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Abstract

Nowadyas, digital data networking has taken over hardwire point-to-point com-
munications in several real-world technological applications. This includes au-
tomatic control systems which play a key role in our everyday life. However,
communication uncertainties caused by phenomena such as time delay, data
rate limitation and packet dropout insert new constraints which should be ad-
dressed very carefully when analyzing and designing networked control systems
(NCSs). Otherwise, those imperfections may have adverse impacts on system
performance. In this thesis, we study the interaction between communication
constraints and control performance in four control system setups.

In the �rst setup, we consider an error-free channel with a known �xed
delay in the feedback path. We model coding and control on both sides of the
channel by causal, but otherwise arbitrary, mappings. The considered plant is
linear time-invariant (LTI) with Gaussian disturbances. We characterize the
aforementioned trade-o� by deriving lower and upper bounds on the minimum
average data rate needed to attain a prescribed level of performance. To this
end, we employ a method based on the information-theoretic aspects of causal
feedback loops. We show that when the performance level is �xed, increasing
channel delay renders the obtained lower and upper bounds greater. Therefore,
meeting a speci�c control performance criterion in an NCS with a channel with
higher delay necessitates spending higher average data rates.

In the second setup, the system is comprised of elements with the same
properties as the system considered in the �rst case except for the fact that
the channel transmission delay is randomly distributed. In this case, we use
arguments which are much simpler than the ones in the previous setup with
constant channel delay. We derive a lower bound on the in�mum average
data rate required to guarantee that the average of steady-state variance of
a speci�c system output over all realizations of the channel delay is less than
a predetermined level. We try the aforementioned simple reasoning on the
special case of known constant channel delay and observe that it leads to the
same comprehensive and computable upper and lower bounds as derived in our
�rst study on the desired minimum average data rate.

In our third study, we analyze the interplay between data rate, performance
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and network-induced delay from a di�erent point of view in that the `0 norm
of the control input indicates the size of the data transmitted over the chan-
nel. We consider a disturbance-free LTI plant which is fully observable. The
communication channel between the controller and the actuator is subject to
data packet dropouts and constant time delays. We compensate for such e�ects
by considering a packetized predictive controller which generates a sequence of
control packets and forward them to a bu�er installed at the plant. In this
setup, we expect the controller to produce sparse control inputs while guar-
anteeing closed-loop stability. In one scenario, the controller minimizes the `0

norm of control packets at each time instant with respect to an `2 constraint.
In the other scenario, the corresponding optimization problem is an sparsity-
promoting unconstrained `1−`2 problem. We establish the stability conditions
for both cases in the presence of channel delay. We show that when the channel
delay increases, the stability is achieved but with degraded performance and
larger packet sizes.

Our fourth study revolves around the trade-o�s between performance and
sparsity of control inputs in uncertain linear systems. In particular, the problem
is designing a �nite sequence of control inputs with minimum `1 norm in such a
way that a �nite-horizon linear-quadratic regulator (LQR) cost keeps bounded
from above by a certain value. We show that such problem can be relaxed
to a second-order cone programmings for certain plants, plants with discrete
uncertainties and plants with polytopic uncertainties. We show by simulation
that performances close to optimal standard LQR cost can be achieved by
sparse control inputs.



Resumé

I dag har digitale datanetværk erstattet analoge og kablet punkt-til-punkt
kommunikation for langt de �este teknologiske applikationer. Dette omfat-
ter automatiske kontrolsystemer, som spiller en central rolle i vores hverdag.
Kommunikations usikkerheder forårsaget af tidsforsinkelser, data rate begræn-
sninger og pakkeudfald fører imidlertid til nye begrænsninger, som bør be-
handles meget omhyggeligt ifbm. analyse og design af netværksbaserede kon-
trolsystemer (NCSs) da det ellers kan have negative konsekvenser for systemets
performance. I denne afhandling studerer vi samspillet mellem kommunikations
begrænsninger og kontrol performance for �re forskellige kontrolsystemopsæt-
ninger.

I den første opsætning, fokuserer vi på en fejlfri kanal med en given kon-
stant forsinkelse i tilbagekoblingsvejen. Vi modellerer kodnings- og kontrolkom-
ponenterne på begge sider af kanalen ved kausale, men ellers vilkårlige funk-
tioner. Det system som styres, er lineært og tidsinvariant med Gaussiske ek-
sterne signaler. Vi karakteriserer førnævnte trade-o� ved at udlede nedre og
øvre grænser for den minimale gennemsnitlige data rate, der er nødvendig for
at opnå et givent performance niveau. Til dette formål anvender vi en metode
baseret på informationsteoretiske aspekter af kausale tilbagekoblingsløkker. Vi
viser, at når performance niveauet holdes fast og kanalforsinkelsen øges, så
øges også den mindste gennemsnitlige påkrævede data rate. Dette medfører at
hvis forsinkelsen øges så skal data raten også øges for at opretholde en ønsket
kontrolperformance.

I den anden opsætning består systemet af elementer med samme egensk-
aber som det system, der tages i betragtning i det første tilfælde bortset fra
at transmissionsforsinkelsen i kanalen er stokastisk. I dette tilfælde benytter
vi argumenter som er simplere end de argumenter vi benyttede i det forrige
opsætning med konstant kanal forsinkelse. Der udledes en nedre grænse for
den mindste gennemsnitlige data rate, som er nødvendig for at garantere at
den gennemsnitlige steady-state varians af systemets output opfylder et per-
formance kriterie. Vi benytter det føromtalte simple ræsonnement for tilfældet
med kendt og konstant kanalforsinkelse og observerer at det fører til de samme
øvre og nedre grænser som vi udledte i vores første studie omkring den gen-
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nemsnitlige minimum data rate.
I den tredje opsætning, analyseres sammenspillet mellem data rate, perfor-

mance og forsinkelsen i netværket, hvor `0 normen af kontrolsignalet speci�cerer
mængden af data som skal transmitteres. Der undersøges et lineært og tidsin-
variant system uden eksterne forstyrrelser (støj). Systemet er fuldt observer-
bart. Transmissionskanalen mellem kontrolleren og aktuatoren har pakketab
og en konstant forsinkelse. Der kompenseres for disse e�ekter ved at bruge
en pakkebaseret prediktiv kontroller, som genererer en sekvens af kontrolsig-
naler og sender dem til en bu�er. Kontrolsignalerne er sparse men garanterer
lukketsløjfe stabilitet. For at opnå dette, minimerer kontrolleren `0 normen af
kontrolsignalerne til ethvert tidspunkt under den betingelse af en given perfor-
mance (`2 norm) er opfyldt. Der etableres stabilitets betingelser under givne
kanalforsinkelser. Det kan vises at hvis forsinkelsen i kanalen øges så stabilitet
opnås dog med reduceret performance samt brug af størrer data pakker.

