

? (V, W ′) for all k ≤ m.
Hence it remains to show that (U, W)5k

? (V, W ′) for all k > m.
Let k > m and consider two state paths πU = u1u2 . . . uk and πW =

w1w2 . . . wk of U and W, respectively, both of length k. By Lemma C.6.13
there must exist i < j ≤ |SU | · |SW | + 1 such that ui = uj and wi = wj.
Since there exists a state path from u1 to ui, it must be possible to reach this
state in less than |SU | steps, and likewise for W. Hence there must exist
l ≤ max{|SU |, |SW |}, and state paths

u1u′2 . . . u′luiui+1 . . . uj and w1w′2 . . . w′lwiwi+1 . . . wj

of length l +(j− i) ≤ max{|SU |, |SW |}+ |SU | · |SW |+ 1 ≤ m. Hence we know
that the conditions of Definition C.6.9 are satisfied for ui . . . uj and wi . . . wj.
By removing the states ui+1 . . . uj and wi+1 . . . wj from πU and πW we end up
with two new state paths π′U and π′W of length k′ = k− (j− i). We can keep
doing this as long as k′ > m, so at some point we must end up with state
paths π∗U and π∗W of length k∗ ≤ m, for which the conditions of Definition
C.6.9 are satisfied by assumption, and hence they are satisfied for all of πU
and πW . The same argument can be applied to two state paths πV and πW ′

of V and W ′, so we conclude that (U, W)5? (V, W ′). �

We can now use the first-order theory of the reals to show that strong
monotonicity is a decidable property.

Theorem C.6.15. Consider the finite pointed SMDPs (U, u0), (V, v0), (W, w0),
and (W ′, w′0). If for all state paths πU ∈ Πm[u0], πV ∈ Πm[v0], πW ∈ Πm[w0],
and πW ′ ∈ Πm[w′0] we have that {t ∈ R≥0 | Fρ(πU [i]‖?πW [i])(t) ≥ FρU(πU [i])(t)}
and {t ∈ R≥0 | FρV(πV [i])(t) ≥ Fρ(πV [i]‖?πW′ [i])

(t)} are semialgebraic sets for all
1 ≤ i ≤ m, then it is decidable whether (U, W)5? (V, W ′).

202



C.6. Compositionality

Proof. Note first of all that since L and W ′ are finite, it is decidable whether
W ′ has a deterministic Markov kernel by looking at all the states. By Lemma
C.6.14, it suffices to check whether (U, W)5m

? (V, W ′) where

m = max{|SU | · |SW |, |SV | · |SW ′ |}+ max{|SU |, |SV |, |SW |, |SW ′ |}+ 1.

This can be done by exploiting the decidability of the first-order theory of the
reals in the following way. Since L is finite and U, V, W, and W ′ are all finite,
there are finitely many state paths πU ∈ Πm[u0], πV ∈ Πm[v0], πW ∈ Πm[w0],
and πW ′ ∈ Πm[w′0]. Because of this, and since the sets

{t ∈ R≥0 | Fρ(πU [i]‖?πW [i])(t) ≥ FρU(πU [i])(t)}

and
{t ∈ R≥0 | FρV(πV [i])(t) ≥ Fρ(πV [i]‖?πW′ [i])

(t)},

which we need to check for the first condition, were assumed to be semi-
algebraic, it is possible to express the conditions of Definition C.6.9 in the
first-order theory of the reals, using finitely many quantifiers and inequali-
ties. Since the first-order theory of the reals is decidable, the truth value of
the resulting formula is decidable. �

For uniform and exponential distributions with minimum or maximum
composition, the corresponding sets are all semialgebraic, and the same is
true for exponential distributions with product composition. Theorem C.6.15
can therefore be used for these types of composition.

Unfortunately, strong monotonicity is a very strict requirement. In ef-
fect, it requires that there is only one possible action, and hence rules out
non-determinism. However, strong monotonicity still makes sense as a re-
quirement on processes with no non-determinism, since all our examples of
timing anomalies in Section C.6.1 are of this form.

Proposition C.6.16. If (U, W) 5? (V, W ′), then L is a singleton set or u0 is a
deadlock state.

Proof of Proposition C.6.16. We prove the contrapositive. Suppose |L| > 1 and
u0 is not a deadlock state. Because u0 is not a deadlock state, there must
exist some state path πU such that πU [1] = u0 and τU(πU [1], a)(πU [2]) > 0
for some a ∈ L. Since |L| > 1, we can find some b ∈ L with a 6= b. Now
construct schedulers given by σU,W(s) = δb and σU(s) = δa for any state s.
Then

τσU,W (πU [1] ‖? πW [1], a)(τU [2] ‖? τW [2]) = 0

but
τ

σU
U (πU [1], a)(τU [2]) > 0,

and hence the first condition of Definition C.6.9 is violated. �
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C.7 Conclusion

In this paper, we have investigated the notion of a process being faster than
another process in the context of semi-Markov decision processes. We have
given a trace-based definition of a faster-than relation, and shown that this
definition is closely connected to convolutions of distributions. The faster-
than relation is unfortunately undecidable, but we have shown how to ap-
proximate a time-bounded version of it. By considering composition as being
parametric in how the residence times of states are combined, we have given
examples showing that our faster-than relation gives rise to parallel timing
anomalies for many of the popular ways of composing rates. We have there-
fore given sufficient conditions for how such parallel timing anomalies can
be avoided, and we have shown that these conditions are decidable.

The main challenge that we face when trying to construct algorithms for
the faster-than relation is that of schedulers, and in particular the juxtaposi-
tion between the universal and existential quantification over schedulers. For
example, we had to strengthen the existential quantifier to a universal one in
order to decide the conditions for avoiding parallel timing anomalies. This
is because we know that locally, for any scheduler σ, there exists a scheduler
σ′ which works. However, it is not clear that all of these σ′ can be collected
coherently into a single scheduler which works globally. Solving this chal-
lenge would allow us to decide the property of monotonicity instead of the
too-strong property of strong monotonicity, as well as prove decidability for
so-called unambiguous processes.

The conditions we have given for avoiding timing anomalies do not look
at the context in isolation, but depend also on the processes that are being
swapped. It would be preferable to have conditions on a context that would
guarantee the absence of parallel timing anomalies no matter what processes
are being swapped.
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D.1. Introduction

Abstract

Semi-Markov decision processes (SMDPs) are continuous-time Markov decision pro-
cesses where the residence-time on states is governed by generic distributions on the
positive real line.

In this paper we consider the problem of comparing two SMDPs with respect to
their time-dependent behaviour. We propose a hemimetric between processes, which
we call simulation distance, measuring the least acceleration factor by which a
process needs to speed up its actions in order to behave at least as fast as another
process. We show that this distance can be computed in time O(n2( f (l) + k) +
m2n), where n is the number of states, m the number of actions, k the number of
atomic propositions, and f (l) the complexity of comparing the residence-time between
states. The theoretical relevance and applicability of this distance is further argued
by showing that (i) it is suitable for compositional reasoning with respect to CSP-
like parallel composition and (ii) has a logical characterisation in terms of a simple
Markovian logic.

D.1 Introduction

Semi-Markov decision processes (SMDPs) are Markovian stochastic decision
processes modelling the firing time of transitions via real-valued random
variables describing the residence-time on states. Semi-Markov decision pro-
cesses provide a more permissive model than continuous-time Markov deci-
sion processes, since they allow as residence-time distributions any generic
distribution on the positive real line, rather than only exponential ones. The
generality offered by SMDPs has been found useful in modelling several real-
case scenarios. Successful examples include power plants [20] and power
supply units [21], to name a few.

When considering such real-time stochastic processes, non-functional re-
quirements are important, particularly requirements like response time and
throughput, which depend on the timing behaviour of the process. We there-
fore wish to understand and be able to compare the timing behaviour of
different processes.

To cope with the need for comparing the timing behaviour of different
systems, in this paper we propose and study a quantitative extension of the
simulation relation by Baier et al. [2], called ε-simulation, which puts the
focus on the timing aspect of processes. The intuition is that a process s2
ε-simulates another process s1 if after accelerating the actions of s2 by a factor
ε > 0 it reacts to the inputs from the external environment as s1 with at least
the same speed.

This type of quantitative reasoning is not new in the literature, and it dates
back to the seminal work of Jou and Smolka [10, 16], who proposed the con-
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cept of probabilistic ε-bisimulation. This line of work has lead to much work
on probabilistic bisimulation distances [5, 8, 9]. While our work is conceptu-
ally similar to the bisimulation distances, it is technically very different. This
is because bisimulation distances are constructed from a coalgebraic view as
fixed points of operators. However, for the kind of timed systems that we
are investigating, the coalgebraic perspective is much less understood. More-
over, since our distance generalises a preorder relation and not a congruence
as the other distances do, it is not symmetric, which brings in new technical
challenges

Following the work of Jou and Smolka, our notion of ε-simulation natu-
rally induces a distance between processes: For any pair of states s1 and s2,
we define their simulation distance as the least acceleration factor needed by
s2 to speed up its actions in order to behave at least as fast as s1. This defini-
tion does not provide a distance in the usual sense, but rather a multiplicative
hemimetric, i.e. an asymmetric notion of distance satisfying a multiplicative
version of the triangle inequality. Such a notion is not new, as it is exten-
sively applied in the context of differential privacy to measure information
leakage of systems (see e.g. [1, 4]).

The theoretical relevance and applicability of the simulation distance is
argued by means of the following results, which are the main technical con-
tributions of the paper:

1. We provide an algorithm for computing the simulation distance be-
tween arbitrary states of an SMDP running in time O(n2( f (l) + k) +
m2n), where n is the number of states, m the number of actions, k the
number of atomic propositions, and f (l) the complexity of comparing
the residence time distributions on states.

2. We show that under some mild conditions on how residence-time dis-
tributions are combined in the parallel composition of two states, CSP-
like parallel composition of SMDPs is non-expansive with respect to
our hemimetric. This shows that the simulation distance is suitable for
compositional reasoning.

3. We provide a logical characterisation of the distance in terms of a sim-
ple Markovian logic, stating that the distance from s1 to s2 is less than
or equal to ε if and only if s2 satisfies the ε-perturbation of any logical
property that s1 satisfies. Moreover, we prove that ε-simulation pre-
serves the ε-perturbation of time-bounded reachability properties.

4. We show that sets of formulas in our logic are closed in the topology
induced by the distance. This means that approximate reasoning is
sound in the limit: If a sequence of state converging to a limit all satisfy
some logical property, then the limit will also satisfy this property.
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Notation and Preliminaries.

Let N denote the natural numbers, Q≥0 the non-negative rational numbers,
R≥0 the non-negative real numbers, and R>0 the strictly positive ones. We
equip the real numbers with the usual Borel σ-algebra. Given a set X, we
will denote by D(X) the set of all probability measures on X. A probability
measure µ ∈ D(X) is said to be finitely supported if the set {x ∈ X | µ(x) > 0}
is finite. If µ ∈ D(R≥0), then the cumulative distribution function (CDF) will
be denoted by Fµ and is given by Fµ(t) = µ([0, t]). Any CDF F is increasing,
meaning that if t ≥ t′, then F(t) ≥ F(t′), and also right-continuous, meaning
that for all ε > 0 there exists a δ > 0 such that if t < t′ < t + δ, then
|F(t′)− F(t)| < ε. For x ∈ R≥0, we will write δx for the Dirac measure at x,
which is defined by δx(E) = 1 if x ∈ E and δx(E) = 0 otherwise. For any
θ ∈ R>0, we will write Exp[θ] for the CDF of an exponential distribution with
rate θ, and for a, b ∈ R≥0 such that a < b, we will write Unif [a, b] for the CDF
of a uniform distribution.

We will use the convention that ∞ + x = ∞ for x ∈ R≥0 and ∞ · y = ∞
for y ∈ R>0. A function d : X × X → R≥0 ∪ {∞} is called a hemimetric if it
satisfies d(x, x) = 0 and the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). It
is called a pseudometric if it is also symmetric, i.e. d(x, y) = d(y, x), and it is
called a metric if it is symmetric and furthermore d(x, y) = 0 if and only if
x = y.

D.2 Semi-Markov Decision Processes

In this section, we introduce semi-Markov decision processes, which are
continuous-time reactive probabilistic systems. A semi-Markov decision pro-
cess has residence time on states governed by generic distributions on the
positive real line and reacts to inputs from an external environment by mak-
ing a probabilistic transition to a next state.

Hereafter, we consider a non-empty finite set of input actions A, and a
non-empty, finite set of atomic propositions AP .

Definition D.2.1. A semi-Markov decision process (SMDP) is given by a tuple
M = (S, τ, ρ, L) where

• S is a non-empty, countable set of states,

• τ : S× A→ D(S) is the transition function,

• ρ : S→ D(R≥0) is the residence-time function, and

• L : S→ 2AP is the labelling function. N
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The operational behaviour of an SMDP is as follows. The SMDP at a given
state s ∈ S, after receiving an input a ∈ A, goes to state s′ ∈ S within time t
with probability τ(s, a)(s′) · ρ(s)([0, t]). An SMDP is said to be finite if it has a
finite set of states, and it is said to be finitely supported if its transition function
τ(s, a) is finitely supported for every s and a. For s ∈ S, we will write Fs for
the CDF of ρ(s), i.e. Fs(t) = ρ(s)([0, t]).

Continuous-time Markov decision processes are a special case of SMDPs
in which all residence-time functions are exponentially distributed, whereas
discrete-time Markov decision processes are a special case of SMDPs where
the residence-time distribution in each state is the Dirac measure at 0, repre-
senting the fact that transitions are taken instantaneously.

In defining simulation and bisimulation for SMDPs, we will use ingredi-
ents from the definition of simulation and bisimulation for Markov decision
processes [23] and simulation and bisimulation for continuous-time Markov
chains [3]. However, since we are also generalising to arbitrary distributions
on time rather than just exponential distributions, the condition on rates for
exponential distributions must be replaced with a more general condition on
the distributions. There is a rich literature on so-called stochastic orders [24],
which impose an ordering on random variables. We will consider here the
most commonly used of these, known as the usual stochastic order.

Definition D.2.2. For an SMDP M = (S, τ, ρ, L), a relation R ⊆ S × S is a
simulation (resp. bisimulation) on M if for all (s1, s2) ∈ R we have

1. L(s1) = L(s2),

2. Fs2(t) ≥ Fs1(t) (resp. Fs2(t) = Fs1(t)) for all t ∈ R≥0, and

3. for all a ∈ A there exists a weight function or coupling ∆a : S× S → [0, 1]
between τ(s1, a) and τ(s2, a) such that

(a) ∆a(s, s′) > 0 implies (s, s′) ∈ R,

(b) τ(s1, a)(s) = ∑s′∈S ∆a(s, s′) for all s ∈ S, and

(c) τ(s2, a)(s′) = ∑s∈S ∆a(s, s′) for all s′ ∈ S.

We say that s2 simulates (resp. is bisimilar to) s1, written s1 - s2 (resp. s1 ∼ s2),
if there is a simulation (resp. bisimulation) relation containing (s1, s2). N

It is easy to show that the similarity relation - is the largest simulation
relation, and analogously that the bisimilarity relation ∼ is the largest bisimu-
lation relation. The coupling ensures that the simulation relation is preserved
by successor states. Intuitively, s1 simulates s2 if the CDF of ρ(s2) is point-
wise greater than or equal to the CDF of ρ(s1), and the transition probability
distribution of s1 can be matched by the transition probability function s2 by
means of a coupling, in such a way that if two successor states s′1 and s′2 have
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a non-zero coupling, then s′1 again simulates s′2. For bisimulation, we instead
require that the CDFs behave exactly the same in each step.

Given a set C ⊆ S and a relation R ⊆ S× S, let

R(C) = {s′ ∈ S | (s, s′) ∈ R for some s ∈ C}

be the R-closure of C. If R is a preorder, R(C) is the upward closure of C.
The following result, which is a trivial generalisation of [22, Lemma 1],

gives a different but equivalent definition of simulation which is sometimes
useful.