Den fjerde opsætning drejer sig om afvejningerne mellem performance og
sparsity af kontrolsignalerne i fejlbehæftede lineære systemer. Problemet er
her at designe en endelig sekvens af kontrolsignaler med en minimum `1 norm
på en sådan måde, at en endelig-horisont lineær-kvadratur regulator (LQR)
kostfunktion afgrænses fra oven. Vi viser, at et sådant problem kan for visse
systemer og systemer med diskrete eller polytopiske usikkerheder omskrives til
et SOCP problem. Vi viser gennem simuleringer, at performance nær optimal
standard LQR-performance kan opnås ved brug af sparse kontrolsignaler.
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Introduction

1 Introduction

1.1 Notation

We denote by R, R+ and R+
0 the sets of real numbers, strictly positive real

numbers and nonnegative real numbers, respectively. The set of natural num-
bers is symbolized by N based on which we de�ne the set N0 as N0 , N ∪ {0}.
Operators for expectation, natural logarithm and magnitude are E, log and
|.|, respectively. In most of the cases, the time index of considered signals is
denoted by k which is an integer belonging to N0. Moreover, the transpose of
the matrix (vector) M is represented by MT . We denote the `1 and the `2

norm of the vector z = [z1, . . . , zn]T ∈ Rn by ‖z‖1 and ‖z‖2, and de�ne them
as ‖z‖1 , |z1|+ · · ·+ |zn| and ‖z‖2 ,

√
zT z, respectively. We also denote the

support set of the vector z by supp(z) and de�ne it as supp(z) , {i : zi 6= 0}
based upon which the `0 norm of z is de�ned through ‖z‖0 , |supp(z)| where
|supp(z)| is the cardinality of the set supp(z). Hence, `0 norm of a vector
is actually the number of its non-zero elements. In the case where β(k) de-
notes the k-th sample of a discrete-time signal, we refer to βk as shorthand
for β(0), . . . , β(k). In addition, αk is de�ned as αk , α(0)× · · · × α(k) for the
time-dependent set α(i), i ∈ N0. However, if φ is a �xed time-invariant set,
then φk , φ× · · · × φ (k times).

Consider v and q as two random variables each of which with known marginal
and joint probability distribution functions (PDFs). Functions f(v), f(q) and
f(v, q) denote the marginal PDF of v, the marginal PDF of q, and their joint
PDF, respectively. We say that Ev(.) is the operator for the expectation with
respect to the distribution of v and f(v|q) represents the conditional PDF of v
given q. The di�erential entropy of v and the conditional di�erential entropy of
v given q are de�ned as h(v) , −Ev(log f(v)) and h(v|q) , −Ev,q(log f(v|q)),
respectively. Finally, by I(v; q), we denote the mutual information between v
and q which is de�ned as I(v; q) , −Ev,q(log(f(v)f(q)/f(v, q))).
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1.2 Networked Control Systems, Data Rate and Trans-

mission Delay

The advent and rapid development of communications, network and com-
puter technologies revolutionized signal transmission means through replacing
conventional wired point-to-point connections with data communication net-
works [1]. Stimuli for such transition include reduction in the volume, complex-
ity and costs associated with wiring, ease and low cost of installation, main-
tenance and diagnosis of channel equipments, �exibility for upgradation and
reliability of data transfer over long distances [2]. These advantages played
also the role of sparks which ignited the idea of using data communication
networks for control and automation purposes. Consequently, a new paradigm
emerged in theory and applications of control named networked control systems
(NCSs) [3]. Essentially, any control system wherein the information exchange
among feedback loop components (plants, sensors, controllers, actuators, etc.)
is carried out via a real-time data network is said to be an NCS. Throughout
the literature, NCSs have been de�ned in various ways but the common ele-
ment across all presented de�nitions is signal transmission between closed-loop
system nodes by means of a shared network [4].

As one of the early e�orts along the lines of implementing NCSs, in 1983,
Bosch initiated a study program with the purpose of evaluating the feasibility
of utilizing networked devices for control systems embedded in passenger cars.
This led to introducing the communication protocol controller area network
(CAN) in 1986 [5]. Since then, the applications of NCSs have been evolving
and growing extensively. So in addition to the automotive industry, nowa-
days, NCSs are vastly employed in applications such as aerospace industry,
remote operation and control systems (telesurgery, operation in hazardous envi-
ronments,etc.), industrial automation systems (control and monitoring), large-
scale distributed processes (power grids, chemical processes, etc.), and sensor
networks which cover multi-agent systems, autonomous robots, control and
navigation of satellites and unmanned aerial vehicles (UAVs), and intelligent
transportation and tra�c systems, to name a few [6, 7].

On the other hand, communication limitations in data networks appear
as challenges in analysis and design of NCSs [8]. Among others, constraints
caused by quantization, time delay and data packet dropout are crucial in that
they have determinative e�ects on system stability and performance. Due to
the fact that the scarcity of power and bandwidth in digital communication
channels restricts the amount of information to be transferred per unit of time,
quantization becomes unavoidable. Therefore, quantization and data rate lim-
itation are two sides of the same coin in digital data transmission. Moreover,
network access pattern and inherent transmission characteristics of the channel
can be considered as sources of time delay in data communication networks [9].
Data rate constraints and channel transmission delay have been the center of
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1. Introduction

attention for decades in the literature of NCSs [10]. In what follows, we present
a brief overview on research trends in the area of data rate-limited NCSs and
NCSs subject to network-induced delays.

Data Rate Constraints in NCSs

When dealing with analysis of NCSs, ideas from control theory, communica-
tions theory and information theory are applicable. In particular, due to the
communication imperfection associated with data rate-limited NCSs, these sys-
tems are studied by utilizing either control-theoretic or information-theoretic
approaches. The former method mostly uses classical nonlinear control tools
while the other approach is based upon investigating the information-theoretic
aspects of the feedback loops. In both cases, the very basic concern is the
interplay between data rate limitation and system stability. Along this line,
e�orts started with a series of work by D. Delchamps reported in [11�15] where
it was revealed that the traditional view of modeling the quantization e�ect
as an additive white noise is inadequate for explaining chaotic behavior of sys-
tem outputs when the plant is unstable with poles of magnitude greater than
2. Following this direction, W. S. Wong and R. W. Brockett studied state
estimation with coded observation in [16] and found out that there is a re-
lationship between convergence properties of estimation and the transmission
rate of observed data. More importantly, in [17], the same authors showed that
a noiseless scalar linear plant can be rendered bounded by a memoryless quan-
tizer if and only if the data rate is greater than or equal to the natural logarithm
of the plant unstable pole. This result is the �rst version of the so-called data
rate theorem. The data rate theorem revolves around the minimum data rate
required for stabilizability of linear plants. Though derived for di�erent setups
using various methodologies, the minimum data rate pertaining to the data
rate theorem appears as an increasing function of magnitude of plant unstable
poles across all related works [18�27]. Of course boundedness was not the only
notion of stability studied under data rate constraints. For instance, [20, 26, 27]
propose adaptive zooming quantization schemes that with the use of memory
guarantees global asymptotic stability provided that data rate meets the sta-
bilizability requirements. Even without using memory, zooming in-zooming
out quantization policy was shown to be e�cient for achieving quadratic sta-
bility [28�31]. Stabilization of linear plants disturbed by known bounded sig-
nals [32], stochastic linear plants [33, 34], and stabilizability of linear plants
over noisy channels [35�38] are also topics covered in the literature. Particu-
larly, the author of [38] introduced the interesting notion of anytime capacity to
establish the conditions of moment stability over binary symmetric channels for
which Shannon capacity was not suitable to analyze. This insu�ciency is due
to the inherent long delays associated with reliable data transmission over noisy
channels at rates close to the channel Shannon capacity. The stabilizability of
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single-input multiple-output (SIMO), multiple-input single-output (MISO) and
multiple-input multiple-output (MIMO) linear plants over channels with data
rate limitations are addressed in [39], [40] and [41], respectively. More recent
results in stabilization of linear plants over �nite-rate communication channels
are reported in [42�48]. Such a rich literature, as brie�y reviewed above, tes-
ti�es that system stability has been addressed well for linear plants via both
control-theoretic and information-theoretic approaches.