Proposition D.2.3. R ⊆ S × S is a simulation relation if and only if for any
(s1, s2) ∈ R we have

1. L(s1) = L(s2),

2. Fs2(t) ≥ Fs1(t) for all t ∈ R≥0, and

3. τ(s1, a)(C) ≤ τ(s2, a)(R(C)) for all C ⊆ S.

The following generalises [3, Proposition 25(3)] to the case of SMDPs.

Proposition D.2.4. -∩-−1 = ∼.

Proof. First assume that s1 ∼ s2. Then L(s1) = L(s2). Also, Fs2(t) = Fs2(t)
for all t, so clearly Fs2(t) ≥ Fs1(t) and Fs1(t) ≥ Fs2(t) for all t. For any subset
C ⊆ S we have

τ(s1, a)(C) ≤ τ(s1, a)(∼(C)) = τ(s2, a)(∼(C))

and
τ(s2, a)(C) ≤ τ(s2, a)(∼(C)) = τ(s1, a)(∼(C)) ,

so s1 - s2 and s1 -−1 s2.
Now assume that s1 - s2 and s1 -−1 s2. Clearly L(s1) = L(s2). Since

Fs2(t) ≥ Fs1(t) and Fs1(t) ≥ Fs2(t) for all t, it follows that Fs2(t) = Fs1(t)
for all t. Now take an arbitrary subset C ⊆ S and let B = - ∩ -−1(C),
C1 = -(B), and C2 = C1 \ B. Then

τ(s1, a)(C1) = τ(s1, a)(-(C1)) ≤ τ(s2, a)(-(C1)) = τ(s2, a)(C1)

and

τ(s2, a)(C1) = τ(s2, a)(-(C1)) ≤ τ(s1, a)(-(C1)) = τ(s1, a)(C1) ,

so τ(s1, a)(C1) = τ(s2, a)(C1), and likewise we can show that τ(s1, a)(C2) =
τ(s2, a)(C2). Since we can write

τ(s1, a)(C1) = τ(s1, a)(B) + τ(s1, a)(C2)
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and
τ(s2, a)(C1) = τ(s2, a)(B) + τ(s2, a)(C2) ,

this together implies that τ(s1, a)(B) = τ(s2, a)(B). Hence we conclude that
s1 ∼ s2. �

The above is analogous to a result stating that bisimulation and simu-
lation equivalence coincide for deterministic labelled transition systems [2].
In our case, Proposition D.2.4 holds because reactive systems are inherently
deterministic.

D.3 Comparing the Speed of Residence-Time Dis-
tributions

For comparing the random variables describing the residence time on states,
the similarity relation uses the usual stochastic order: if s1 - s2 then, for all
t ∈ R≥0, Fs1(t) ≤ Fs2(t). In words, if s2 simulates s1, it is more likely that
s2 will take a transition before s1, that is, s2 is stochastically faster than s1 in
reacting to an input.

In this section, we propose a different way of comparing residence-time
distributions. The idea is to get quantitative information about how much
a distribution should be accelerated to become at least as fast as another
distribution.

Definition D.3.1. Let F and G be CDFs and ε ∈ R>0. We say that F is ε-faster
than G, written F vε G, if for all t we have F(ε · t) ≥ G(t). N

Consider two states s1 and s2, having residence time governed by the
distributions Fs1 and Fs2 , respectively, and assume that Fs1 vε Fs2 holds. If
0 < ε ≤ 1, then this means that s1 is stochastically faster than s2, even if the
residence time in s1 is slowed down by a factor ε. If instead we have ε > 1,
then s1 is stochastically slower than s2, but if we accelerate its residence-time
distribution by a factor ε, then it becomes stochastically faster than s2.

In the rest of the section we will argue that vε is a good notion for gather-
ing quantitative information about the speed of residence-time distributions
on states. We will do this by comparing the most common distributions used
in the literature for modelling residence time on states on stochastic systems:
Dirac distributions, exponential distributions, and uniform distributions.

The Dirac measure at zero is the fastest measure, in the following sense.

Proposition D.3.2. Let F be any CDF. The following holds for any ε ∈ R>0.

1. Dirac[0] vε F.

2. If F 6= Dirac[0], then F 6vε Dirac[0].
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Proof. The first point is clear, since Dirac[0] (t) = 1 ≥ F(t) for any t.
For the second point, note that Dirac[0] is the only CDF such that

Dirac[0] (0) = 1,

and hence F(ε · 0) < Dirac[0] (0) for any ε ≥ 1. �

For comparing exponential distributions, it is simple to show that it is
enough to accelerate by the ratio between the two rates. The same is true for
uniform distributions, except we also need to consider whether the uniform
distributions start at 0, since if a uniform distribution starts at 0, then we
can only hope to make another uniform distribution faster than it if this
other uniform distribution also starts at 0. To prove this, we make use of the
following two lemmas.

Lemma D.3.3. For ε ∈ R>0 it holds that Exp[θ] (ε · t) = Exp[ε · θ] (t).

Proof.

Exp[θ] (ε · t) = 1− e−θ·(ε·t) = 1− e−(θ·ε)·t = Exp[ε · θ] (t). �

Lemma D.3.4. For ε ∈ R>0 it holds that Unif [a, b] (ε · t) = Unif
[

a
ε , b

ε

]
(t).

Proof.
ε · t− a
b− a

= 0 =⇒ ε · t− a = 0 =⇒ t =
a
ε

and
ε · t− a
b− a

= 1 =⇒ ε · t− a = b− a =⇒ t =
b
ε

.

Hence Unif [a, b] (ε · t) = Unif
[

a
ε , b

ε

]
(t). �

Proposition D.3.5.

1. Exp[θ1] vε Exp[θ2], where ε = θ2
θ1

.

2. If c = 0 and a > 0, then Unif [a, b] 6vε Unif [c, d] for any ε ∈ R>0.

3. If c = 0 and a = 0, then Unif [a, b] vε Unif [c, d], where ε = b
d .

4. If c > 0, then Unif [a, b] vε Unif [c, d], where ε = max
{

a
c , b

d

}
.

In all cases, the given ε is the least such that the ε-faster than relation holds.
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Proof. 1. We see that

Exp[θ1] (ε · t) = 1− e−θ1ε·t = 1− e−θ2t = Exp[θ2] (t).

If ε′ < ε, then take some t > 0 to get

Exp[θ1] (ε
′ · t) = 1− e−θ1ε′ ·t < 1− e−θ1ε·t = Exp[θ2] (t),

and hence Exp[θ1] 6vε′ Exp[θ2].

2. Let c = 0 and a > 0. Take an arbitrary ε ∈ R>0 and let t = a
ε > 0 in or-

der to get Unif [a, b] (ε · t) = Unif [a, b] (a) = 0. However, Unif [c, d] (t) >
0 for any t > 0, so Unif [a, b] (ε · t) < Unif [c, d] (t).

3. Let c = 0 and a = 0, and take ε = b
d . Then

Unif [a, b] (ε · t) = Unif
[

a · d
b

, d
]
(t) = Unif [0, d] (t) = Unif [c, d] (t).

To show that it is the least ε such that the ε-faster-than relation holds,
let ε′ < b

d . Then

Unif [a, b] (ε′ · d) < Unif [a, b]
(

b
d
· d
)
= 1 = Unif [c, d] (d).

4. Now let c > 0 and ε = max{ a
c , b

d}. If max{ a
c , b

d} =
a
c , then

Unif [a, b] (ε · t) = Unif
[
c, b · c

a

]
(t).

Since a
c ≥

b
d we get c

a ≤
d
b , and hence

Unif
[
c, b · c

a

]
(t) ≥ Unif

[
c, b · d

b

]
(t) = Unif [c, d] (t).

On the other hand, if max{ a
c , b

d} =
b
d , then we get c

a ≥
d
b , and hence

Unif [a, b] (ε · t) = Unif
[

a · d
b

, d
]
(t) ≥ Unif [c, d] (t).

It remains to prove that this is the least ε such that this relation holds.
Let ε′ < max{ a

c , b
d}. If max{ a

c , b
d} =

a
c , then let t = a

ε′ >
a
a
c
= c. Then

Unif [a, b] (ε′ · t) = Unif [a, b] (a) = 0, but Unif [c, d] (t) > 0 since t > c.
On the other hand, if max{ a

c , b
d} =

b
d , then

Unif [a, b] (ε′ · d) < Unif [a, b]
(

b
d
· d
)
= 1 = Unif [c, d] (d). �
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Moreover, an exponential distribution can never be made faster than a
uniform distribution, since uniform distributions become 1 eventually, but
exponential distributions tend asymptotically to 1 but never reach it. Fur-
thermore, whether or not a uniform distribution can be made faster than an
exponential distribution depends on its value at 0.

Proposition D.3.6.

1. Exp[θ] 6vε Unif [a, b] for all ε ∈ R>0.

2. If a > 0, then Unif [a, b] 6vε Exp[θ] for all ε ∈ R>0.

3. If a = 0, then Unif [a, b] vε Exp[θ], where ε = θ · b. Furthermore, this is the
least ε such that the ε-faster-than relation holds.

Proof. 1. We have Unif [a, b] (b) = 1, but Exp[θ] (t) < 1 for all t, and hence
Exp[θ] 6vε Unif [a, b] for any ε ∈ R>0.

2. If a > 0, then let ε ∈ R>0 be given, and let t = a
ε . Then Unif [a, b] (ε ·

t) = Unif [a, b] (a) = 0, but Exp[θ] (t) > 0 since t > 0, and therefore
Unif [a, b] 6vε Exp[θ].

3. If a = 0, then let ε = θ · b. Clearly Unif [a, b] (ε · 0) = 0 and Exp[θ] (0) =
0. We see that Unif [a, b] (ε · t) = θbt

b and Exp[θ] (t) = 1− e−θt have the
same derivative from the right at 0, namely θ. Hence the slope of these
two functions is the same in 0, but since the slope of an exponential
distribution is always decreasing, this means that Unif [a, b] vε Exp[θ].
If ε′ < θ · b, then the slope in 0 of Unif [a, b] (ε′ · t) must be less than that
of Exp[θ], so there will exist some t > 0 such that Unif [a, b] (ε′ · t) <
Exp[θ] (t), and hence Unif [a, b] 6vε′ Exp[θ]. �

The ε-faster-than relation enjoys a kind of monotonicity property, which
is simply a consequence of the fact that CDFs are increasing.

Lemma D.3.7. Let ε ≤ ε′ and assume that F vε G. Then F vε′ G.

Proof. F vε G means that F(ε · t) ≥ G(t) for all t. Since F is non-decreasing
and ε ≤ ε′, this means that F(ε′ · t) ≥ F(ε · t) ≥ G(t) for all t, so F vε′ G. �

The probability distribution of the sum of two independent random vari-
ables is the convolution of their individual distributions. The general formula
for the convolution of two measures µ and ν on the real line is given by

(µ ∗ ν)(E) =
∫ ∞

0
ν(E− x) µ(dx).

Notably, the ε-faster-than relation is a congruence with respect to convo-
lution of measures.
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Proposition D.3.8. If Fµ1 vε Fµ2 and Fν1 vε Fν2 , then F(µ1∗ν1)
vε F(µ2∗ν2)

.

Proof. Define the transformation T(x) = ε · x and let ν′1([0, t]) = ν1
([

0, t
ε

])
.

Then we see that

ν1(T−1([0, t])) = ν1({x | x · ε ∈ [0, t]})
= ν1 ({x | x ∈ [0, t/ε]})

= ν1

([
0,

t
ε

])
= ν′1([0, t]).

Because Fµ1 vε Fµ2 we know that µ1([0, ε · t]) ≥ µ2([0, t]) for all t, and since
Fν1 vε Fν2 , we know that ν1([0, ε · t) = ν′1([0, t]) ≥ ν2([0, t]) for all t. We can
therefore do following series of transformations [19, Proposition 3.8].

(µ1 ∗ ν1)([0, ε · t]) =
∫ ∞

0
µ1([0, ε · t− x]) ν1(dx)

=
∫ ∞

0
µ1([0, ε · t− T(x)]) ν′1(dx)

=
∫ ∞

0
µ1([0, ε(t− x)) ν′1(dx)

≥
∫ ∞

0
µ2([0, t− x]) ν′1(dx)

≥
∫ ∞

0
µ2([0, t− x]) ν2(dx)

= (µ2 ∗ ν2)([0, t]). �

In Section D.7.1 we will see that the above property is essential for the
preservation of reachability properties. Intuitively, this is because convolu-
tion corresponds to sequential composition of the residence-time behaviour.

There are other possible ways to compare the relative speed of residence-
time distributions quantitatively. In the following we explore some alterna-
tive definitions of the notion of the ε-faster-than relation, and argue that none
of them are preferable to the one given in Definition D.3.1. Given two CDFs
F and G, we consider the following three alternative definitions of F vε G:

1. for all t, F(t) · ε ≥ G(t),

2. for all t, F(t) + ε ≥ G(t), and

3. for all t, F(ε + t) ≥ G(t).

If vε is defined as in (1), then we see that Unif [a, b] 6vε Unif [c, d], for any
ε ∈ R>0 whenever c < a. This is because Unif [a, b] (a) · ε = 0 < Unif [c, d] (a).
Hence we lose the properties of Proposition D.3.5.
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If vε is defined as in (2), we trivially get that whenever ε ≥ 1, F vε G,
for any two CDFs F and G. Hence (2) is only interesting for 0 ≤ ε < 1.
However, even in this case we would still lose the properties of Proposition
D.3.5. Indeed, whenever a ≥ d, Unif [a, b] 6vε Unif [c, d], for any 0 ≤ ε < 1.
This follows because Unif [a, b] (a) + ε = ε < 1 = Unif [c, d] (a).

Lastly, if vε is defined as in (3), then it would not be a congruence with
respect to convolution of distributions, i.e., Proposition D.3.8 would not hold.
For a counterexample, take Fµ1 = Unif [2, 4], Fµ2 = Unif [1, 3], Fν1 = Unif [3, 4],
and Fν2 = Unif [2, 4]. Then Fµ1 v1 Fµ2 and Fν1 v1 Fν2 , but F(µ1∗µ2)

6v1 F(ν1∗ν2)
.

D.4 A Hemimetric for Semi-Markov Decision Pro-
cesses

In this section, we are going to extend the definition of simulation relation
between SMDPs to the quantitative setting. We will see that this relation
naturally induces a notion of distance between SMDPs, describing the least
acceleration factor required globally on the residence-time distributions to
make a given SMDP as fast as another one.

Definition D.4.1. Let ε ∈ R>0. For an SMDP M = (S, τ, ρ, L), a relation
R ⊆ S× S is an ε-simulation relation on M if for all (s1, s2) ∈ R we have that
the first and third condition for simulation are satisfied, and Fs2 vε Fs1 . We
say that s2 ε-simulates s1, written s1 -ε s2, if there is an ε-simulation relation
R such that (s1, s2) ∈ R. N

Example D.4.2. Let A = {a} and consider the SMDP M = (S, τ, ρ, L) given
by S = {s1, s2}, τ(s1, a)(s1) = 1 = τ(s2, a)(s2), Fs1 = Exp[4], Fs2 = Exp[2], and
L(s1) = L(s2). By Proposition D.3.5 we see that s1 -2 s2 and s2 - 1

2
s1. �

It is easy to show that the ε-similarity relation -ε is the largest simulation
relation, and with the previous section in mind, one immediately sees that
-1 coincides with -. Moreover, the following holds.

Proposition D.4.3. For any ε ≤ 1, if s1 -ε s2, then s1 - s2.

Proof. Let R ⊆ S× S be an ε-simulation relation such that (s1, s2) ∈ R. We
will now argue that R is also a simulation relation. The first condition is clear.
For the second condition, we have

Fs2(t) ≥ Fs2(ε · t) ≥ Fs1(t).