As performance has always been a critical requirement in control of feed-
back systems, research on performance analysis of data rate-constrained NCSs
started to proceed simultaneously with stabilization analysis. From the very
beginning, researchers in this realm of study paid a great deal of attention to
the trade-o�s between the data rate and control performance of NCSs. One
fundamental observation was that reducing the transmission rate (or chan-
nel Shannon capacity) to the minimum data rate required for stabilizability
(or entropy rate of the plant) will bring about degradation in system perfor-
mance [13, 33, 49]. On the contrary, using an approach rooted in control the-
ory, [50] showed that when the plant is LTI, noiseless and fully observable with
bounded initial states, it is possible to render the quantized linear-quadratic
regulator (LQR) performance cost arbitrarily close to the ideal non-networked
one by using encoders with memory as long as the average data rate satis�es
the stabilizability requirement. Considering instantaneous data rate, [51] stud-
ied data rate-limited LQR problem for scalar plants. Similar problems were
addressed in [52] and [53] for noiseless plants and plants with bounded noise,
respectively. A sector bound approach was utilized in [54] to investigate H2 and
H∞ performance under logarithmic quantization. Robustness of system reg-
ularity, as a performance measure, against time-varying data rate constraints
was studied in [55]. Authors of [56, 57] compared the interplay between sys-
tem performance, quantizer complexity and the contraction rate (the ratio
between the volumes of the starting and target sets for system states) across
di�erent stabilizing quantized controllers. Model predictive control (MPC)
was analyzed in [41] for a system in which a multivariable plant, sensors, a
centralized controller and actuators are networked via a data rate-constrained
communication channel. As a fundamental result, [58] showed that the optimal
linear-quadratic-Gaussian (LQG) cost under vector quantization is attained by
a scheme where an encoder-controller estimates the states from the measure-
ments, calculates the control input based on such estimation, quantizes the
obtained continuous control command sequentially and send the symbols to a
decoder-controller part that applies the the control input to the plant. Other
early results on data rate-limited state estimation utilizing the control theoretic
method can be found in [59�61]. Recently, conditions for certainty equivalence,
separation between the design of coder and that of controller, and dual e�ect
have been derived in [62] for an NCS subject to data rate and �nite-horizon
linear quadratic (LQ) performance constraints. Furthermore, [63] proposes
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1. Introduction

an adaptive backstepping approach that ensures attaining a certain level of
tracking performance for uncertain nonlinear systems with data rate-limited
channels on the control path.

Information-theoretic arguments have proved to be strong tools for per-
formance analysis of data rate-limited NCSs. An initial step in using such a
method was taken in [64] where the LQG control of partially observed linear
systems under data rate constraints was investigated. The article [64] showed
that the optimal LQG cost is yielded by estimation and control schemes for
which separation principle holds if the observation noise is the only process to
be encoded and transmitted over the channel. In [65], minimizing closed-loop
LQ costs over memoryless noisy channels was studied. For such a problem and
in the case of LTI plants, [65] proposed a joint design for coding via an itera-
tive procedure and established separation principle and certainty equivalence
conditions. Optimal stochastic control of nonlinear plants over noisy data rate-
constrained channels was considered in [66] where an implicit characterization
for the optimal scheme was presented. Finding the minimum data rate re-
quired to guarantee achieving a certain level of performance is another concern
in the performance study of data rate-limited NCSs. As pointed out in [10], the
well-known Shannon's rate-distortion theory for digital communications deals
with a similar problem [67, 68]. However, the causal rate-distortion problem is
often studied for open-loop communication systems for which optimal coding
schemes necessitate long delays [69, 70]. So, the corresponding results cannot
be directly applied to feedback control loops. Notwithstanding, inspired by
the idea of causal rate-distortion function, [71] derived an analytic expression
for the minimum data rate needed to assure that an LQG cost keeps bounded
from above by a certain value in a setup where a linear fully observable plant
is controlled over a noisy channel with data rate limitations. Moreover, [71]
suggested a sequential coding scheme that renders the certainty equivalence
and separation principle valid for the system. Compared to the data rate re-
quirement for stabilization, the exact value of minimum data rate guaranteeing
performance levels is not easy to obtain, specially when the plant is partially
observable. In such cases, bounds on the desired minimal data rate are derived.
For instance, [72] established lower bounds on minimum data rates required to
achieve three di�erent notions of convergence in state estimation over noiseless
data rate-limited channels. Inspired by [49, 73, 74], deriving lower and upper
bounds on the in�mum average data rate which is necessary for attaining a
quadratic performance level was investigated in [75�77]. The NCSs considered
in these works are comprised of LTI plants with Gaussian system and observa-
tion noises, causal but otherwise arbitrary coders and controllers, and noiseless
delay-free digital communication channels between encoding and decoding sec-
tions. While the design approach proposed in [75, 76] was a second-stage one,
coding and control are designed jointly in [77]. Particularly, in [77], the con-
cept of directed information rate [78, 79] plays a key role in obtaining the lower
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bound in that the in�mum directed information rate over a scheme comprised
of LTI �lters and an additive white Gaussian noise (AWGN) channel with feed-
back subject to a speci�c quadratic performance constraint gives a lower bound
on the in�mum data rate guaranteeing the same performance over the main
arbitrary scheme. The article [77] showed that the lower bound characterized
in this way is the dual solution of a convex SNR-constrained optimal control
problem [80]. For the upper bound problem, [77] proposed using entropy-coded
dithered quantizers (ECDQs) [81] that give any admissible performance level
with operational average data rates which are at most roughly 1.254 bits per
sample greater than the associated lower bound. Recently, along the lines
of [75�77], the minimum directed information rates required for meeting LQG
performance criteria are calculated in [82] based on a semide�nite programming
(SDP) approach for MIMO fully observable plants controlled over noiseless bi-
nary channels. In turn, authors of [83] analyze the LQR problem over delay-free
data rate-limited communication channels and apply Shannon's lower bound
on distortion-rate function and variable-length innovation-based lattice quanti-
zation together with entropy coding in order to obtain lower and upper bounds,
respectively, on the minimum mutual information needed to attain a prescribed
level of LQR performance. In all the above works, the e�ect of channel delay has
been somehow neglected while as mentioned earlier, channel transmission delay
is a common phenomenon in actual communication networks which should be
taken into account when it comes to control of NCSs. One of the very relevant
and recent results that considers both time delay and data rate constraints
in channel model and concerns performance analysis of NCSs via employing
an information-theoretic approach is reported in [84]. In this paper, bounds
are derived on the minimal individual data rate which is needed to achieve
an individual performance level for a setup incorporating a linear plant with
Gaussian exogenous inputs and a digital channel imposing random time delay.
For obtaining the lower bound, [84] uses a single-shot approach while the upper
bound is given based on a model predictive strategy.

One of the areas where ideas from data rate-limited control have been lately
employed is packetized predictive control (PPC). In a PPC setup, the controller
generates a �nite-length sequence of control inputs based on a model predictive
strategy and sends the whole sequence as a data packet to the actuator over
a communication channel at each time instant. At the actuator node, a bu�er
is installed whose task is deciding what element of the most recently received
packet is to be applied to the plant according to a selection logic which depends
on the channel situation [85�90]. The motivation for using PPC as control pol-
icy is the robustness it brings to the system against channel uncertainties such
as data packet dropouts or transmission delays [91, 92]. As one of the early
results along the lines of quantized PPC, [93] studied the e�ect of entropy-
constrained lattice quantization of control packets on mean square stability
and performance of a linear disturbed plant controlled over a bit rate-limited

8



1. Introduction

channel with packet dropouts. Recently, in [44, 94, 95], multiple descriptions
(MDs) combined with ECDQs are utilized in PPC over a rate-limited channel
and upper bounds on the operational bit rate guaranteeing a desired perfor-
mance level are derived. Furthermore, the authors of [96] apply �xed-rate vec-
tor quantization with a dictionary inspired by sparse regression codes (SPARC)
to the packetized predictive control of an NCS in order to evaluate the best
mean-square error performance (MSE) at each operational data rate.

From the viewpoint of network resource consumption, one very advanta-
geous control policy for NCSs is hands-o� control. Basically, hands-o� control
is a strategy for minimizing the control e�ort; a requirement which is crucial
in feedback control loops due to numerous environmental [97, 98], economi-
cal [99, 100] and technical [101] causes. According to this approach, the con-
trol signal is held exactly equal to zero over certain periods of time. To do
so, sparsity-promoting techniques are utilized in hands-o� control. Examples
include works on model predictive control (MPC) [102�107], optimal control de-
sign [108�110], state estimation [111�114] and sampled-data control [115�117].
The idea of maximizing the number of time instants over which the control
input is equal to zero led to the introduction of a new interesting topic in the
theory of systems and control called maximum hands-o� control [118, 119]. In
the maximum hands-o� control, the `0 norm of the control input is minimized
subject to certain performance constraints. It was shown in [118, 119] that for
continuous-time setups and under the assumption of normality, the `0 optimal
control problem associated with maximum hands-o� control can be equiva-
lently formulated by an `1 optimization problem which is convex and much
easier to analyze. For the case of continuous-time plants, [120] shows that the
value function of the minimum `0 norm of the control input is continuous and
strictly convex with respect to initial states in the reachable set, a property
which guarantees stability of the maximum hands-o� control when applied to
MPC. The conditions for the equivalence between `0 and `1 optimal control
in discrete-time linear systems are established in [121]. The sparsity associ-
ated with maximum hands-o� control makes it very appealing for the use in
NCSs in that sending zero-valued control inputs is basically equal to not using
the channel and, in addition, having many zero elements in control packets
means compression with low e�ort [115, 122�124]. Particularly, [115, 124, 125]
combine maximum hands-o� control with PPC and call the obtained control
policy sparse PPC. In other words, the controller generates a sequence of con-
trol inputs at each time instant by minimizing �nite-horizon sparsity promoting
cost functions. The authors of [115, 124�126] prove that in the case where the
plant is noiseless LTI and the channel between the controller and the actuator
is only subject to bounded packet dropouts, the unconstrained `1 − `2 sparse
PPC and `2-constrained `0 sparse PPC guarantee practical and asymptotic
stability, respectively, under certain conditions.
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Time Delay in NCSs

In most of the cases, time delays are known to worsen the performance of or
cause instability to closed-loop control systems [127�131]. As already men-
tioned before, time delays are inherent characteristics of data communication
networks which appear in NCSs as a result of network tra�c (packets wait-
ing for network availability before being transmitted), propagation (physical
distance between components) and computation (devices processing time). In
the study of NCSs, the computational delays are often neglected since they are
small compared to delays caused by congestion or propagation. It is actually
the application that determines the prominence of the delay source or other
characteristics of the network-induced delay such as being constant or time-
varying, being deterministic or stochastic, and being smaller than the sam-
pling period or otherwise [132�135]. Various formulations have been presented
to model the time delay in di�erent NCS architectures for which di�erent prob-
lems have been investigated with di�erent analysis and synthesis approaches.
For instance, in an early attempt, [136] proposed the augmentation method
for control of discrete-time linear plants over networks with periodic delays.
Moreover, [137�139] used queuing mechanisms to render the entire NCS with
random delays time-invariant by reshaping the delays to deterministic time de-
lays. Optimal stochastic control tools were utilized in [132] to study the LQG
problem in NCSs subject to random delays. The stabilizability over channels
with random delays was analyzed in [140, 141] based on the perturbation the-
ory. Furthermore, [142] devised the sampling period scheduling methodology
that compensates the e�ect of time delay on system performance by choos-
ing the sampling period appropriately. Another relevant early endeavour was
documented in [143] where event-triggered methods were employed for control-
ling robotic manipulators over Internet. A thorough discussion on modeling
NCSs with channel time delay by delayed di�erential equations (DDEs) and
switched systems and analyzing them by Lyapunov-based approaches are pre-
sented in [9]. Recent approaches in analysis and synthesis of NCSs with network
delays are classi�ed into two general methods: robustness and adaptation. In
the former approach, the information of the time delay value at each time in-
stant is not considered as a parameter for analysis and design. In the robustness
framework, the controller is only required to be robust against the time-varying
delay. As an example, conditions for stabilizability and H∞ performance are
derived in [144] for a singular cascade NCS by utilizing a method based on the
selection of appropriate Lyapunov-Krasovskii functionals. Moreover, a fuzzy-
model-based approach is utilized in [145] where the rules are based on the delay
size. So the design approach proposed in [145] incorporates all the possible
values of time delay and the resultant controller is robust over time delay vari-
ations. Other relevant instances of fuzzy-model-based control over channels
with time-varying delay include [146, 147]. The conservativeness associated
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with the robustness approach can be reduced by taking into account that in
NCSs, signals are commonly transmitted in form of data packets which contain
information revealing the time delay they have been exposed to (time stamps)
and actuators can possess a certain level of intelligence. These features of NCSs
are extensively used in analysis and synthesis based on the second framework,
adaptation. One approach in this framework is modeling the overall NCS as
a stochastic switched system. Using such a method, [148, 149] investigate the
stability and H2/H∞ performance of Markov jump linear systems (MJLSs), re-
spectively. Predictive control is another approach in the adaptation framework
where a smart actuator selects the control input from a sequence of control
packets according to a selection logic that uses the time-stamp of the received
packets. Networked predictive control covers problems such as output track-
ing [150], nonlinear control [151] and wide-area damping control [152].