The third condition is satisfied because R is an ε-simulation relation. �

If ε > 1, the above implication does not hold. For an easy counterexample
consider s1 and s2 from Example D.4.2 where s1 -2 s2 but s1 6- s2.
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For ε > 1, we can obtain a result similar to Proposition D.4.3 only if
we “accelerate” the overall behaviour of s2. Formally, for a given SMDP
M = (S, τ, ρ, L), we define the SMDP Mε = (Sε, τε, ρε, Lε) as follows:

Sε = S ∪ {(s)ε | s ∈ S},
Lε(s) = L(s),

Lε((s)ε) = L(s),

ρε(s)([0, t]) = ρ(s)([0, t]),

ρε((s)ε)([0, t]) = ρ(s)([0, ε · t]),

τε(s, a)(s′) = τ(s, a)(s′),

τε(s, a)((s′)ε) = 0,

τε((s)ε, a)(s′) = 0,

τε((s)ε, a)((s′)ε) = τ(s, a)(s′).

Intuitively, the states s ∈ S in Mε are identical copies of those in M,
whereas the states (s)ε react to each input a ∈ A functionally identically to s
but faster, since the residence-time on the states are all equally accelerated by
a factor ε, thus (s)ε -ε s. For this reason (s)ε is called the ε-acceleration of s.

Given the definition of accelerated state, Proposition D.4.3 can be gener-
alised to arbitrary values of ε ∈ R>0 in the following way.

Proposition D.4.4. For any ε ∈ R>0, s1 -ε s2 if and only if s1 - (s2)ε.

Proof. ( =⇒ ) Let R ⊆ S × S be an ε-simulation relation with (s1, s2) ∈ R.
Define

R′ = {(s, (s′)ε ∈ Sε × Sε | (s, s′) ∈ R},
and take an arbitrary (s, (s′)ε) ∈ R′. The first condition of Definition D.4.1 is
satisfied because F(s′)ε

(t) = Fs′(ε · t) ≥ Fs(t).
For the second condition, we know that for any a ∈ A there exists a

coupling ∆a, and we now define

∆′a(s
′′, s′′′) =

{
0 if s′′ /∈ S or s′′′ ∈ S
∆a(s′′, s′′′) otherwise.

Since

∆′a(s
′′, (s′′′)ε) > 0 =⇒ ∆a(s′′, s′′′) > 0

=⇒ (s′′, s′′′) ∈ R

=⇒ (s′′, (s′′′)ε) ∈ R′,

condition (a) is also satisfied. For condition (b), first consider the case where
s′′ ∈ S. Then we get

∑
s′′′∈Sε

∆′a(s
′′, s′′′) = ∑

(s′′′)ε∈Sε

∆′a(s
′′, (s′′′)ε)

= ∑
s′′′∈S

∆a(s′′, s′′′)

= τ(s, a)(s′′)

= τε(s, a)(s′′).
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For the case where s′′ /∈ S we get

∑
s′′′∈Sε

∆′a(s
′′, s′′′) = 0

and
τε(s, a)(s′′) = 0.

Likewise, for condition (c), first consider the case where s′′′ ∈ S. Then

∑
s′′∈Sε

∆′a(s
′′, s′′′) = 0

and
τε((s′)ε, a)(s′′′) = 0.

For the case where s′′′ /∈ S, we get

∑
s′′∈Sε

∆′a(s
′′, s′′′) = ∑

s′′∈S
∆′a(s

′′, s′′′)

= ∑
s′′∈S

∆a(s′′, s′′′)

= τ(s′, a)(s′′′)

= τε((s′)ε, a)((s′′′)ε).

( ⇐= ) Let R ⊆ Sε × Sε be a simulation relation with (s1, (s2)ε) ∈ R and
define

R′ = {(s, s′) ∈ S× S | (s, (s′)ε) ∈ R}.

For an arbitrary (s, s′) ∈ R′ we get Fs′(ε · t) = F(s′)ε
≥ Fs1(t), thus satisfying

the first condition.
We know that for any a ∈ A there exists a coupling ∆a, and we now define

∆′a(s
′′, s′′′) = ∆a(s′′, (s′′′)ε).

This coupling satisfies condition (a) because

∆′a(s
′′, s′′′) > 0 =⇒ ∆a(s′′, (s′′′)ε) > 0

=⇒ (s′′, (s′′′)ε) ∈ R

=⇒ (s′′, s′′′) ∈ R′.

For condition (b), we see that

∑
s′′′∈S

∆′a(s
′′, s′′′) = ∑

(s′′′)ε∈Sε

∆a(s′′, (s′′′)ε)

= τε(s, a)(s′′)

= τ(s, a)(s′′).
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Likewise, for condition (c) we have

∑
s′′∈S

∆′a(s
′′, s′′′) = ∑

s′′∈S
∆a(s′′, (s′′′)ε)

= τε((s′)ε, a)((s′′′)ε)

= τ(s′, a)(s′′′). �

The relevance of the above statement is twofold: it clarifies the relation
between -ε and -, and also provides a way to modify the behaviour of a
state s2 of an SMDP in order to simulate a state s1 whenever s1 -ε s2 holds.

Having this characterisation of similarity in terms of acceleration of pro-
cesses one can think about the following problem: given two states, s1 and
s2 such that s1 6- s2, what is the least ε ≥ 1 (if it exists) such that s1 - (s2)ε

holds? We can answer this question by means of the following distance.

Definition D.4.5. The simulation distance d : S× S→ [1, ∞] between two states
s1 and s2 is given by

d(s1, s2) = inf{ε ≥ 1 | s1 -ε s2}. N

As usual, if there is no ε ≥ 1 such that s1 -ε s2, then d(s1, s2) = ∞, because
inf ∅ = ∞. It is clear from the definition that s1 - s2 implies d(s1, s2) = 1.
For finitely supported SMDPs, the converse is also true. However, the proof
of this makes use of the logical characterisation of the faster-than relation, so
we delay the proof until Section D.7 where we discuss logical properties.

Note that the definition above does not give a distance in the usual sense,
for two reasons: d is not symmetric and it does not satisfy the triangle in-
equality. One can show instead that d satisfies a multiplicative version of
the triangle inequality, namely, that for all s1, s2, s3 ∈ S, d(s1, s3) ≤ d(s1, s2) ·
d(s2, s3). This is a direct consequence of the following properties of -ε. The
first property states that -ε is monotonic with respect to increasing values of
ε.

Lemma D.4.6. If s1 -ε s2 and ε ≤ ε′, then s1 -ε′ s2.

Proof. This follows from Lemma D.3.7. �

The second property is a quantitative generalisation of transitivity from
which the multiplicative inequality discussed above follows.

Lemma D.4.7. If s1 -ε s2 and s2 -ε′ s3, then s1 -ε·ε′ s3.

Proof. Since s1 -ε s2 and s2 -ε′ s3, there exists an ε-simulation relation R such
that (s1, s2) ∈ R and an ε′-simulation relation R′ such that (s2, s3) ∈ R′. First
construct a relation

R′′ = R ◦ R′ = {(s′1, s′3) ∈ S× S | ∃s′2.((s′1, s′2) ∈ R and (s′2, s′3) ∈ R′)}.
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Now pick an arbitrary pair (s′1, s′3) ∈ R′′. Clearly there exists s′2 such that
(s′1, s′2) ∈ R and (s′2, s′3) ∈ R′. Hence L(s′1) = L(s′2) = L(s′3) and Fs′2

(ε · t) ≥
Fs′1

(t) and Fs′3
(ε′ · ε · t) ≥ Fs′2

(ε · t), so Fs′3
(ε′ · ε · t) ≥ Fs′1

(t), meaning Fs′3
vε·ε′ Fs′1

.
Thus the first and second conditions are satisfied.

Now let a ∈ A. There exists a coupling ∆a between τ(s′1, a) and τ(s′2, a)
and another coupling ∆′a between τ(s′2, a) and τ(s′3, a). Next we construct a
coupling between τ(s′1, a) and τ(s′3, a) by

∆′′a (s, s′′) = ∑
s′∈supp(τ(s′2,a))

∆a(s, s′) · ∆′a(s′, s′′)
τ(s′2, a)(s′)

. (D.1)

We first verify that this is a coupling.

∑
s′′∈S

∆′′a (s, s′′) = ∑
s′′∈S

∑
s′∈supp(τ(s2,a))

∆a(s, s′) · ∆′a(s′, s′′)
τ(s2, a)(s′)

= ∑
s′∈supp(τ(s2,a))

∆a(s, s′) ·∑s′′∈S ∆′a(s′, s′′)
τ(s2, a)(s′)

= ∑
s′∈supp(τ(s2,a))

∆a(s, s′) · τ(s2, a)(s′)
τ(s2, a)(s′)

= ∑
s′∈supp(τ(s2,a))

∆a(s, s′)

= τ(s1, a)(s),

and likewise we can show that ∑s∈S ∆′′a (s, s′′) = τ(s3, a)(s′′). Now assume
∆′′a (s, s′′) > 0. By (D.1), this means that there must exist some

s′ ∈ supp(τ(s′2, a)) such that ∆a(s, s′) > 0 and ∆′a(s
′, s′′) > 0.

This implies that (s, s′) ∈ R and (s′, s′′) ∈ R′, so by the construction of R′′ we
get (s, s′′) ∈ R′′.

Hence we have shown that R′′ is an ε · ε′-simulation relation. Since clearly
(s1, s3) ∈ R′′, it follows that s1 -ε·ε′ s3. �

Typically, one still uses the term distance for such multiplicative distances,
because by applying the logarithm one does obtain a hemimetric.

Theorem D.4.8. log d is a hemimetric.

Proof. Let dlog(s1, s2) = log d(s1, s2). Clearly, dlog(s1, s2) ≥ 0, and since
d(s, s) = 1, dlog(s, s) = log(1) = 0. Hence it only remains to verify the
triangle inequality.

If d(s1, s2) · d(s2, s3) = ∞, then clearly d(s1, s3) ≤ d(s1, s2) · d(s2, s3). If
d(s1, s2) · d(s2, s3) 6= ∞, then the sets {ε ≥ 1 | s1 -ε s2} and {ε′ ≥ 1 | s2 -ε′ s3}
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are both non-empty, so there must exist ε, ε′ ≥ 1 such that s1 -ε s2 and
s2 -ε′ s3, so by Lemma D.4.7 we have s1 -ε·ε′ s3, and hence d(s1, s3) 6=
∞. Taking the contrapositive of this, we get that d(s1, s3) = ∞ implies that
d(s1, s2) · d(s2, s3) = ∞, and hence also d(s1, s3) ≤ d(s1, s2) · d(s2, s3).

Now assume that d(s1, s3) 6= ∞ and d(s1, s2) · d(s2, s3) 6= ∞, and assume
towards a contradiction that d(s1, s3) > d(s1, s2) · d(s2, s3). Since d is defined
as an infimum, there must exist ε, ε′ ≥ 1 such that s1 -ε s2, s2 -ε′ s3, and

d(s1, s3) > ε · ε′ ≥ d(s1, s2) · d(s2, s3).

However, by Lemma D.4.7 we have ε · ε′ ≥ d(s1, s3), a contradiction. Hence
we get d(s1, s3) ≤ d(s1, s2) · d(s2, s3), and by taking logarithms, we get

dlog(s1, s3) ≤ dlog(s1, s2) + dlog(s2, s3). �

Example D.4.9. Consider again the SMDP from Example D.4.2. We can now
see that d(s1, s2) = 2 and d(s2, s1) =

1
2 . This also shows that our distance is

not symmetric, and hence not a pseudometric. �

Remark D.4.10. From a topological point of view, there is no real difference
between satisfying the standard triangle inequality or its multiplicative ver-
sion. The difference essentially amounts to working either in the monoid
(R≥0,+) or the monoid (R≥1, ·). However, these monoids are isomorphic
via the bijection given by the logarithm and exponential functions. Since
these functions are also continuous, the isomorphism is actually a homeo-
morphism, so all topological properties are preserved. �

If one allowed ε < 1 in the distance, then one would get strange results
such as a constant sequence which does not convergence to the constant ele-
ment. To see this, consider a sequence {sn}n∈N, where sn = s for any n ∈N.
Then d(sn, s) = 1 for any element of the sequence. However, limk→∞ sk 3 s
means that for any ε > 0, there exists an N ∈ N such that d(sn, s) < ε for all
n > N. However, this clearly does not hold for 0 < ε < 1, so limk→∞ sk 63 s.

D.5 Computing the Simulation Distance

In this section we provide an algorithm to compute the simulation distance
given in Definition D.4.5 for finite SMDPs. The algorithm is shown to run in
polynomial time for the distributions we have considered so far.

The following technical lemma will provide a sound basis for the correct-
ness of the algorithm. Given two CDFs F and G, let

c(F, G) = inf{ε ≥ 1 | F vε G}
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denote the least acceleration factor needed by F to be faster than G. Given an
SMDP M, we then define

C(M) = {c(Fs′ , Fs) | s, s′ ∈ S}.

Lemma D.5.1. Let M be a finite SMDP. If d(s1, s2) 6= ∞, then

• s1 -c s2, for some c ∈ C(M) and

• d(s1, s2) = min{c ∈ C(M) | s1 -c s2}.

Proof. For the first claim, note that d(s1, s2) 6= ∞ implies that s1 -ε s2 for some
ε ≥ 1. This is witnessed by some ε-simulation relation which we denote by
R. Now let

c∗ = max{c ∈ C(M) | c = cρ(s′),ρ(s) for some (s, s′) ∈ R}.

Then it is clear that R is also a c∗-simulation relation, and hence s1 -c∗ s2.
For the second claim, let

c∗ = min{c ∈ C(M) | s1 -c s2}

and
X = {ε ≥ 1 | s1 -ε s2}.

We first show that c∗ is a lower bound of X. If s1 -ε s2, then by the previous
argument we also have s1 -c∗ s2. Note that ε ≥ c∗, because otherwise we
would have had Fs′ 6vε Fs for some (s, s′) ∈ R, contradicting the fact that R is
a ε-simulation relation. Hence

ε ≥ c∗ ≥ min{c ∈ C(M) | s1 -c s2} = c∗,

so c∗ is a lower bound of X. Next we show that c∗ is the greatest lower bound
of X. We know that s1 -c∗ s2, and hence c∗ ∈ X, so if ε > c∗, then ε can not be
a lower bound of X. Hence c∗ is the greatest lower bound of X, and therefore
we conclude that

c∗ = min{c ∈ C(M) | s1 -c s2} = inf X = d(s1, s2). �

Lemma D.5.1 provides a strategy for computing the simulation distance
between any two states s1 and s2 of a given SMDP M as follows. First, one
constructs the set C(M). If s1 -c s2 does not hold for any c ∈ C(M), then
the distance must be infinite; otherwise, it is the smallest c ∈ C(M) for which
s1 -c s2 holds.

In order for this strategy to work, we need two ingredients: first, we
should be able to compute the set C(M) and second, for any c ∈ C(M), we
need an algorithm for checking whether s1 -c s2.
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Recall that SMDPs allow for arbitrary residence-time distributions in each
state. Therefore, it is not guaranteed that for any SMDP M the set C(M) can
be computed. With the following definition we identify the class of SMDPs
for which this can be done.

Definition D.5.2. A class C of CDFs is effective if for any F, G ∈ C, c(F, G) is
computable. An SMDP M is effective if {Fs | s ∈ S} is an effective class. N

In particular, for any pair of states s, s′ of an effective SMDP M, we can
decide whether Fs′ vε Fs by simply checking whether ε ≥ c(Fs′ , Fs). We
will denote by f (l) the complexity of computing c(Fs′ , Fs) for two arbitrary
s, s′ ∈ S as a function of the length l of the representation of the residence-
time distributions of M.

Let CΛ denote the class consisting of the Dirac distribution at 0 as well as
uniform and exponential distributions with rational parameters. By Proposi-
tions D.3.2–D.3.6 we immediately see that CΛ is an effective class, and in fact
it can be computed using only simple operations such as multiplication, divi-
sion, and taking maximum. Hence f (l) has constant complexity1 whenever
M takes residence-time distributions from CΛ.

Next we consider how to decide s1 -ε s2 for a given rational ε ≥ 1. A
decision procedure can be obtained by adapting to our setting the algorithm
by Baier et al. [2] for deciding the simulation preorder between probabilistic
labelled transition systems. The algorithm from [2] uses a partition refine-
ment approach to compute the largest simulation relation and runs in time
O(mn7/ log n) for reactive systems, where m = |A| is the number of actions,
and n = |S| is the number of states. Given ε ≥ 1, we can proceed corre-
spondingly to compute ε-similarity: we start from the relation R = S× S and
update it by removing all the pairs (s, s′) of states not satisfying the condi-
tions of Definition D.4.1. This process is repeated on the resulting updated
relation until no more pairs of states are removed. The resulting relation is
the largest ε-simulation. Hence, checking s1 -ε s2 corresponds to determin-
ing whether the pair (s1, s2) is contained in the relation returned by the above
algorithm. The complexity can be improved to O(m2n) by storing important
information about the previous iteration of the algorithm and use this in the
current iteration [27, Theorem 5.2.5].

Theorem D.5.3. Let M be a finite and effective SMDP. Given s1, s2 ∈ S and ε ≥ 1,
deciding whether s1 -ε s2 can be done in time O(n2( f (l) + k) + m2n), where
k = |AP| is the number of atomic propositions.

Proof. The algorithm for deciding s1 -ε s2 is essentially the same as that for
deciding untimed simulation. Since we have assumed effectiveness, when

1As is standard, we consider numbers to be represented as floating points of bounded size in
their binary representation.
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choosing whether to remove a pair (s, s′) from the current relation, we can
check the conditions on Definition D.4.1. However, we also need to check
whether L(s) = L(s′). For this we assume that the set of atomic propositions
AP have an ordering AP = x0, x1, . . . , and that L(s) is represented as a
binary array where the ith entry in the array is 1 if xi ∈ L(s), and 0 otherwise.
Then checking whether L(s) = L(s′) amounts to checking whether each array
has the same entries, which can be done in time k = |AP|. Testing for the
existence of a coupling can be done in time O(m2n) by using the algorithm
from [27], Hence we get a time complexity of O(n2( f (l) + k) + m2n). �

The algorithm for computing the simulation distance is given in Algo-
rithm D.5.1. The algorithm starts by ordering the elements of C(M) as
c1, . . . , cn while removing ∞ from the list. Then it searches for the small-
est ci such that s1 -ci s2 holds. This is done by means of a bisection method.
If s1 -c1 s2 holds, then c1 is the smallest element such that this holds, so we
return it. If s1 -cn s2 does not hold, then, by Lemma D.4.6, s1 -ci s2 does not
hold for any 1 ≤ i ≤ n, so we return ∞. If none of the above apply, at this
point of the algorithm (line 4) we have that s1 6-c1 s2 and s1 -cn s2.

We use the variables i and j, respectively, as the left and right endpoints
of the bisection interval. The bisection interval keeps track of those elements
cn for which we still do not know whether s1 -cn s2. At the beginning,
i = 1 and j = n. At line 7, h =

⌈
j−i
2

⌉
is used as the decrement factor for

the length of the bisection interval at each step. Since h > 0, the bisection
interval decreases in size for each iteration. If s1 -cj−h s2 holds, then j− h is
the current smallest element in C(M) for which this holds, hence j− h will
become the new right endpoint of the interval; otherwise i + h is the new left
endpoint. The bisection method stops when the endpoints meet or cross each
other, at which point we know that s1 6-cn s2 for all n < j and s1 -cn s2 for all
n ≥ j, and hence we return cj.

Computing the set C(M) at line 1 has complexity n2 f (l), and sorting it
can be done in time O(n log n) using mergesort. By Theorem D.5.3, and
since we have already computed C(M), each of the ε-simulation checks in
lines 2, 3, and 8 can be done in time O(n2k + m2n), but the complexity n2k
from comparing labels only needs to be computed once. Since the bisection
interval is halved each time, the while-loop is taken at most log n times. We
therefore get an overall time complexity of O(n2( f (l) + k) + m2n · log n).

Theorem D.5.4. Let M be a finite and effective SMDP. The simulation distance
between any two states can be computed in time O(n2( f (l) + k) + m2n · log n).

Proof. Consider the algorithm described in Algorithm D.5.1. The correct-
ness of the algorithm is given by Lemma D.5.1. We will now argue that
the algorithm runs in time O(n2( f (l) + k) + m2n · log n). The sorting in line
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1 Order the elements of C(M) \ {∞} such that c1 < c2 < · · · < cn ;
2 if s1 -c1 s2 then return c1 ;
3 else if s1 6-cn s2 then return ∞ ;
4 else
5 i← 1, j← n ;
6 while i < j do
7 h←

⌈
j−i
2

⌉
;

8 if s1 -cj−h s2 then j← j− h ;
9 else i← i + h ;

10 end
11 return cj ;
12 end
Algorithm D.5.1: Computing the simulation distance between s1 and
s2.

1 of the algorithm can be done in time O(n log n) using mergesort. The
checks in line 2 and 3 each has complexity O(n2( f (l) + k) + m2n) by The-
orem D.5.3. However, we only need to compare labels and residence-time
distributions once and then we can store the results for future iterations.
Hence the complexity O(n2( f (l) + k)) is only incurred once, and not in each
iteration. The while loop halves the number of elements left to check for
each iteration, and hence it will loop at most log n times. Since in each iter-
ation we make the check in line 8, the complexity of the while loop becomes
O(n2( f (l) + k) + m2n · log n). �

D.6 Compositional Properties

One of the most successful principles of formal verification is the notion of
compositional reasoning, in which a large system can be understood in terms
of its smaller components [6]. However, for this principle to work, one must
ensure that properties inferred about the components carry over to the full,
composite system. For bisimulation, this means that one wants bisimulation
to be a congruence with respect to parallel composition, and a precongru-
ence in the case of simulation. A natural generalisation of this is that of
non-expansiveness, which means that parallel composition does not increase
(expand) the distance between states. In this section we will prove that some
natural notions of parallel composition on SMDPs are non-expansive with
respect to the simulation distance.

First we define what it means to compose two SMDPs in parallel. As
argued in [25], the style of synchronous CSP is the one that is most suitable
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for SMDPs, so this is the one we will adopt here.

Definition D.6.1. A function ? : D(R≥0)×D(R≥0)→ D(R≥0) is a residence-
time composition function if it is commutative. N

Definition D.6.2. Let ? be a residence-time composition function. Then the
?-composition of M1 = (S1, τ1, ρ1, L1) and M2 = (S2, τ2, ρ2, L2), denoted M1 ‖?
M2 = (S, τ, ρ, L), is given as follows, for arbitrary s1, s′1 ∈ S1, s2, s′2 ∈ S2, and
a ∈ A.

1. S = S1 × S2,

2. τ((s1, s2), a)((s′1, s′2)) = τ1(s1, a)(s′1) · τ2(s2, a)(s′2),

3. ρ((s1, s2)) = ?(ρ1(s1), ρ2(s2)), and

4. L((s1, s2)) = L(s1) ∪ L(s2). N

Given a composite system M1 ‖? M2 = (S, τ, ρ, L), we write s1 ‖? s2 to
mean (s1, s2) ∈ S. The residence-time composition function ? allows us to
accommodate many different ways of combining timing behaviour, including
those found in the literature on process algebras. We recall here some of
these.

Maximum composition: F?(µ,ν)(t) = max(Fµ(t), Fν(t)).

For exponential distributions, Fµ = Exp[θ] and Fν = Exp[θ′], the following
alternatives can be found.

Product rate composition: F?(µ,ν) = Exp[θ · θ′].

Minimum rate composition: F?(µ,ν) = Exp[min{θ, θ′}].

Maximum rate composition: F?(µ,ν) = Exp[max{θ, θ′}].

Maximum composition is used for interactive Markov chains [13], product
rate composition is used in SPA [14], minimum rate composition is used in
PEPA [15], and maximum rate composition is used in TIPP [11].

In order to have non-expansiveness for ?-composition of SMDPs, we will
need to restrict to residence-time composition functions ? that are monotonic.

Definition D.6.3. A residence-time composition function ? is monotonic if for
all ε ≥ 1 and µ, ν, η ∈ D(R≥0), it holds that

Fµ vε Fν implies F?(µ,η) vε F?(ν,η). N

Requiring monotonicity is not a significant restriction, as many of the
composition functions that are found in the literature are indeed monotonic.
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Lemma D.6.4. Maximum composition as well as product, minimum, and maximum
rate composition are all monotonic.

Proof. Let ε ≥ 1 and assume that Fµ(ε · t) ≥ Fν(t) for all t.
We first consider maximum composition. If F?(µ,η)(ε · t) = Fµ(ε · t), then

Fµ(ε · t) ≥ Fη(ε · t) ≥ Fη(t), so

F?(µ,η)(ε · t) = Fµ(ε · t) ≥ F?(ν,η)(t).

On the other hand, consider the case where F?(µ,η)(ε · t) = Fη(ε · t). Then we
know that F?(µ,η)(ε · t) ≥ Fµ(ε · t) ≥ Fν(t). If it is the case that F?(ν,η)(t) =
Fν(t), then

F?(µ,η)(ε · t) ≥ Fν(t) = F?(ν,η)(t).

If F?(ν,η)(t) = Fη(t), then

F?(µ,η)(ε · t) = Fη(ε · t) ≥ Fη(t) = F?(ν,η)(t).

So we conclude that F?(µ,η)(t) ≥ F?(ν,η)(t′).
Next we consider the different rate compositions. Assume that Fµ =

Exp[θ], Fν = Exp[θ′], and Fη = Exp[θ′′]. Since we have assumed Fµ(ε · t) ≥
Fν(t) for all t, this implies by Lemma D.3.3 that ε · θ ≥ θ′.

For product rate composition, note that ε · θ ≥ θ′ implies ε · θ · θ′′ ≥ θ′ · θ′′.
Therefore

F?(µ,η)(ε · t) = Exp
[
θ · θ′′

]
(ε · t) = Exp

[
ε · θ · θ′′

]
(t)

≥ Exp
[
θ′ · θ′′

]
(t) = F?(ν,η)(t).

For minimum rate composition, we want to show that min{ε · θ, ε · θ′′} ≥
min{θ′, θ′′}. If min{ε · θ, ε · θ′′} = ε · θ, then

min{ε · θ, ε · θ′′} = ε · θ ≥ θ′ ≥ min{θ′, θ′′}.

Otherwise, if min{ε · θ, ε · θ′′} = ε · θ′′, then

min{ε · θ, ε · θ′′} = ε · θ′′ ≥ θ′′ ≥ min{θ′, θ′′}.

Hence

F?(µ,η)(ε · t) = Exp
[
min{ε · θ, ε · θ′′}

]
(t) ≥ Exp

[
min{θ′, θ′′}

]
(t) = F?(ν,η)(t).

For maximum composition, we see that if max{θ′, θ′′} = θ′, then

max{ε · θ, ε · θ′′} ≥ ε · θ ≥ θ′ = max{θ′, θ′′},

and if max{θ′, θ′′} = θ′′, then

max{ε · θ, ε · θ′′} ≥ ε · θ′′ ≥ θ′′ = max{θ′, θ′′}.
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Hence

F?(µ,η)(ε · t) = Exp
[
max{ε · θ, ε · θ′′}

]
(t) ≥ Exp

[
max{θ′, θ′′}

]
(t) = F?(ν,η)(t).

�

Now we can prove that the ?-composition of finite SMDPs is indeed non-
expansive with respect to the simulation distance, provided that ? is mono-
tonic.

Theorem D.6.5. For finite SMDPs and monotonic ?,

d(s1, s2) ≤ ε implies d(s1 ‖? s3, s2 ‖? s3) ≤ ε.

Proof. Assume that d(s1, s2) ≤ ε. By Lemma D.5.1, we have that s1 -d(s1,s2)
s2,

so by Lemma D.4.6 we get that s1 -ε s2. Hence, there exists a ε-simulation
relation R such that (s1, s2) ∈ R. Now construct

R′ = {(s′1 ‖? s3, s′2 ‖? s3) | (s′1, s′2) ∈ R and s3 ∈ S},

and we want to show that R′ is a ε-simulation relation.
Pick some (s′1 ‖? s3, s′2 ‖? s3) ∈ R′. Then we get

L(s′1 ‖? s3) = L(s′1) ∪ L(s3) = L(s′2) ∪ L(s3) = L(s′2 ‖? s3).

Since ? is monotonic, we immediately get

?(ρ(s′2), ρ(s3))([0, ε · t]) ≥ ?(ρ(s′1), ρ(s3))([0, t])

for all t, so Fs′2‖?s3
vε Fs′1‖?s3

. Now let a ∈ A be an arbitrary action and define

∆′a(s
′′
1 ‖? s′3, s′′2 ‖? s′′3 ) =

{
0 if s′3 6= s′′3
∆a(s′′1 , s′′2 ) · τ(s3, a)(s′3) otherwise.

If ∆′a(s′′1 ‖? s′3, s′′2 ‖? s′′3 ) > 0, then s′3 = s′′3 and also ∆a(s′′1 , s′′2 ) > 0, so (s′′1 , s′′2 ) ∈
R, and hence (s′′1 ‖? s′3, s′′2 ‖? s′′3 ) ∈ R′. Furthermore,

∑
s′′2 ‖?s′′3

∆′a(s
′′
1 ‖? s′3, s′′2 ‖? s′′3 ) = ∑

s′′2

∆′a(s
′′
1 ‖? s′3, s′′2 ‖? s′3)

= ∑
s′′2

∆a(s′′1 , s′′2 ) · τ(s3, a)(s′3)

= τ(s3, a)(s′3) ·∑
s′′2

∆a(s′′1 , s′′2 )

= τ(s3, a)(s′3) · τ(s′1, a)(s′′1 )

= τ(s′1 ‖? s3, a)(s′′1 ‖? s′3),
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and likewise we can show that

∑
s′′1 ‖?s′3

∆′a(s
′′
1 ‖? s′3, s′′2 ‖? s′′3 ) = τ(s′2 ‖? s3, a)(s′′2 ‖? s′′3 ).

We have thus shown that R′ is a ε-simulation relation, and hence

s1 ‖? s3 -ε s2 ‖? s3.

Clearly, this implies that d(s1 ‖? s3, s2 ‖? s3) ≤ ε. �

We conclude this section by exploring the computational aspects of com-
position of SMDPs. In particular, we would like to be able to also compute
the distance between composite systems.

From Lemma D.5.1, we know that computing the simulation distance
amounts to being able to compute the constants c(Fs, Fs′), for each pair of
states s, s′ of the SMDP. Hence we would like that, whenever two distribu-
tions µ and ν have effective CDFs then also their composition ?(µ, ν) has an
effective CDF. By Proposition D.3.5, it is easy to see that this holds for prod-
uct, minimum, and maximum rate composition, since these compositions are
still exponential distributions.

For maximum composition, the class CΛ is unfortunately not closed under
composition. However, the following result holds.

Proposition D.6.6. Let ? be maximum composition. For any µ, ν, η ∈ CΛ,

1. c(Fµ, F?(ν,η)) is computable and

2. c(F?(µ,η), Fν) is computable.

Proof.

1. This follows from Lemmas D.6.7, D.6.8, D.6.10, D.6.11, and D.6.12.

2. This follows from Lemmas D.6.7, D.6.8, D.6.13, D.6.14, and D.6.15. �

The above results tells us that if we are interested in computing the dis-
tance d(s1, s2 ‖? s3) or d(s1 ‖? s2, s3), when ? is maximum composition, then
we can indeed compute the constants c that are needed for Algorithm D.5.1
to work.

We now state and prove the lemmas necessary to prove Proposition D.6.6.

Lemma D.6.7. Let ? be maximum composition, and let µ1, µ2, ν1, and ν2 be mea-
sures. The following holds for any ε ∈ R>0.