In this work, we �rst investigate the in�mal data rate required to achieve
prescribed quadratic performance levels in general NCSs with causal coding
and control schemes under the e�ect of constant and random channel delays.
Then we study hands-o� control once in the sparse PPC over channels with
constant time delays and once for uncertain linear systems constrained by LQR
performance costs. Before going through the contributions of each paper re-
porting a portion of the entire research associated with this thesis, we present a
brief introduction to four fundamentally relevant topics in hopes of providing a
better understanding of studied problems. These topics are data rate theorem,
rate-distortion theory, maximum hands-o� control and packetized predictive
control.

2 Rate-Distortion Theory

As pointed out in [10], the problem of �nding the minimum data rate required
for attaining a certain performance level in NCSs is the closed-loop version of
what is sought in the Shannon's rate-distortion theory. So getting a grasp on
the rate-distortion theory provides insights to the rate-performance trade-o�s in
NCSs. Along this line, we give a brief presentation of fundamentals of the rate-
distortion theory in this section. It is well-known that describing an arbitrary
real number perfectly is not possible with �nite number of bits. So, any �nite-
length description of a discrete-time continuous random variable is a distorted
version of it. The rate-distortion theory deals with the interplay between the
loss and the number of bits associated with �nite-alphabet representation of
a random source. The loss is quanti�ed with a measure of distance between
the random variable and its representation called distortion measure. The very
basic question here is as follows: "provided that the distribution of the source
and the distortion measure is known, what is the minimum rate required to
attain a prescribed distortion?". The properties of the answer to the latter
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Fig. 1: A typical rate-distortion setting

question is given by the rate-distortion function which we formalize in what
follows.

Consider the coding scheme of Fig. 1 where Zn = [z1, . . . , zn]T is an i.i.d
random sequence which denotes the source of information. Without loss of
generality, we suppose that for every i ∈ {1, . . . , n}, zi is a discrete random
variable with probability mass function (PMF) p(z) and �nite support set Z,
i.e. z ∈ Z. The encoder is assumed to assign nR bits for representing the
source sequence by the symbol En(Zn) ∈ {1, ..., 2nR}. The channel is error-
free and instantaneous (without delay). On the other end of the channel, the
decoder task is to reconstruct the source based on the received symbol. The
decoder gives Ẑn = [ẑ1, . . . , ẑn]T , where ẑi ∈ Ẑ for every i ∈ {1, . . . , n}, as an
approximation of Zn based on Ẑn = Dn(En(Zn)). The arbitrary mappings
En : Zn 7→ {1, ..., 2nR} and Dn : {1, ..., 2nR} 7→ Ẑn de�ne a (2nR, n)-rate
distortion code. We also de�ne the distortion between the source sequence Zn

and its reconstruction Ẑn as

d(Zn, Ẑn) =
1

n

n∑
i=1

d(zi, ẑi), (1)

where d : Zn × Ẑn 7→ R+
0 is a function that speci�es the mismatch between zi

and ẑi, for every i ∈ {1, . . . , n} and called distortion function. Depending on
the application, the distortion function can be characterized in di�erent ways.
For instance, one very common distortion function is the squared di�erence
between the source and the reconstruction which in our case is formulated
as d(zi, ẑi) = (zi − ẑi)

2, ∀i ∈ {1, . . . , n}. Note that in (1), the distortion
between two sequences is the average of the distortion associated with each
pair of corresponding elements. For the (2nR, n)-rate distortion code related to
the scheme of Fig. 1, we de�ne the distortion as the average of the distortion
between Zn and Ẑn with respect to the distribution of Zn. Such notion of
distortion is denoted by D and formulated as

D =
∑
Zn

p(Zn)d(Zn, Dn(En(Zn))). (2)

According to the de�nition provided in (2), the achievability of a rate-distortion
pair (D,R) is de�ned as follows:
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De�nition 2.1

We call a rate-distortion pair (R,D) achievable if there exists (En, Dn), denot-
ing a sequence of (2nR, n)-rate distortion codes, that satis�es

lim
n→∞

∑
Zn

p(Zn)d(Zn, Dn(En(Zn))) ≤ D.

We call the closure for the set of all achievable rate-distortion pairs (R,D) the
rate-distortion region for the source Zn. Now, we are in the position to de�ne
the rate-distortion function.

De�nition 2.2

For a speci�c distortion D, the rate-distortion function R(D) is the in�mum
rate R over all achievable pairs (R,D) associated with D located inside the
rate-distortion region of the source.

A concept similar to the rate-distortion function is presented by information
rate-distortion function.

De�nition 2.3

For a source Y with the distortion measure d(Y, Ŷ ), the information rate-
distortion function R(I)(D) is de�ned as

R(I)(D) = min
p(Ŷ |Y ):

∑
(Y,Ŷ ) p(Y )p(Ŷ |Y )d(Y,Ŷ )≤D

I(Y ; Ŷ ), (3)

where I(Y ; Ŷ ) denotes the mutual information between Y and Ŷ . Moreover,
the optimization in (3) is carried out with respect to all conditional distribu-
tions p(Ŷ |Y ) that are associated with joint distributions p(Y, Ŷ ) satisfying the
expected distortion constraint.

It can be implied from (3) that the information rate-distortion function pro-
vides a more mathematically treatable formulation for the minimum data rate
required for achieving a particular distortion than the classical rate-distortion
function. More interestingly, the information rate-distortion function is equal
to rate-distortion function. This result is formalized in the following theorem:

Theorem 2.1

[153, Theorem 10.2.1] For the source sequence Zn with i.i.d samples each

possessing the distribution p(z) and with the distortion function d(Zn, Ẑn), the
following holds:

R(I)(D) = R(D),

where R(I)(D) is de�ned as in (3).

The information rate-distortion function can be calculated for several sources
with di�erent distortion measures. For instance, assume that n = 1 and Z1 is a
scalar source which has a normal distribution with mean 0 and variance σ2, i.e.
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Z1 ∼ N (0, σ2). Moreover, assume that the distortion measure is mean-squared
error. Then, the rate-distortion function is given by

R(D) =

{
1
2 log σ2

D , 0 < D ≤ σ2

0, D > σ2.

It is a well-known result in the rate-distortion theory that coding all samples of
a sequence together into one description is more e�cient in the sense of rate-
distortion function than describing each element separately. This holds even
in the case where the elements of a sequence are independent. Therefore, in
an open-loop communication system, it is favorable to wait for more samples
to send a joint description. However, it means long delays in data transmis-
sion which is not appreciated in a lot of applications such as closed-loop feed-
back systems. This actually sheds a light on one aspect of rate-performance
trade-o�s in NCSs; block coding comes with the price of control performance
degradation.

3 Data Rate Theorem

In this section, we present a brief explanation for the data rate theorem in
data rate-limited NCSs. Like every other control setup, stability is a very
fundamental requirement in NCSs. In particular, when studying stabilization of
data rate-limited NCSs, this question naturally arises that what is the minimum
data rate that assures stability?. The answer to this question for LTI plants is
stated as a theorem referred to as data rate theorem. According to this theorem,
it is not possible to render the response of an unstable LTI plant bounded with
a causal coding and control scheme in the feedback path unless the data rate
exceeds the sum of the logarithm of the absolute value of the unstable plant
poles. As already pointed out before, the data rate theorem is shown to be
valid for both deterministic and stochastic LTI plants controlled over various
types of communication channels under di�erent notions of stability. Here, we
consider a setup which is similar to the system taken into account in the data
rate-limited control part of this thesis. For such a setting, we brie�y explain
the data rate theorem quantitatively in what follows.

Consider the NCS of Fig. 2 where the plant P is discrete-time, LTI, noisy
and partially observable with dynamics described as follows:

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + n(k)

where x(k) ∈ Rnx and u(k) ∈ Rp represent the plant states and control input
for all k ∈ N0, respectively. Moreover, w(k) ∈ Rnx and n(k) ∈ Rm are process
and observation noises, respectively. Assume that the pair (A,B) is reachable
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Fig. 2: The general NCS architecture for which data rate theorem is studied

and (A,C) is an observable pair. Furthermore, at each time instant k ∈ N0,
the noises w(k) and n(k) are random variables that together with the initial
states x(0) compose a mutually independent triplet. Another assumption is the
existence of a % > 0 in such a way that 2+%-th absolute moments of w(k), n(k)

and x(0) are uniformly bounded for every k ∈ N0. In addition, at each time
instant k ∈ N0, the random variable associated with the process noise w(k)

is assumed to have a probability distribution which is absolutely continuous
as a function of Lebesgue measure γ on Rnx . It should be pointed out that
noises w and n are not restricted to be Gaussian. In the NCS of Fig. 2, the
plant and the controller are connected via a digital communication channel.
Therefore, every observation y needs to be quantized before being sent, as a
binary symbol, over the channel. Such a task is carried out by the encoder E
according to the following dynamics:

ye(k) = Ek(yk, yk−1
e ), (4)

where Ek : Rm×(k+1)×Yk−1
e 7→ Ye(k) denotes a causal, but otherwise arbitrary,

mapping and Ye(k) is a countable set of binary words at each time instant
k ∈ N0. Note that the encoder uses the entire past and current value of the
observation and the past symbols to produce the new symbol. The channel
between the encoder and the controller is error-free but induces h steps of
delay. The average data rate over this channel is de�ned as

R , lim
k→∞

1

k

k−1∑
l=0

log2L(l),
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where L(k) symbolizes the size of the binary word ye(k) at any time instant
k ∈ N0. On the receiver side of the channel, the controller generates the control
input as follows:

u(k) = Dk(yk−he ), (5)

in which Dk : Yk−he 7→ Rp is a causal, but otherwise arbitrary, mapping. It can
be implied from the structure of the channel that no data is received by the
controller at the �rst h time steps. For this interval, let assume that the control
input is set a priori. So, the value of u(k) is known for every k ∈ {0, . . . , h−1}.

The aim is analyzing the stabilizability of the overall NCS described above.
Therefore, we �rst need to clarify what notion of stability we are interested in.
We consider mean square stability as the stability notion. The NCS of Fig. 2 is
called mean square stable if the plant states keep bounded at each time instant
based on

sup
k∈N0

E(x(k))2 <∞, (6)

where E(.) is the expectation operator. Now we are in the position to state the
data rate theorem

Theorem 3.1

[33, Theorem 2.1] Consider the NCS of Fig. 2 with conditions and assump-
tions as speci�ed above. Then for any coder-controller pair satisfying (4) and
(5) and rendering the feedback system of Fig. 2 mean square stable, the fol-
lowing holds:

R > H ,
nup∑
j=1

log2|λj |, (7)

where λ1, . . . , λnup are eigenvalues of A lying on or outside the unit circle, i.e.,
plant unstable poles. Moreover, the mean square norm on the left-hand side of
(6) approaches to ∞ as the average data rate R gets close to H from above.
The inequality in (7) is a su�cient condition for mean square stability as well.
In other words, for any R > H, one can �nd a causal coder-controller with
dynamics described by (4) and (5) that stabilizes the NCS of Fig. 2 in the
mean square sense.

Note that in the considered setup, causality is the only restriction assumed
for the encoder and controller; a characteristic which is very inherent for feed-
back loops. Moreover, the distributions of process and observation noises are
mildly constrained. So, the version of data rate theorem expressed in The-
orem 3.1 covers several cases of controlling LTI stochastic plants over data
rate-limited channels. Furthermore, it can be implied from right-hand side of
(7) that stabilizability is neither a�ected by the channel delay h nor by noise
distributions. This is caused by the weakness of considered stability notion.
This together with the fact that imposing communication constraints on the
path from controller to the plant would not change the minimum average data
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rate required for mean square stability is discussed in [40]. In addition, remark
that no causal encoder-controller pair can bring mean square stability to the
NCS of Fig. 2 with an average data rate lower than H. Moreover, the perfor-
mance degradation caused by approaching the data rate to H is independent
of coding and control schemes. Therefore, reducing the average data rate R of
any stabilizing coder-controller pair towards the minimum data rate required
for stabilizability derived in (7) makes the expected value of the states squared
norm arbitrarily large.

4 Maximum Hands-O� Control

This section discusses a general discrete-time maximum hands-o� control setup
brie�y. We previously stated that the maximum hands-o� control maximizes
the total time interval over which the control input amounts to zero while guar-
antees meeting certain performance or stability requirements for the overall
closed-loop system. Saving energy through reducing fuel and electricity con-
sumption, avoiding pollution via lowering toxic emissions, conserving communi-
cation network resources by less expenditure of transmission rate and reduction
in noise and vibration are among the main motivations for developing theory
and applications of maximum hands-o� control. Due to its environmental-
friendly properties, maximum hands-o� control is also known as green con-
trol [154]. In the maximum hands-o� control, the `0 norm of the control input
is to be minimized subject to certain performance constraints. Due to the lack
of convexity and continuity for the cost function, the `0-optimization prob-
lem is di�cult to solve. However, such problem is equivalent to the convex
`1-optimization under certain conditions. In other words, given these condi-
tions, `0 and `1-optimization problems are interchangeable in the sense that
they give an identical minimal value with the same solution. The discontinuity
associated with bang-o�-bang feature of `1 norm minimization can be resolved
by `1 − `2 relaxation. Though `1 − `2-optimization problem is not necessarily
solved by the sparsest minimizer, its solution has certain sparsity properties.
In what follows, we brie�y show how this chain of observations is applied to a
general maximum hands-o� control system.