1. If one of µ1 and µ2 and one of ν1 and ν2 is the Dirac measure at 0, then
F?(µ1,µ2)

vε F?(ν1,ν2)
.
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2. If one of µ1 and µ2 is the Dirac measure at 0, but none of ν1 and ν2 are, then
F?(µ1,µ2)

vε F?(ν1,ν2)
.

3. If none of µ1 and µ2 are the Dirac measure at 0, but one of ν1 and ν2 is, then
F?(µ1,µ2)

6vε F?(ν1,ν2)
.

Proof. 1. We get F?(µ1,µ2)
= Dirac[0] and F?(ν1,ν2)

= Dirac[0], so we can use
Proposition D.3.2.

2. We get F?(µ1,µ2)
= Dirac[0], so again we can use Proposition D.3.2.

3. We get F?(ν1,ν2)
= Dirac[0], and F?(µ1,µ2)

6= Dirac[0], so once more we
can use Proposition D.3.2. �

Lemma D.6.8. Let ? be maximum composition, and let Fµ1 = Exp[θ1], Fµ2 =
Exp[θ2], Fν1 = Exp[λ1], and Fν2 = Exp[λ2]. Then F?(µ1,µ2)

vε F?(ν1,ν2)
where

ε = max{λ1,λ2}
max{θ1,θ2}

. Furthermore, this is the least ε such that the ε-faster-than relation
holds.

Proof. We have four cases to consider:

1. max{θ1, θ2} = θ1 and max{λ1, λ2} = λ1, in which case F?(µ1,µ2)
= Fµ1

and F?(ν1,ν2)
= Fν1 .

2. max{θ1, θ2} = θ2 and max{λ1, λ2} = λ1, in which case F?(µ1,µ2)
= Fµ2

and F?(ν1,ν2)
= Fν1 .

3. max{θ1, θ2} = θ1 and max{λ1, λ2} = λ2, in which case F?(µ1,µ2)
= Fµ1

and F?(ν1,ν2)
= Fν2 .

4. max{θ1, θ2} = θ2 and max{λ1, λ2} = λ2, in which case F?(µ1,µ2)
= Fµ2

and F?(ν1,ν2)
= Fν2 .

In all cases, the result then follows from Proposition D.3.5. �

Lemma D.6.9. Let ? be maximum composition and let Fµ = Unif [a, b] and Fν =
Unif [c, d]. If a ≤ c and d ≤ b, then F?(µ,ν)(t) ≤ Unif [a, d] (t) for all t.

Proof. Note first that if Fµ′ = Unif [a′, b′] and Fν′ = Unif [c′, d′] with a′ ≤ c′

and b′ ≤ d′, then clearly Unif [a′, b′] (t) ≥ Unif [c′, d′] (t) for all t.
Now, a ≤ a and d ≤ b, so Unif [a, d] (t) ≥ Unif [a, b] (t) for all t. Likewise,

a ≤ c and d ≤ d, so Unif [a, d] ≥ Unif [c, d] (t) for all t. Hence

Unif [a, d] (t) ≥ max{Unif [a, b] (t), Unif [c, d] (t)} = F?(µ,ν). �

Lemma D.6.10. Let ? be maximum composition, and let Fµ = Unif [a, b], Fν1 =
Unif [c1, d1], and Fν2 = Unif [c2, d2].
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1. If min{c1, c2} = 0 and a > 0, then Fµ 6vε F?(ν1,ν2)
for any ε.

2. If min{c1, c2} = 0 and a = 0, then Fµ vε F?(ν1,ν2)
where ε = b

min{d1,d2}
.

3. If min{c1, c2} > 0, then Fµ vε F?(ν1,ν2)
where

ε = max
{

a
min{c1, c2}

,
b

min{d1, d2}

}
.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. Take t = a
ε > 0 to get

Fµ(ε · t) = Unif [a, b] (ε · t) = Unif [a, b] (a) = 0.

However, since min{c1, c2} = 0, at least one of Unif [c1, d1] (t) > 0 and
Unif [c2, d2] (t) > 0 must hold, and hence F?(ν1,ν2)

(t) > 0.

2. We get

Fµ(ε · t) = Unif
[

a · min{d1, d2}
b

, min{d1, d2}
]
(t)

= Unif [0, min{d1, d2}] (t)
≥ F?(ν1,ν2)

(t) by Lemma D.6.9.

If ε′ < b
min{d1,d2}

, then

Fµ(ε
′ ·min{d1, d2})

= Unif [a, b] (ε′ ·min{d1, d2})

< Unif [a, b]
(

b
min{d1, d2}

·min{d1, d2}
)

= 1

= max{Unif [c1, d1] (min{d1, d2}), Unif [c2, d2] (min{d1, d2})}
= Fν1,ν2(min{d1, d2}).

3. We consider each case separately.

Case c1 ≤ c2 and d1 ≤ d2: In this case we have F?(ν1,ν2)
= Fν1 , so we can

use Proposition D.3.5.
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Case c1 ≤ c2 and d1 > d2: In this case we get ε = max
{

a
c1

, b
d2

}
. If ε =

a
c1

, then c1
a ≤

d2
b , so

Fµ(ε · t) = Unif
[

c1, b · d2

b

]
(t)

≥ Unif
[

c1, b · d2

b

]
(t)

= Unif [c1, d2] (t)

≥ F?(ν1,ν2)
(t) by Lemma D.6.9.

For any ε′ < a
c1

, let t = a
ε′ > c1. Then Fµ(ε′ · t) = Fµ(a) = 0, but

F?(ν1,ν2)
(t) > 0 since c1 ≤ c2 and t > c1.

On the other hand, if ε = b
d2

, then d2
b ≤

c1
a . This means that

Fµ(ε · t) = Unif
[

a · d2

b
, d2

]
(t)

≥ Unif
[

a · c1

a
, d2

]
(t)

= Unif [c1, d2] (t)

≥ F?(ν1,ν2)
(t) by Lemma D.6.9.

For any ε′ < b
d2

we get

Fµ(ε
′ · d2) = Unif [a, b] (ε′ · d2)

< Unif [a, b] (
b
d2
· d2)

= 1

= F?(ν1,ν2)
(d2)

because d1 > d2.

Case c1 > c2 and d1 ≤ d2: In this case we get ε = max
{

a
c2

, b
d1

}
. If ε =

a
c2

, then c2
a ≤

d1
b , and hence

Fµ(ε · t) = Unif
[
c2, b · c2

a

]
(t)

≥ Unif
[

c2, b · d1

b

]
(t)

= Unif [c2, d1] (t)

≥ F?(ν1,ν2)
(t) by Lemma D.6.9.
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For any ε′ < a
c2

, let t = a
ε′ > c2 in order to get Fµ(ε′ · t) =

Unif [a, b] (a) = 0, but F?(ν1,ν2)
(t) > 0 since c1 > c2 and t > c2.

On the other hand, if ε = b
d1

, then d1
b ≤

c2
a . Then we get

Fµ(ε · t) = Unif
[

a · d1

b
, d1

]
(t)

≥ Unif [c2, d1] (t)

≥ F?(ν1,ν2)
(t) by Lemma D.6.9.

For any ε′ < b
d1

we get

Fµ(ε
′ · d1) = Unif [a, b] (ε′ · d1)

< Unif [a, b] (
b
d1
· d1)

= 1

= F?(ν1,ν2)
(d1)

since d1 ≤ d2.

Case c1 > c2 and d1 > d2: In this case we have F?(ν1,ν2)
= Fν2 , so we can

use Proposition D.3.5. �

Lemma D.6.11. Let ? be maximum composition, and let Fµ = Exp[θ], Fν1 =
Unif [a, b], Fν2 = Unif [c, d]. Then Fµ 6vε F?(ν1,ν2)

for any ε.

Proof. F?(ν1,ν2)
(min{b, d}) = 1, but Fµ(t) < 1 for all t, so

Fµ(ε ·min{b, d}) < F?(ν1,ν2)
(min{b, d})

for any ε. �

Lemma D.6.12. Let ? be maximum composition, and let µ1 = Exp[θ1], µ2 =
Unif [a, b], ν1 = Exp[θ2], and ν2 = Unif [c, d].

1. Fµ1 6vε F?(ν1,ν2)
for any ε.

2. If a > 0, then Fµ2 6vε F?(ν1,ν2)
for any ε.

3. If a = 0 and 1
d−c ≥ θ2, then Fµ2 vε F?(ν1,ν2)

where ε = b
d .

4. If a = 0 and 1
d−c < θ2, then Fµ2 vε F?(ν1,ν2)

where ε = θ2 · b.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. F?(ν1,ν2)
(d) = 1, but Fµ1(t) < 1 for all t, so Fµ1(ε · d) < F?(ν1,ν2)

(d)
for any ε.
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2. If a > 0, let ε ∈ R>0 be given. Let t = a
ε > 0 to get F?(ν1,ν2)

(t) ≥
Exp[θ2] (t) > 0 since t > 0, but Fµ2(ε · t) = Unif [a, b] (a) = 0, and hence
Fµ2(ε · t) < FJν1,ν2K(t).

3. If a = 0 and 1
d−c ≥ θ2, then the slope of Unif [c, d] is greater than

that of Exp[θ2] until Unif [c, d] hits 1 and flattens out. Hence F?(ν1,ν2)
=

Unif [c, d], so we can use Proposition D.3.5 to get the result.

4. If a = 0 and 1
d−c < θ2, let ε = θ2 · b. By Proposition D.3.6 we then get

Fµ2(ε · t) ≥ Exp[θ] (t) for all t. Since the slope of Unif
[

a
ε , b

ε

]
is θ2, it has

greater slope than Unif [c, d], and hence also Fµ2(ε · t) = Unif
[

a
ε , b

ε

]
(t) ≥

Unif [c, d] (t). We therefore get

Fµ2(ε · t) ≥ max{Exp[θ2] (t), Unif [c, d] (t)} = F?(ν1,ν2)
(t).

If ε′ < θ2 · b, then the slope in 0 of Fµ2(ε
′ · t) = Unif

[
a
ε′ ,

b
ε′

]
(t) must be

less than that of Exp[θ2]. Hence there exists some t > 0 sufficiently close
to 0 such that Fµ2(ε

′ · t) < Exp[θ2] (t) = F?(ν1,ν2)
(t). �

Lemma D.6.13. Let ? be maximum composition, and let Fµ1 = Unif [a1, b1], Fµ2 =
Unif [a2, b2], and Fν = Unif [c, d].

1. If c = 0 and min{a1, a2} > 0, then F?(µ1,µ2)
6vε Fν for any ε.

2. If c = 0 and a1 = a2 = 0, then F?(µ1,µ2)
vε Fν where ε = min{b1,b2}

d .

3. If c = 0 and min{a1, a2} = 0 and either a1 < a2 and b1 ≤ b2 or a1 > a2 and
b1 > b2, then F?(µ1,µ2)

vε Fν where ε = min{b1,b2}
d .

4. If c = 0 and min{a1, a2} = 0 and either a1 < a2 and b1 > b2 or a1 > a2 and
b1 ≤ b2, then F?(µ1,µ2)

vε Fν where ε = max{b1,b2}
d .

5. If c > 0, a1 < a2, b1 > b2, 1
c− a1 ·c

b1

≥ 1
d−c , and 1

d− a2 ·d
b2

≤ 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = min

{
a1
c , b2

d

}
.

6. If c > 0, a1 < a2, b1 > b2, 1
c− a1 ·c

b1

< 1
d−c , and 1

d− a2 ·d
b2

≤ 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = b2

d .

7. If c > 0, a1 < a2, b1 > b2, 1
c− a1 ·c

b1

≥ 1
d−c , and 1

d− a2 ·d
b2

> 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = a1

c .
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8. If c > 0, a1 < a2, b1 > b2, 1
c− a1 ·c

b1

< 1
d−c , and 1

d− a2 ·d
b2

> 1
d−c , then

F?(µ1,µ2)
vε Fν where

ε =
(b1 − a1) · k

d · k− c · k− d · a1 + b1 · c

and k = a1·b2−a2·b1
a1−b1−a2+b2

.

9. If c > 0, a1 > a2, b1 < b2, 1
c− a2 ·c

b2

≥ 1
d−c , and 1

d− a1 ·d
b1

≤ 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = min

{
a2
c , b1

d

}
.

10. If c > 0, a1 > a2, b1 < b2, 1
c− a2 ·c

b2

< 1
d−c , and 1

d− a1 ·d
b1

≤ 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = b1

d .

11. If c > 0, a1 > a2, b1 < b2, 1
c− a2 ·c

b2

≥ 1
d−c , and 1

d− a1 ·d
b1

> 1
d−c , then

F?(µ1,µ2)
vε Fν where ε = a2

c .

12. If c > 0, a1 > a2, b1 < b2, 1
c− a2 ·c

b2

< 1
d−c , and 1

d− a1 ·d
b1

> 1
d−c , then

F?(µ1,µ2)
vε Fν where

ε =
(b2 − a2) · k

d · k− c · k− d · a2 + b2 · c

and k = a1·b2−a2·b1
a1−b1−a2+b2

.

13. Otherwise, F?(µ1,µ2)
vε Fν where

ε = max
{

min{a1, a2}
c

,
min{b1, b2}

d

}
.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. Take an arbitrary ε ∈ R>0 and let t = min{a1,a2}
ε > 0. Then

F?(µ1,µ2)
(ε · t) = F?(µ1,µ2)

(min{a1, a2}) = 0, but Fν(t) > 0 since c = 0
and t > 0. Hence F?(µ1,µ2)

(ε · t) < Fν(t).

2. If a1 = a2 = 0, then F?(µ1,µ2)
= Unif [0, min{b1, b2}], so the result follows

from Proposition D.3.5.

3. If a1 ≤ a2 and b1 ≤ b2, then F?(µ1,µ2)
= Fµ1 , and if a1 > a2 and b1 > b2,

then F?(µ1,µ2)
= Fµ2 . In either case, we can then use Proposition D.3.5 to

obtain the result.
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4. We consider here the case where a1 < a2 and b1 > b2. The case
where a1 > a2 and b1 ≤ b2 is symmetrical, noting that if b1 = b2,
then F?(µ1,µ2)

= Fµ1 , in which case the result follows from Proposition

D.3.5. We have c = min{a1, a2} = a1 = 0 and ε = b1
d . Then

F?(µ1,µ2)
(ε · t) ≥ Unif [a1, b1] (ε · t)

= Unif
[

a1 ·
d
b1

, b1 ·
d
b1

]
(t)

= Unif [0, d] (t)

= Unif [c, d] (t).

To see that this is the least ε such that the ε-faster-than relation holds,
first note that Unif

[
a1
ε , b1

ε

]
and Unif

[
a2
ε , b2

ε

]
cross in the point

t =
a1 · b2 − a2 · b1

ε · (a1 − b1 − a2 + b2)

with 0 = a1 < a2 < t < b2 < b1. From this it follows that

1 > Unif [c, d] (t) = Unif [a1, b2] (ε · t) = Unif [a2, b2] (ε · t) > 0.

Hence, if ε′ < ε we get

Unif [c, d] (t) = Unif [a1, b1] (ε · t) > Unif [a1, b2] (ε
′ · t)

and
Unif [c, d] (t) = Unif [a2, b2] (ε · t) > Unif [a2, b2] (ε

′ · t),

and therefore F?(µ1,µ2)
(ε′ · t) < Unif [c, d] (t).

5. 1
c− a1 ·c

b1

≥ 1
d−c means that

Unif [a1, b2]
( a1

c
· t
)
= Unif

[
c, b1 ·

c
a1

]
(t)

has greater slope than Unif [c, d] (t), so

Unif [a1, b1]
( a1

c
· t
)
≥ Unif [c, d] (t).

Likewise, 1
d− a2 ·d

b2

≤ 1
d−c means that

Unif [a2, b2]

(
b2

d
· t
)
= Unif

[
a2 ·

d
b2

, d
]
(t)
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has smaller slope than Unif [c, d] (t), and hence

Unif [a2, b2] (
b2

d
· t) ≥ Unif [c, d] (t).