Consider a discrete-time plant whose dynamics is described by

x(k + 1) = f(x(k)) +

p∑
l=1

hl(x(k))ul(k), k ∈ N0, (8)

where x(k) ∈ Rnx represents plant states and the scalar signals u1(k), . . . ,up(k)

specify the plant control input as u(k) = [u1(k), . . . , up(k)]T at each time in-
stant k ∈ N0. Functions f : Rnx 7→ Rnx and hl : Rnx 7→ R, l = 1, . . . , p, are
arbitrary (possibly nonlinear) time-invariant continuous functions with contin-
uous �rst derivatives with respect to their arguments. The plant is controlled
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according to a maximum hands-o� control law which is required to drive the
plant states to the origin within a limited time duration by producing as many
zero control inputs as possible. let us denote the �nal time instant by N . So,
as the �rst requirement, {u(0), . . . , u(N −1)} should be designed in such a way
that x(N) satis�es x(N) = ρ for given initial states x(0) = θ. Let impose the
following typical constraint on the component with largest magnitude of each
control input over [0, N − 1]:

max
l
|ul(k)| < 1, k = 1, . . . , N − 1. (9)

The constraint in (9) together with the foreshadowed requirement on the termi-
nal states x(N) de�ne the sequence {u(0), . . . , u(N − 1)} as admissible control
if it is bounded as in (9) and applying it to the plant (8) with x(0) = ρ results in
x(N) = 0. We denote by U(N, ρ) as the set of all admissible controls. Suppose
that N is large enough to guarantee that U(N, ρ) is non-empty. The problem
of discrete-time maximum hands-o� control (`0-optimal control) is to �nd the
admissible control with minimum `0 norm. Such optimal control sequence is
denoted by u∗`0 and de�ned as

u∗`0 , arg min
u∈U(N,ρ)

1

N

p∑
l=1

νl‖ul‖0, (10)

where ‖q‖0 indicates the number of non-zeros elements for q ∈ RN . As already
pointed out, the optimization problem associated with `0-optimal control prob-
lem can be equivalent to the one related to `1-optimal control problem. The
�nal goal in the latter problem is to obtain u∗`1 de�ned as

u∗`1 , arg min
u∈U(N,ρ)

1

N

p∑
l=1

νl‖ul‖1, (11)

where

‖ul‖1 =

N−1∑
k=0

|ul(k)|, l = 1, . . . , p.

The question here is that what are the conditions for equivalence between
maximum hands-o� control and `1-optimal control?. To answer this, de�ning
the concept of normality in a discrete-time `1-optimal control setup is needed.
We call a discrete-time `1-optimal control problem normal if the following holds:

|Nν−1
l hl(x

∗(k)
T

)p∗(k + 1)| 6= 1, (12)

where k = 0, . . . , N − 1. Moreover, x∗ and p∗ are state and costate associated
with u∗`1 .

18



5. Packetized Predictive Control

Theorem 4.1

[118, Theorem 11] For the `1-optimal control problem in (11), suppose that
the normality condition (12) holds. Moreover, assume that the sets of the
solutions for the `0-optimal control in (10) and `1-optimal control are denoted
by U∗0 and U∗1, respectively. Then U∗0 = U∗1.

It is well-known that the solutions to the `1-optimal control problem possess
bang-o�-bang property meaning that the value of the corresponding optimal
control input changes sharply between limited number of levels over time. Such
hard switching might not be tolerable by actuation units in some applications.
One way to overcome this undesirable discontinuity, while obtaining a su�-
ciently sparse control input, is modifying the cost function associated with
`1-optimal control by adding a weighted version of the `2 norm of the control
input to it. The resultant problem is called `1− `2-optimal control problem for
which a solution is formulated as

u∗`1−`1 = arg min
u∈U(N,ρ)

1

N

p∑
l=1

νl‖ul‖1 +
ϕl
2
‖ul‖22, (13)

where

‖ul‖22 =

N−1∑
k=0

|ul(k)|2

and ϕl > 0 and νl > 0 for l = 1, . . . , p. For the continuous-time `1− `2-optimal
control problem, it is shown in [118] that the optimal solution is continuous
with respect to time. Moreover, [118] shows that the weighting parameters
associated with `1 and `2 norms (similar to νl and ϕl in (13)) determine the
trade-o� between smoothness and sparsity of the `1− `2-optimal control input
in that as the parameter weighting the `1 norm goes to 0, the solution to
the continuous `1 − `2-optimal control problem will converge to the `2-optimal
control input. On the other hand, as the parameter related the squared `2 norm
goes to zero, the `1−`2-optimal control input will converge to `1-optimal control
input. Nevertheless, to the best of our knowledge, similar theoretical results
regarding the discrete-time `1−`2-optimal control have not been established yet
in the literature. However, [124] demonstrates via simulation that discrete-time
`1 − `2-optimal control problem can indeed have sparse solutions but it comes
with the price of performance degradation. Intuitively speaking, the structure
of the `1 − `2-optimization problem associated with (13) gives similar insights
about the continuity and sparsity of `1 − `2-optimal control in a discrete-time
setup.

5 Packetized Predictive Control

In this section, we provide a short and general description of PPC systems.
As already mentioned before, the packetized predictive controller is actually

19



P

x

u

PPC

x0

channel

buffer

𝑈    

Fig. 3: A typical PPC system

a model predictive controller that instead of sending one control input to the
actuator, transmits a sequence including a limited number of tentative future
control inputs. We also mentioned previously that the core motivation behind
employing this control strategy in NCSs is to attain robustness versus channel
imperfections such as packet dropouts or time delays. In a PPC setup, there
is often a bu�er available at the plant side which stores received packets so as
to apply their elements as control inputs at the time of arrival and later on
when there will be no packet received. In what follows, we elaborate on the
description of PPC mechanisms in a more quantitative manner.