We therefore conclude

F?(µ1,µ2)

(
min

{
a1

c
,

b2

d

}
· t
)
≥ Unif [c, d] (t).

If ε′ < ε, first assume that ε = a1
c and let t = a1

ε′ > c. Then

F?(µ1,µ2)
(ε′ · t) = F?(µ1,µ2)

(a1) = 0,

but Unif [c, d] (t) > 0 since t > c. Now assume that ε = b2
d . Then we get

F?(µ1,µ2)
(ε′ · d) < F?(µ1,µ2))

(ε · d) = F?(µ1,µ2)
(b2) = 1 = Unif [c, d] (d).

6. This case is the same as case 5, only considering the part where ε = b2
d .

7. This case is the same as case 5, only considering the part where ε = a1
c .

8. ε and k are chosen such that k
ε is the point in which Unif

[
a1
ε , b1

ε

]
,

Unif
[

a2
ε , b2

ε

]
, and Unif [c, d] cross. Hence we get

F?(µ1,µ2)

(
ε · k

ε

)
= Unif [c, d]

(
k
ε

)
.

We have

F?(µ1,µ2)
(ε · t) = Unif [a1, b1] (ε · t) ≥ Unif [c, d] (t)

for any t ≥ k
ε and

F?(µ1,µ2)
(ε · t) = Unif [a2, b2] (ε · t) ≥ Unif [c, d] (t)

for any t ≤ k
ε . Hence we can conclude that F?(µ1,µ2)

(ε · t) ≥ Unif [c, d] (t).

If ε′ < ε, then F?(µ1,µ2)

(
ε′ · k

ε

)
< F?(µ1,µ2)

(
ε · k

ε

)
= Unif [c, d]

(
k
ε

)
.

9. Symmetric to case 5.

10. Symmetric to case 6.

11. Symmetric to case 7.

12. Symmetric to case 8.
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13. In this case, we either get F?(µ1,µ2)
= Fµ1 or F?(µ1,µ2)

= Fµ2 , and the result
is then obtained by applying Proposition D.3.5. �

Lemma D.6.14. Let ? be maximum composition, and let Fµ = Exp[θ], Fν1 =
Unif [a, b], Fν2 = Unif [c, d].

1. If min{a, c} > 0, then F?(ν1,ν2)
6vε Fµ for any ε.

2. If a = 0 and c > 0, then F?(ν1,ν2)
vε Fµ where ε = θ · b.

3. If a > 0 and c = 0, then F?(ν1,ν2)
vε Fµ where ε = θ · d.

4. If a = 0 and c = 0, then F?(ν1,ν2)
vε Fµ where ε = θ ·min{b, d}.

In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. If min{a, c} > 0, let ε be given, and let t = min{a,c}
ε > 0. Then

F?(ν1,ν2)
(ε · t) = F?(ν1,ν2)

(min{a, c}) = 0

but Fµ(t) = Exp[θ] (t) > 0 since t > 0.

2. By Proposition D.3.6, we know that Unif [a, b] vε Exp[θ]. Hence

F?(ν1,ν2)
(ε · t) ≥ Unif [a, b] (ε · t) ≥ Exp[θ] (t).

If ε′ < θ · b, then there must exist some t > 0 sufficiently close to 0 such
that

F?(ν1,ν2)
(ε′ · t) = Unif [a, b] (ε′ · t) < Exp[θ] (t).

3. Similar to the case where a = 0 and c > 0.

4. If a = 0 and c = 0, then we get F?(ν1,ν2)
= Unif [a, b] if b ≤ d and

F?(ν1,ν2)
= Unif [c, d] if b > d. In either case, we can use Proposition

D.3.6 to obtain the desired result. �

Lemma D.6.15. Let ? be maximum composition, and let µ1 = Exp[θ1], µ2 =
Unif [a, b], ν1 = Exp[θ2], and ν2 = Unif [c, d].

1. If a = 0 and 1
b−a ≥ θ1, then F?(µ1,µ2)

vε Fν1 where ε = θ2 · b.

2. If a > 0 or 1
b−a < θ1, then F?(µ1,µ2)

vε Fν1 where ε = θ2
θ1

.

3. If 1
b−a ≥ θ1 and a = 0, then F?(µ1,µ2)

vε Fν2 where ε = b
d .

4. Otherwise, F?(µ1,µ2)
vε Fν2 where

ε = max
{

b
d

,
(b− a) · k

d · k− c · k− d · a + b · c

}
,

k = b·θ1+W(θ1·(a−b)·e−b·θ1 )
θ1

, and W is the Lambert W-function.
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In all cases, this is the least ε such that the ε-faster-than relation holds.

Proof. 1. In this case, F?(µ1,µ2)
= Fµ2 , so we can use Proposition D.3.6 to

obtain the result.

2. We get

F?(µ1,µ2)

(
θ2

θ1
· t
)
≥ Exp[θ1]

(
θ2

θ1
· t
)
= Exp[θ2] (t) = Fν1(t).

To see that this is the least ε such that the ε-faster-than relation holds,
first note that because a > 0 or 1

b−a < θ1, there must be some interval
[0, t] where F?(µ1,µ2)

(t′) = Exp[θ1] (t′) for all t′ ∈ [0, t]. If ε′ < ε, then let
t′ ∈

[
0, t

ε

]
, so that ε · t′ ∈ [0, t], and also ε′ · t′ ∈ [0, t]. Then we get

F?(µ1,µ2)
(ε′ · t′) = Exp[θ1] (ε

′ · t′) < Exp[θ1] (ε · t′) = Exp[θ2] (t′).

3. We get F?(µ1,µ2)
= Fµ2 , so we can use Proposition D.3.5.

4. In this case, Fµ1 and Fµ2 will cross in some non-zero point. k is chosen
so that

Fµ1(ε
∗ · t∗) = Fµ2(ε

∗ · t∗) = Fν2(t
∗)

where

ε∗ =
(b− a) · k

d · k− c · k− d · a + b · c
and

t∗ =
k
ε∗

.

This also means that

F?(µ1,µ2)
(ε · t) =

{
Fµ1(ε · t) if t ≤ t∗

Fµ2(ε · t) if t ≥ t∗.

Now, if ε = b
d , then Fµ2(ε · d) = Unif

[
a · d

b , d
]
(d) = Unif [c, d] (d), and

Fµ2(ε · t∗) ≥ Fµ2(ε
∗ · t∗) = Fν2(t

∗). Hence Fµ2(ε · t) ≥ Fν2(t) for all t ≥ t∗.
For t ≤ t∗ we get Fµ1(ε · t) ≥ Fν2(t), and hence F?(µ1,µ2)

(ε · t) ≥ Fν2(t). If
ε′ < ε, then F?(µ1,µ2)

(ε′ · d) < F?(µ1,µ2)
(ε · d) = 1 = Unif [c, d] (d).

If ε = ε∗, then Fµ1(ε · t∗) = Fµ2(ε · t∗) = Fν2(t
∗). Since

Fµ2(ε · d) ≥ Fµ2

(
b
d
· d
)
= 1 = Unif [c, d] (d),

we get Fµ2(ε · t) ≥ Fν2(t) for all t ≥ t∗. For t ≤ t∗ we get Fµ1(ε · t) ≥
Fν2(t), and hence we conclude F?(µ1,µ2)

(ε · t) ≥ Fν2(t). If ε′ < ε, then
F?(µ1,µ2)

(ε′ · t∗) < F?(µ1,µ2)
(ε · t∗) = Fν2(t

∗). �
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D.7 Logical Properties of the Simulation Distance

If the distance between two processes is small, then we would also expect that
they satisfy almost the same properties. In order to make this idea precise, in
this section we introduce and study a slight extension of Markovian logic [17],
which we will call timed Markovian logic (TML). The syntax of TML is given
by the following grammar, where α ∈ AP , p ∈ Q≥0 ∩ [0, 1], t ∈ Q≥0, and
a ∈ A.

TML : ϕ ::= α | ¬α | `pt | mpt | La
p ϕ | Ma

p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

The semantics of TML is given by

s |= α iff α ∈ L(s) s |= `pt iff Fs(t) ≥ p
s |= ¬α iff α /∈ L(s) s |= mpt iff Fs(t) ≤ p
s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′ s |= La

p ϕ iff τ(s, a)(JϕK) ≥ p
s |= ϕ ∨ ϕ′ iff s |= ϕ or s |= ϕ′ s |= Ma

p ϕ iff τ(s, a)(JϕK) ≤ p

where JϕK = {s ∈ S | s |= ϕ} is the set of states satisfying ϕ.
We also isolate the following two fragments of TML.

TML≥ : ϕ ::= α | ¬α | `pt | La
p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

TML≤ : ϕ ::= α | ¬α | mpt | Ma
p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

Intuitively, the modal formula La
p ϕ says that the probability of taking an

a-transition to where ϕ holds is at least p, and Ma
p ϕ says the probability is

at most p. `pt and mpt are similar in spirit, but talk about the probability
of firing a transition instead. Thus, `pt says that the probability of firing a
transition before time t is at least p, whereas mpt says that the probability is
at most p.

For any ϕ ∈ TML and ε ≥ 1 we denote the ε-perturbation of ϕ by (ϕ)ε and
define it inductively as

(α)ε = α (`pt)ε = `pε · t
(¬α)ε = ¬α (mpt)ε = mpε · t
(ϕ ∧ ϕ′)ε = (ϕ)ε ∧ (ϕ′)ε (La

p ϕ)ε = La
p(ϕ)ε

(ϕ ∨ ϕ′)ε = (ϕ)ε ∨ (ϕ′)ε (Ma
p ϕ)ε = Ma

p(ϕ)ε.

By making use of the alternative characterisation for simulation given in
Proposition D.2.3 and drawing upon ideas from [7], we can now prove the
following logical characterisation of the ε-simulation relation.

Theorem D.7.1. Let ε ∈ Q≥0 with ε ≥ 1. Then the following holds.

• s1 -ε s2 if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.
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• s1 -ε s2 if and only if ∀ϕ ∈ TML≤.s2 |= (ϕ)ε =⇒ s1 |= ϕ.

Proof. • We first prove the first item.
( =⇒ ) We proceed by induction on ϕ. The cases of conjunction and

disjunction are standard.
Case ϕ = α: s1 |= α means that α ∈ L(s1). Since L(s1) = L(s2) we then get

s2 |= α.
Case ϕ = ¬α: s1 |= ¬α means that α /∈ L(s1). Since L(s1) = L(s2) we then

get s2 |= ¬α.
Case ϕ = `pt: s1 |= `pt means that Fs1(t) ≥ p, and since Fs2(ε · t) ≥ Fs1(t),

we get s2 |= (ϕ)ε.
Case ϕ = La

p ϕ′: s1 |= La
p ϕ′ means that τ(s1, a)(Jϕ′K) ≥ p. There exists a

coupling ∆a(s, s′) such that

τ(s1, a)(Jϕ′K) = ∑
s∈Jϕ′K

τ(s1, a)(s)

= ∑
s∈Jϕ′K

∑
s′∈S

∆a(s, s′)

= ∑
s∈Jϕ′K

∑
s′∈J(ϕ′)εK

∆a(s, s′) (ind. hyp.)

≤ ∑
s′∈J(ϕ′)εK

τ(s2, a)(s′)

= τ(s2, a)(J(ϕ′)εK),

and hence s2 |= (ϕ)ε.
(⇐= ) We construct the relation

R = {(s, s′) ∈ S× S | ∀ϕ ∈ TML≥.s |= ϕ =⇒ s′ |= ϕ}

and we must show that it is a ε-simulation relation. Let (s′1, s′2) ∈ R be
arbitrary. We will first show that L(s′1) = L(s′2). If α ∈ L(s′1), then s′1 |= α,
and hence s′2 |= α, which means that α ∈ L(s′2). If α /∈ L(s′1), then s′1 |= ¬α,
implying that s′2 |= ¬α, so α /∈ L(s′2). Therefore L(s′1) = L(s′2).

Next we will show that Fs′1
(t) ≤ Fs′2

(ε · t) for all t ∈ R≥0. Assume towards
a contradiction that Fs′1

(t) > Fs′2
(ε · t) for some t ∈ Q≥0. Then there exists

q ∈ Q≥0 such that Fs′1
(t) > q > Fs′2

(ε · t). But then s′1 |= `qt whereas s′2 6|=
`qε · t, which contradicts how R was constructed. Hence Fs′1

(t) ≤ Fs′2
(ε · t) for

all t ∈ Q≥0. Now assume towards a contradiction that Fs′1
(t) > Fs′2

(ε · t) for
some t ∈ R≥0 and let ε′ = Fs′1

(t)− Fs′2
(ε · t) > 0. By right-continuity, there

exists δ > 0 such that ε · t < c < ε · t + δ implies |Fs′2
(c)− Fs′2

(ε · t)| < ε′. Now
pick some q ∈ Q≥0 such that ε · t < q < ε · t + δ. Then

Fs′2
(ε · t) ≤ Fs′2

(q) < Fs′1
(t) ≤ Fs′1

(q),
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which is a contradiction. Hence we conclude that Fs′1
(t) ≤ Fs′2

(ε · t) for all
t ∈ R≥0.

Finally we will show that τ(s′1, a)(C) ≤ τ(s′2, a)(R(C)) for all a and C ⊆ S.
Pick an arbitrary a and C ⊆ S. By construction of R, we know that

τ(s′1, a)(JϕK) ≥ p implies τ(s′2, a)(J(ϕ)εK) ≥ p for any p.

This implies that
τ(s′1, a)(JϕK) ≤ τ(s′2, a)(J(ϕ)εK) (D.2)

for all ϕ ∈ TML≥. The strategy will now be to construct a formula ϕ to ex-
ploit the inequality in Equation (D.2). To do this, we introduce the following
notation. For a state s ∈ S, let

LsM = {ϕ ∈ TML≥ | s |= ϕ} and LsMε = {ϕ ∈ TML≥ | s |= (ϕ)ε}.

Given a formula ϕ ∈ TML≥, we let Q(ϕ) be the set of values t ∈ Q≥0 and
p ∈ Q≥0 ∩ [0, 1] that are used in ϕ. Furthermore, we define the depth dpt(ϕ)
as

dpt(ϕ) =


0 if ϕ = `pt or ϕ = mpt,
1 + dpt(ϕ′) if ϕ = La

p ϕ′, ϕ = Ma
p ϕ′,

or ϕ = ¬ϕ′,
1 + max{dpt(ϕ1), dpt(ϕ2)} if ϕ = ϕ1 ∧ ϕ2.

Finally, we let

Ik = {q ∈ Q≥0 | q = l · 1
j

for some l ∈N0 and j ∈N where l ≤ k and j ≤ k}.

Then we can define

Fk = {ϕ ∈ TML≥ | dpt(ϕ) ≤ k and Q ⊆ Ik}

as a finite fragment of TML≥ and

LsMk = LsM∩ Fk = {ϕ ∈ Fk | s |= ϕ}

as the restriction of LsM to Fk. Intuitively, Fk is a better and better approx-
imation of all formulas of TML≥ as k increases. Formally, this means that⋃

k∈N Fk = TML≥, and hence any formula in TML≥ will be in one of the Fk
for some k. Now we can construct a formula that describes the set R(C).
Note that by construction of R we have

R(C) = {s′ ∈ S | ∃s ∈ C.(s, s′) ∈ R} = {s′ ∈ S | ∃s ∈ C.LsM ⊆ Ls′Mε}
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and we also have⋃
s∈C

⋂
ϕ∈LsM

J(ϕ)εK =
⋃
s∈C
{s′ ∈ S | LsM ⊆ Ls′Mε} = {s′ ∈ S | ∃s ∈ C.LsM ⊆ Ls′Mε},

so R(C) = ⋃
s∈C

⋂
ϕ∈LsMJ(ϕ)εK.

We consider the case where C is finite and the case where C is infinite
separately. Assume first that C is finite. Now let

χC
k =

∨
s∈C

∧
ϕ∈LsMk

ϕ, (χC
k )ε =

∨
s∈C

∧
ϕ∈LsMk

(ϕ)ε, and

χC =
∨
s∈C

∧
ϕ∈LsM

ϕ.

Because C is finite, χC
k , (χC

k )ε, and χC consist of finitely many disjunctions
and conjunctions and are hence formulas. These formulas will be the ones
we use in Equation (D.2). Note that JχCK ⊆ JχC

k K for any k. Now let

Ck = JχC
k K and Cε

k = J(χC
k )εK.

Then we get decreasing chains

C1 ⊇ C2 ⊇ . . . and Cε
1 ⊇ Cε

2 ⊇ . . .

of finite sets, and we will now prove that
⋂

k∈N Cε
k = R(C). If s′ ∈ R(C), then

there exists s ∈ C such that LsM ⊆ Ls′Mε, and hence s′ |= ∧
ϕ∈LsMk

(ϕ)ε for all k,
so s′ ∈ ⋂k∈N Cε

k. If s′ /∈ R(C), then for all s ∈ C there exists ϕs ∈ TML≥ such
that s |= ϕs but s′ 6|= (ϕs)ε. Since C is finite, we can fix k′ such that ϕs ∈ Fk′

for all s ∈ C. Then s′ /∈ Cε
k′ because s′ 6|= ∨

s∈C
∧

ϕ∈LsMk′
(ϕ)ε since ϕs ∈ LsMk′ .

Therefore s′ /∈ ⋂k∈N Cε
k, so we conclude that R(C) = ⋂

k∈N Cε
k.

Now, by Equation (D.2), we get

τ(s′1, a)
(
JχC

k K
)
≤ τ(s′2, a)

(
J(χC

k )εK
)

=⇒ τ(s′1, a)(Ck) ≤ τ(s′2, a)(Cε
k) for all k

=⇒ τ(s′1, a)(Ck′) ≤ lim
k→∞

τ(s′2, a)(Cε
k) for a fixed k′

=⇒ τ(s′1, a)(Ck′) ≤ τ(s′2, a)

( ⋂
k∈N

Cε
k

)
(cont. of measures)

=⇒ τ(s′1, a)(JχCK) ≤ τ(s′2, a)(R(C)) JχCK ⊆ Ck′

=⇒ τ(s′1, a)(C) ≤ τ(s′2, a)(R(C)) C ⊆ JχCK.

Next assume that C is countably infinite and let {Ck}k∈N be an increasing
sequence of finite sets such that

⋃
k∈N Ck = C. Since every Ck is finite, we get

τ(s′1, a)(Ck) ≤ τ(s′2, a)(R(Ck))
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from what we just proved for the finite case. By continuity of measures, this
implies

τ(s′1, a)(C) = τ(s′1, a)

( ⋃
k∈N

Ck

)
≤ τ(s′2, a)

( ⋃
k∈N

R(Ck)

)
= τ(s′2, a)(R(C)).

• We now prove the second item.
( =⇒ ) For this we first prove that

s1 - s2 implies ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= ϕ

by induction on ϕ. We only consider here the cases of ϕ = mpt and ϕ = Ma
p ϕ′,

since the other cases are as in the first item.
Case ϕ = mpt: s2 |= mpt means that Fs2(t) ≤ p. Since s1 - s2, we know

that Fs1(t) ≤ Fs2(t), so Fs2(t) ≤ p, implying s1 |= mpt.
Case ϕ = Ma

p ϕ′: s2 |= Ma
p ϕ′ means that τ(s2, a)(Jϕ′K) ≤ p. By induction

hypothesis, we know that Jϕ′K is --closed, and hence we get τ(s1, a)(Jϕ′K) ≤
τ(s2, a)(Jϕ′K), so s1 |= Ma

p ϕ′.
We now prove the claim that

s1 -ε s2 implies ∀ϕ ∈ TML≤.s2 |= (ϕ)ε =⇒ s1 |= ϕ

by induction on ϕ. The only case left to consider is the case where ϕ = Ma
p ϕ′,

since the remaining cases are as before
Case ϕ = Ma

p ϕ′: We have τ(s2, a)(J(ϕ′)εK) ≤ p. Now, τ(s2, a)(J(ϕ′)εK) =
τ((s2)ε, a)(Jϕ′K), and since we now know that Jϕ′K is --closed, we get

p ≥ τ((s2)ε, a)(Jϕ′K) ≥ τ(s1, a)(Jϕ′K),

meaning that s1 |= Ma
r ϕ′.

(⇐= ) Same as the first item. �

As a special case of Theorem D.7.1, we have also shown that TML≥ and
TML≤ characterise simulation for SMDPs. Conceptually, Theorem D.7.1 says
that if s1 ε-simulates s2, then s2 satisfies the ε-perturbation of any property
that s2 satisfies for the TML≥ fragment of TML, and vice versa for the TML≤

fragment.
By Lemma D.5.1 and Theorem D.7.1, we get the following corollary, con-

necting our simulation distance with the properties expressible in the logic
TML.

Corollary D.7.2. Let ε ∈ Q≥0 with ε ≥ 1. For finite SMDPs the following holds.

• d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.

• d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≤.s2 |= (ϕ)ε =⇒ s1 |= ϕ.
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By Proposition D.2.4, we also get a logical characterisation of bisimulation
for SMDPs in terms of TML, which is simpler than the one given in [18, 26].

Theorem D.7.3.

s1 ∼ s2 if and only if ∀ϕ ∈ TML. s1 |= ϕ ⇐⇒ s2 |= ϕ.

Proof. ( =⇒ ) We first prove that s1 |= ϕ implies s2 |= ϕ for all ϕ ∈ TML. The
proof proceeds by induction on ϕ. The cases of disjunction and conjunction
are standard, and the cases of ϕ = α and ϕ = ¬α are the same as in the proof
of Theorem B.6.1.

Case ϕ = `pt: s1 |= `pt means Fs1(t) ≥ p, and since Fs1(t) = Fs2(t), we get
s2 |= `pt.

Case ϕ = mpt: Same argument as `pt.
Case ϕ = La

p ϕ′: s1 |= La
p ϕ′ means τ(s1, a)(Jϕ′K) ≥ p. We know that there

exists a coupling ∆a such that

τ(s1, a)(Jϕ′K) = ∑
s∈Jϕ′K

τ(s1, a)(s)

= ∑
s∈Jϕ′K

∑
s′∈S

∆a(s, s′)

= ∑
s∈Jϕ′K

∑
s′∈Jϕ′K

∆a(s, s′) (ind. hyp.)

≤ ∑
s′∈Jϕ′K

τ(s2, a)(s′)

= τ(s2, a)(Jϕ′K),

so s2 |= La
p ϕ′.

Case ϕ = Ma
p ϕ′: Same argument as La

p ϕ′.
Next we prove that s2 |= ϕ implies s1 |= ϕ for all ϕ ∈ TML, again by

induction on ϕ. All cases except ϕ = La
p ϕ′ and ϕ = Ma

p ϕ′ are as before.
Case ϕ = La

p ϕ′: We have τ(s2, a)(Jϕ′K) ≥ p. Since s1 ∼ s2, in particular we
have s2 - s1, so by Theorem D.7.1 and Proposition D.2.3 we get

τ(s2, a)(Jϕ′K) ≤ τ(s1, a)(Jϕ′K),

and hence s1 |= La
p ϕ′.

Case ϕ = Ma
p ϕ′: Same argument as La

p ϕ′.
( ⇐= ) We have assumed that ∀ϕ ∈ TML.s1 |= ϕ ⇐⇒ s2 |= ϕ, and

hence we also get ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= ϕ and ∀ϕ ∈ TML≤.s2 |=
ϕ =⇒ s1 |= ϕ. By Theorem B.6.1 we then get s1 - s2 and s2 - s1, and hence
Proposition D.2.4 implies s1 ∼ s2. �
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With the logical characterisation of ε-simulation in hand, we can now
prove the promised result that the kernel of the simulation distance is simu-
lation. For this, we first need the following technical lemma. Given a weight
function ∆a, we let

supp(∆a) = {(s, s′) ∈ S× S | ∆a(s, s′) > 0}.

Lemma D.7.4. Assume that M = (S, τ, ρ, L) is finitely supported and consider
s1, s2 ∈ S. If s1 -ε s2 for all ε > 1 then for all ε > 1 and a ∈ L there exists a
ε-simulation relation Rε and a weight function ∆a such that for any ε > ε′ > 1 there
exists a ε′-simulation relation Rε′ with supp(∆a) ⊆ Rε′ .

Proof. Let ε > 1 and a ∈ L. Because we know that s1 -ε s2, there exists a
ε-simulation relation Rε and a weight function ∆a with supp(∆a) ⊆ Rε. Now
let ε > ε1 > 1. Because s1 -ε1 s2, we know that there exists a ε1-simulation
relation Rε1 and a weight function ∆1

a such that supp(∆1
a) ⊆ Rε1 .

If supp(∆a) = supp(∆1
a), we are done. If not, it may be the case that

for any ε1 > ε2 > 1 there exists a ε2-simulation relation Rε2 and a weight
function ∆2

a such that supp(∆2
a) ⊆ Rε2 . This would imply by monotonicity

that for all ε1 > 1 there exists a ε1-simulation relation and a weight function
∆1

a such that for any ε1 > ε2 > 1 there exists a ε2-simulation relation Rε2 such
that supp(∆1

a) ⊆ Rε2 , in which case we are also done.
If this is not the case, then there must exist some ε1 > ε2 > 1 such that

supp(∆1
a) 6⊆ Rε2 for any ε2-simulation relations Rε2 . However, we know that

s1 -ε2 s2, so there exists a ε2-simulation relation Rε2 and a weight function ∆2
a

such that supp(∆2
a) ⊆ Rε2 . Note that we must have supp(∆1

a) 6= supp(∆2
a) be-

cause we have supp(∆1
a) 6⊆ Rε2 but supp(∆2

a) ⊆ Rε2 . If supp(∆a) = supp(∆2
a),

we are done. If not, it may be the case that for any ε2 > ε3 > 1 there exists a
ε3-simulation relation Rε3 with supp(∆2

a) ⊆ Rε3 . This would by monotonicity
again imply that we are done.

If this is not the case, then there must exist some ε2 > ε3 > 1 such that
supp(∆2

a) 6⊆ Rε3 for all ε3-simulation relations Rε3 . However, we know that
s1 -ε3 s2, so there exists a ε3-simulation relation Rε3 and a weight func-
tion ∆3

a such that supp(∆3
a) ⊆ Rε3 . Note that supp(∆2

a) 6= supp(∆3
a) and

also supp(∆1
a) 6= supp(∆3

a) since Rε3 is also a ε2-simulation relation. If
supp(∆a) = supp(∆3

a), we are done. If not, it may be the case that for any
ε3 > ε4 > 1 there exists a ε4-simulation relation Rε4 with supp(∆3

a) ⊆ Rε4

which, by monotonicity, would imply that we are done.
Continuing in this way, we get a sequence

supp(∆1
a), supp(∆2

a), supp(∆3
a), . . . ,

all pairwise different from each other. However, since

∆a(s, s′) > 0 implies τ(s1, a)(s) > 0 and τ(s2, a)(s′) > 0,
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supp(∆a) seen as a function of ∆a can only take on finitely many values.
Hence the process must eventually stop and we find witnesses for the state-
ment of the lemma. �

Theorem D.7.5.
s1 - s2 implies d(s1, s2) = 1.

For finitely supported SMDPs, it also holds that

d(s1, s2) = 1 implies s1 - s2.

Proof. The first point is immediate: If s1 - s2, this means that s1 -1 s2, so
d(s1, s2) = 1.

For the second point, assume that d(s1, s2) = 1. This means that either
s1 -1 s2, in which case we are done, or s1 -ε s2 for all ε > 1, in which case
we wish to prove that this implies that

s1 |= ϕ =⇒ s2 |= ϕ for all ϕ ∈ TML≥. (D.3)

This would imply, by Theorem D.7.1, that s1 - s2, and we are done. Hence
we now prove the claim in (D.3) by induction on ϕ.

(ϕ = α or ϕ = ¬α): Choose some ε > 1. Then there exists a ε-simulation
relation R such that s1Rs2. This implies that L(s1) = L(s2), so if s1 |= ϕ, then
also s2 |= ϕ.

(ϕ = ϕ1 ∨ ϕ2): If s1 |= ϕ1 ∨ ϕ2, then s1 |= ϕ1 or s1 |= ϕ2. By induction
hypothesis, this implies that s2 |= ϕ1 or s2 |= ϕ2, so s2 |= ϕ1 ∨ ϕ2.

(ϕ = ϕ1 ∧ ϕ2): Similar to the case ϕ = ϕ1.
(ϕ = `pt): Assume s1 |= `pt, which means that Fs1(t) ≥ p. Assume

towards a contradiction that Fs2(t) < p, and let ε′ = p − Fs2(t) > 0. Then
there exists δ > 0 such that for any t < x < t + δ we have Fs2(x)− Fs2(t) < ε′.
If t = 0 then for any ε > 0 we have

p > Fs2(t) = Fs2(0) = Fs2(ε · t) ≥ Fs1(t) ≥ p,

which is a contradiction. If t > 0, then choose an ε > 0 such that 1 < ε <
t+δ

t , meaning that t < ε · t < t + δ. By right-continuity, this implies that
Fs2(ε · t)− Fs2(t) < ε′. Hence we get

p > Fs2(t) ≥ Fs2(ε · t) ≥ Fs1(t) ≥ p,

which is also a contradiction.
(ϕ = La

p ϕ′): Assume s1 |= La
p ϕ′, meaning that τ(s1, a)(Jϕ′K) ≥ p, and

choose some ε > 1. By Lemma D.7.4, there exists a ε-simulation relation Rε

and a coupling ∆a with supp(∆a) ⊆ Rε such that for any ε > ε′ > 1 there
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exists a ε′-simulation relation Rε′ with supp(∆a) ⊆ R′ε. We then get

p ≤ τ(s1, a)(Jϕ′K)
= ∑

s∈Jϕ′K
τ(s1, a)(s)

= ∑
s∈Jϕ′K

∑
s′∈S

∆a(s, s′)

= ∑
(s,s′)∈(Jϕ′K×S)∩supp(∆a)

∆a(s, s′).

Now, we know that for any ε > ε′ > 1 there exists a ε′-simulation relation
Rε′ such that supp(∆a) ⊆ Rε′ . This means that for any (s, s′) ∈ (Jϕ′K× S) ∩
supp(∆a) we have s -ε′ s′. By monotonicity, we therefore get that s -ε′ s′ for
any ε′ > 1. The induction hypothesis then gives

∑
(s,s′)∈(Jϕ′K×S)∩supp(∆a)

∆a(s, s′)

= ∑
(s,s′)∈(Jϕ′K×Jϕ′K)∩supp(∆a)

∆a(s, s′)

= ∑
s∈Jϕ′K

∑
s′∈Jϕ′K

∆a(s, s′)

≤ ∑
s∈S

∑
s′∈Jϕ′K

∆a(s, s′)

= ∑
s′∈Jϕ′K

τ(s2, a)(s′)

= τ(s2, a)(Jϕ′K),

which implies that s2 |= La
p ϕ′. �

D.7.1 Reachability Properties

We will now argue that the simulation distance behaves nicely also with re-
spect to linear-time properties, by proving preservation of reachability prop-
erties up to perturbations.

The probability of reaching a given set of states in an SMDP depends
on the choice of actions in each state. The non-determinism introduced by
this choice is typically resolved by means of schedulers. Here we consider
probabilistic schedulers σ of type S∗ → D(A), telling us what the probability
is of selecting an action a ∈ A depending on the history of the states visited
so far.

Given a SMDP M = (S, τ, ρ, L), a path in M is a sequence

π = (s1, t1), (s2, t2), . . . ,
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where si ∈ S and ti ∈ R≥0. Intuitively, a path π denotes an execution of the
SMDP, where si denotes the ith state visited, and ti denotes the time spent in
si. We denote by Π(M) the set of all paths in M, and we let π[i] = si and
π〈i〉 = ti.

Let X ⊆ S. Then

♦tX = {π ∈ Π(M) | ∃i ∈N.π[i] ∈ X and
i−1

∑
j=1

π〈j〉 ≤ t}

is the set of paths that eventually reach a state in X and does so within time
t.

Given a scheduler σ, we define a probability

Pσ
s (S1) = ∑

a∈A
∑

s′∈S
τσ(s, a)(s′) · ρ(s)

Pσ
s (S1, S2, . . . , Sn) = ∑

a∈A
∑

s′∈S
τσ(s, a)(s′) · (ρ(s) ∗Pσ

s′(S2, . . . , Sn))

through the usual cylinder construction. Then Pσ
s (S1, . . . , Sn)(t) is the prob-

ability, starting from s and under the scheduler σ, to first visit a state in S1,
then a state in S2, and so on, until a state in Sn is reached, and the total time
elapsed is at most t.

Lemma D.7.6. Let β be a Boolean combination of atomic propositions. If s1 -ε s2,
then for any scheduler σ there exists a scheduler σ′ such that

Pσ
s1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t) ≤ Pσ′
s2
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(ε · t)

for all n ∈N and t ∈ R≥0.

Proof. Let R be a ε-simulation relation witnessing that s1 -ε s2.
Case n = 1: For each a ∈ A there exists a coupling ∆a such that

Pσ
s1
(JβK)(t) = ∑

a∈A
∑

s∈JβK
τ(s1, a)(s) · σ(s1)(a) · ρ(s1)(t)

= ∑
a∈A

∑
s∈JβK

∑
s′∈S

∆a(s, s′) · σ(s1)(a) · ρ(s1)(t).

If s ∈ JβK and s′ /∈ JβK, then s 6-ε s′, and hence (s, s′) /∈ R, so ∆a(s, s′) = 0. We
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therefore get

Pσ
s1
(JβK)(t) = ∑

a∈A
∑

s∈JβK
∑

s′∈JβK
∆a(s, s′) · σ(s1)(a) · ρ(s1)(t)

= ∑
a∈A

∑
s′∈JβK

∑
s∈JβK

∆a(s, s′) · σ(s1)(a) · ρ(s1)(t)

≤ ∑
a∈A

∑
s′∈JβK

∑
s∈S

∆a(s, s′) · σ(s1)(a) · ρ(s1)(t)

= ∑
a∈A

∑
s′∈JβK

τ(s2, a)(s′) · σ(s1)(a) · ρ(s1)(t).

Now we define σ′(s2)(a) = σ(s1)(a) and observe that ρ(s1)(t) ≤ ρ(s2)(ε · t)
since we have assumed s1 -ε s2. Hence we get

Pσ
s1
(JβK)(t) ≤ ∑

a∈A
∑

s′∈JβK
τ(s2, a)(s′) · σ′(s2)(a) · ρ(s2)(ε · t)

= Pσ′
s2
(JβK)(ε · t).

Case n > 1: For any a ∈ A we again get a coupling ∆a such that

Pσ
s1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t)

= ∑
a∈A

∑
s∈JβKc

τ(s1, a)(s) · σ(s1)(a) · (ρ(s1) ∗Pσ
s (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(t)

= ∑
a∈A

∑
s∈JβKc

∑
s′∈S

∆a(s, s′) · σ(s1)(a) · (ρ(s1) ∗Pσ
s (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(t)

= ∑
a∈A

∑
s∈JβKc

∑
s′∈JβKc

∆a(s, s′) · σ(s1)(a) · (ρ(s1) ∗Pσ
s (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(t).

Since s 6-ε s′ implies ∆a(s, s′) = 0, any term where s 6-ε s′ contributes nothing
to the sum. Hence we may assume that s -ε s′. By induction hypothesis, we
then get that for any s′ there exists σ′s′ such that

Pσ
s (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK)(t) ≤ P
σ′s′
s′ (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK)(ε · t).

Now let w ∈ S∗ and define

σ′′(s′w)(a) = σ′s′(w)(a) andσ′′(s2)(a) = σ(s1)(a).

By Proposition D.3.8 we get

(ρ(s1) ∗Pσ
s (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(t) ≤ (ρ(s2) ∗P
σ′s′
s′ (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(ε · t).
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Hence we get

Pσ
s1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t)

≤ ∑
a∈A

∑
s′∈JβKc

τ(s2, a)(s′) · σ′′(s2)(a) · (ρ(s2) ∗Pσ′′
s′ (JβKc, . . . , JβKc︸ ︷︷ ︸

n−2 times

, JβK))(ε · t)

= Pσ′′
s2
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(ε · t). �

Given our notion of ε-simulation, we can prove the following result.

Theorem D.7.7. Let β be a Boolean combination of atomic propositions. If we have
s1 -ε s2, then for any scheduler σ there exists a scheduler σ′ such that

Pσ
s1
(♦tJβK) ≤ Pσ′

s2
(♦ε·tJβK) (or equivalently, Pσ

s1
(¬♦tJβK) ≥ Pσ′

s2
(¬♦ε·tJβK)).

Proof. First note that for any s and σ, we have

Pσ
s (♦

tJβK) = ∑
n∈N

Pσ
s (JβKt

n),

where

JβKt
n = {π ∈ Π(M) | π[n] ∈ JβK, ∀k < n.π[k] /∈ JβK, and

n−1

∑
j=1

π〈j〉 ≤ t}.

We will now argue that for any σ there exists σ′ such that

Pσ
s1
(JβKt

n) ≤ Pσ′
s2
(JβKε·t

n )

for any n ∈N and t ∈ R≥0.
Case n = 1: In this case we have Pσ

s1
(JβKt

n) = 1JβK(s1) and Pσ′
s2
(JβKε·t

n ) =
1JβK(s2). Since s1 -ε s2, we get s1 ∈ JβK if and only if s2 ∈ JβK, and hence

Pσ
s1
(JβKt

n) = Pσ′
s2
(JβKε·t

n ) for any σ and σ′.
Case n > 1: In this case we have

Pσ
s1
(JβKt

n) = 1JβKc(s1) ·Pσ
s1
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(t)

and
Pσ′

s2
(JβKε·t

n ) = 1JβKc(s2) ·Pσ′
s2
(JβKc, . . . , JβKc︸ ︷︷ ︸

n−1 times

, JβK)(ε · t).

Since s1 -ε s2, we have 1JβKc(s1) = 1JβKc(s2). The result then follows from
Lemma D.7.6. �
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Note that the above result might find useful applications for speeding up
the computation time required by model checking tools to disprove certain
types of reachability properties. For example, consider the atomic proposi-
tion bad, identifying all the states considered “not safe” in the SMDP. Usually,
given a process s, one wants to verify that, under all possible schedulers σ, the
probability Pσ

s (¬♦tJbadK) is above a certain threshold value δ ≤ 1, meaning
that the SMDP is unlikely to end up in an unsafe configuration within a time
horizon bounded by t. Then, to disprove this property one only needs to pro-
vide a scheduler σ′ and a process s′ such that s′ -ε s and Pσ′

s′ (¬♦
t
ε JbadK) < δ.

Indeed, given that s′ -ε s, by Theorem D.7.7

Pσ′
s′

(
¬♦

t
ε JbadK

)
< δ

Th.D.7.7
=⇒ ∃σ. Pσ

s (¬♦tJbadK) < δ.

Since s simulates s′, s′ can be thought of as a simplified abstraction of s, which
is usually a smaller process. Hence, finding a scheduler σ′ for s′ which gives
a counterexample may be much simpler than finding one for s. Moreover,
the above technique is robust to perturbations of ε.

D.8 The Topology of TML

A common practice in science and engineering is that of approximating and
refining models. We would therefore like to ensure that whenever we make
better and better approximations of a model, whatever property holds for the
approximations should also hold for the model that is approximated. In our
terms, this means that we would like the sets satisfying formulas in TML to
be closed, because then we would know that whenever a sequence of states
{sn} which converges to some state s satisfies some property of TML, then s
also satisfies that property.

Since the concept of open and closed sets are topological concepts, we
introduce the topology generated by our distance. Note that the concept of
closed set and sequentially closed set need not coincide in arbitrary topolog-
ical spaces. However, they do coincide for hemimetric spaces, since these are
first-countable [12]. Moreover, hemimetric spaces are not in general Haus-
dorff, so limits need not be unique.

Because the distance is non-symmetric, we can in fact generate two differ-
ent topologies. For r > 1, the open balls of the form

BL
r (s) = {s′ | d(s, s′) < r}

generate the left-centered topology and open balls of the form

BR
r (s) = {s′ | d(s′, s) < r}

generate the right-centered topology. These two topologies behave differently,
as we will now show.
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Lemma D.8.1. The following holds in the right-centered topology.

1. J`ptK is closed.

2. If p = 0, then J`ptK is open.

3. If p > 0, then J`ptK is not open.

4. If p = 1, then JmptK is closed.

5. If p < 1, then JmptK is not closed.

Proof. 1. Let {sk} be a sequence of states such that sk ∈ J`ptK for all k
and limk→∞ sk 3 s. We must show that s ∈ J`ptK. Assume towards a
contradiction that s /∈ J`ptK and let ε > 1. First note that if t = 0, then
Fsk (0) ≥ p for all k. Since limk→∞ sk 3 s, there must exist some n such
that d(sn, s) < ε. But then

p ≤ Fsn(0) ≤ Fs(ε · 0) = Fs(0) < p,

which is a contradiction.

We can therefore now assume that t > 0. Let p − Fs(t) = ε > 0. By
right-continuity, there exists a δ > 0 such that x < c < x + δ implies
|Fs(x)− Fs(c)| < ε. Now choose ε′ such that 1 < ε′ < t+δ

t , which means
that t < ε′ · t < t + δ. Then we get

|Fs(t)− Fs(ε
′ · t)| < ε

which implies Fs(t) ≤ Fs(ε′ · t) < p. However, since limk→∞ sk 3 s, we
know that there must exist some n such that

p ≤ Fsn(t) ≤ Fs(ε
′ · t) < p,

which is a contradiction.

2. If p = 0, then Fs(t) ≥ p for any s, so s ∈ J`ptK for any s.

3. If p > 0, let Fs = Unif [a, t] and Fs′ = Unif [t, b] for some a and b (if t = 0,
Fs = δ0 instead). Then Fs(t) = 1 ≥ p, so s ∈ J`ptK, but Fs′(t) = 0 < p,
and hence s′ /∈ J`ptK. However, for any r > 1, we must have s′ ∈ BR

r (u),
since Fs(t) ≥ Fs′(t) for any t. Hence BR

r (s) 6⊆ J`ptK for any r.

4. If p = 1, then Fs(t) ≤ p for any s, so s ∈ JmptK for any s.

5. If p < 1, let s be a state with Fs = Unif [a, b] and let {sk} be a sequence
of states such that Fsk = Unif [b, c] for any k. Then limk→∞ sk 3 s and
Fsk (b) = 0 ≤ p, so sk ∈ JmptK. However, p < 1 = Fs(b), so u /∈
JmptK. �
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Lemma D.8.2. The following holds in the left-centered topology.

1. If p = 1, then JmptK is open.

2. If p < 1, then JmptK is not open.

3. If p = 0, J`ptK is closed.

4. If p > 0, J`ptK is not closed.

Proof. 1. If p = 1, then Fs(t) ≤ p for any s.

2. If p < 1, then let Fs′ = Unif [a, t] and Fs = Unif [t, b] for some a and b (if
t = 0, let Fs′ = δ0 instead). Then Fs(t) = 0 ≤ p and hence s ∈ JmptK,
but Fs′(t) = 1 > p, so s′ /∈ JmptK. However, s′ ∈ BL

r (u) for any r > 1
because Fs′(t) ≥ Fs(t) for all t. Hence BL

r (s) 6⊆ JmptK for any r.

3. If p = 0, then Fs(t) ≥ p for any s.

4. If p > 0, let s be a state such that Fs = Unif [b, c] and let {sk} be a
sequence of states such that Fsk ∼ Unif [a, b] for any k. Then limk→∞ sk 3
s and Fsk (b) = 1 ≥ p, and hence sk ∈ J`ptK for any k. However, p > 0 =
Fs(b), so s /∈ J`ptK. �

The case of JmptK is missing in Lemma D.8.2. We have not been able
to determine whether JmptK is closed in the left-centered topology, but we
strongly suspect that this is the case. Hence we have the following conjecture.

Conjecture D.8.3. In the left-centered topology, JmptK is closed.

We can now show that approximate reasoning in TML≥ is sound with
respect to the right-centered topology, in the sense that if we have a sequence
of states s1, s2, . . . that approximate some state s better and better, then if a
property holds for all s1, s2, . . . , it will also hold for s.

Theorem D.8.4. For any ϕ ∈ TML≥, JϕK is closed in the right-centered topology.

Proof. Let ϕ ∈ TML≥. We prove by induction on ϕ that JϕK is closed in the
right-centered topology.

Case ϕ = `pt: This follows by Lemma D.8.1.
Case ϕ = La

p ϕ′: Let {sk} be a sequence of states such that limk→∞ sk 3
s and sk |= La

p ϕ′. Let ε > 1. Then there exists k′ such that sk′ -ε s,
and by assumption, τ(sk′ , a)(Jϕ′K) ≥ p. By Theorem D.7.1, this implies
τ(s, a)(J(ϕ′)εK) ≥ p. Since this holds for any ε > 1 and limε→1(ϕ′)ε = ϕ′,
we then get

τ(s, a)(Jϕ′K) ≥ p.

Case ϕ = ϕ1 ∧ ϕ2: Since a finite intersection of closed sets is again closed,
we get that Jϕ1 ∧ ϕ2K = Jϕ1K∩ Jϕ2K is closed by the induction hypothesis.
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Case ϕ = ϕ1 ∨ ϕ2: Since a finite union of closed sets is again closed, we
get that Jϕ1 ∨ ϕ2K = Jϕ1K∪ Jϕ2K is closed by the induction hypothesis. �

Furthermore, if we assume Conjecture D.8.3, then we can use a symmetric
argument as in the proof of Theorem D.8.4 to show that approximate reason-
ing in TML≤ is sound with respect to the left-centered topology.

Conjecture D.8.5. For any ϕ ∈ TML≤, JϕK is closed in the left-centered topology.

D.9 Conclusion and Open Problems

We have proposed a quantitative extension of the notion of simulation rela-
tion on SMDPs, called ε-simulation, comparing the relative speed of different
processes. This quantitative notion of simulation relation induces a multi-
plicative hemimetric, which we call simulation distance, measuring the least
acceleration factor needed by a process to speed up its actions in order to
behave at least as fast as another process.

We have given an efficient algorithm to compute the simulation distance
and identified a class of distributions for which the algorithm works on finite
SMDPs. Furthermore, we have shown that, under mild conditions on the
composition of residence-time distributions on states, a generalised version
of CSP-like parallel composition on SMDPs is non-expansive with respect to
this distance, showing that our distance is suitable for compositional reason-
ing. We have also shown the connection between our distance and proper-
ties expressible in a timed extension of Markovian logic. Namely, we have
shown that if the simulation distance between s1 and s2 is at most ε, then
s1 satisfies the ε-perturbation of any property that s2 satisfies. This result
also gives a novel logical characterisation of simulation and bisimulation for
semi-Markov decision processes. Lastly we have investigated the topolog-
ical properties of our distance for this logic, and shown that approximate
reasoning is sound in the limit.

Instead of using the usual stochastic order to relate the timing behaviour
of states as we have done, one could also consider many other kinds of
stochastic orders, for example ones that compare the expected value of the
distributions. This may be more natural for applications where one wants
to consider an exponential distribution with a high enough rate to be faster
than a uniform distribution.

We have shown that the timing distributions that are obtained when com-
posing systems are compatible with the algorithm for computing the distance
only in the case when composing systems either on the left or on the right.
A more general result showing that this also happens when composing on
both sides an arbitrary number of components seems difficult. Nonetheless,
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we are confident that such a result can be obtained for any concrete case
involving common types of distributions used in the literature.
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