Consider the general structure of Fig. 3 which depicts the architecture of an
NCS incorporating a plant, a packetized predictive controller, a communication
channel and a bu�er. The plant is described by the following general state-space
model:

x(k + 1) = f(x(k), u(k)), k ∈ N0,

where x(k) ∈ X ⊆ Rnx and u(k) ∈ U ⊆ Rp denote plant states and the
control input, respectively. The sets X and U contain the origin and im-
pose constraints (e.g. performance-related constraints) on x and u. Moreover,
f : Rnx×Rp 7→ Rnx is an arbitrary (possibly nonlinear) time-invariant function.
Let us assume complete observability for the plant and ideal communications
for the uplink channel (the channel between the sensor and the controller). So,
the controller is provided with full access to a version of plant states which is
not corrupted. Since the controller in the NCS of Fig. 3 is a packetized pre-
dictive controller and such controller works based on an MPC strategy, it uses
the received plant states x(k) to minimize the following general �nite-horizon
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cost function:

J(x(k), ~U(k)) = T (x
′
)(k +N)) +

N−1∑
i=0

S(x
′
(k + i), u

′
(k + i)). (14)

where x
′
(k + i) predicts x(k + i) based on the following recursion:

x
′
(k + i+ 1) = f(x

′
(k + i), u

′
(k + i)), x

′
(k) = x(k). (15)

for any i ∈ {1, . . . , N} and any k ∈ N0. So, {x
′
(j)}k+N

j=k+1 denotes a prediction of

plant states at the upcoming N time steps, {x(j)}k+N
j=k+1, and N is the horizon

length for this prediction. Moreover, complying with the constraint on plant
states, x

′
(j) is constrained as x

′
(j) ∈ X for all j ∈ {k + 1, . . . , k + N}. The

argument ~U(k) of the cost function J is de�ned as

~U(k) , [u
′
(k), . . . , u

′
(k +N − 1)]T .

Actually, ~U(k) is comprised of all decision variables for the problem of minimiz-
ing J(x(k), ~U(k)) at time instant k ∈ N0. So, every ~U(k) in the feasible set of
the latter optimization problem is a candidate for the packet which encompasses
tentative future control inputs. Since every control input of the plant belongs to
the set U , u′(j) is constrained as u

′
(j) ∈ U for any j ∈ {k, . . . , k+N −1}. The

functions T and S in (14) are called terminal cost and stage cost, respectively,
for which the following assumptions are typically considered:

T (0) = 0, T (x) ≥ 0, ∀x ∈ X
S(0, 0) = 0, S(x, u) ≥ γ(‖x(k)‖), ∀x ∈ X ,∀u ∈ U ,

where the function γ : R+ 7→ R+ is continuous, nondecreasing and possesses
the properties γ(0) = 0 and γ(`) > 0, ∀` > 0. As already mentioned before,
in PPC, the sequence of tentative future control inputs that characterizes the
control packet is obtained by minimizing the �nite-horizon cost function J

de�ned as in (14). Therefore, at each time instant k ∈ N0, the desired control
input sequence, say ~U∗(k), is calculated as

~U∗(k) = arg min
~U(k)∈U

J(x(k), ~U(k)), (16)

where U represents the set of all admissible solutions for the optimization prob-
lem associated with (16) which is solved by the packetized predictive controller
at each time instant k ∈ N0. To emphasize that ~U∗(k) is comprised of the
tentative control inputs for time k to k + N − 1 which are constructed based
on predictions at time k, we express ~U∗(k) as follows:

~U∗(k) = [u(k; k), . . . , u(k +N − 1; k)]T ,
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where u(k + j − 1; k) = u
′
(k + j − 1) for every j ∈ {1, . . . , N}. According to

(15), the states x(k) and the matrix ~U∗(k) determine the predictions of future
states generated at time k which we specify by

~x∗(k) = [x(k + 1; k), . . . , x(k +N ; k)]T ,

where x(k+j; k) = x
′
(k+j) for all j ∈ {1, . . . , N}. Moreover, the optimization

problem pertaining to (16) gives the following optimal value function

V (x(k)) = min
~U(k)∈U

J(x(k), ~U(k)).

The PPC unit in Fig. 3 forwards the sequence ~U∗(k) as a data packet to the
actuator over the communication channel. Such data transmission could be
subject to various faults induced by the communication channel. For instance,
the channel could impose bounded data packet dropouts. In this case, it is
not guaranteed that every control packet generated at the controller reaches
the plant. So, one selection strategy for the bu�er installed at the actuator
could be storing every newly received packet over the existing one and using
the elements of the new packet in a receding manner until the arrival of the
next control packet. The channel could also induce time delay on the packets.
The selection logic of the bu�er in this case could be prioritizing the received
packet which has been produced at the most recent time instant and applying
its elements as control input till the arrival of a packet which is associated with
a more recent time instant.

6 Summary of Contributions

We study the performance of data rate-constrained NCSs over channels with
time delays, sparse PPC over channels with time delays and packet dropouts,
and hands-o� control subject to LQR constraints for plants with polytopic
uncertainties. The research associated with these problems is reported in �ve
papers which constitute the main body of this thesis. In what follows, we
summarize the contributions of each paper.

6.1 Paper A-Interplay Between Transmission Delay, Av-

erage Data Rate, and Performance in Output Feed-

back Control over Digital Communication Channels

In this paper, we derive a lower bound on the in�mum average data rate re-
quired to assure that the steady-state variance of a plant output keeps bounded.
The considered plant is LTI, disturbed by Gaussian noises and with Gaussian
initial states. The plant has single control input and single sensor output which

22



6. Summary of Contributions

is transmitted to an encoder-controller pair modeled by a causal, but other-
wise arbitrary, function. This encoder-controller maps the measurement output
into a binary word and sends the word to a decoder-controller over an error-
free channel that induces a known constant delay. The decoder-controller, also
represented by an arbitrarily causal mapping, generates the control input. We
formulate the aforementioned desired in�mum data rate and derive a lower
bound on it based on an information-theoretic method. This method takes ad-
vantage of the Gaussianity of the system exogenous inputs and the considered
notion of stability which is being strongly asymptotically wide-sense stationary
(SAWSS) to derive information inequalities involving average data rate, the
directed information rate across the channel and the power spectral densities
of channel signals. We derive such fundamental information inequalities under
the network-induced delays which lead to a lower bound given by the in�mum
directed information rate over a scheme comprised of LTI �lters and an addi-
tive white Gaussian (AWGN) channel with feedback and delay. We show that
this lower bound is calculated by solving a convex SNR-constrained optimal
control problem. We analyze this SNR-constrained problem by introducing an
auxiliary equivalent problem and compute the lower bound for di�erent values
of channel delay. The results show that for a �xed performance level, a greater
delay necessitates a larger lower bound on the in�mal required average data
rate.

6.2 Paper B-Achievable Performance of Zero-Delay Vari-

able-Rate Coding in Rate-Constrained Networked

Control Systems with Channel Delay

In this paper, we investigate how to approximate the coding and control schemes
giving the lower bound in the paper A with actual implementable schemes and
evaluate how close the resultant actual average data rates are to their corre-
sponding lower bounds. So, we consider the same NCS architecture as in the
paper A and study the upper bound problem. In other words, we derive an
upper bound on the in�mum average data rate required to attain a quadratic
performance level in an NCS comprised of a noisy LTI plant, an arbitrary
coding and control scheme and a delay-free channel with known constant de-
lay. We propose entropy-coded dithered quantizer (ECDQ)-based linear coding
schemes that by using the LTI �lters associated with the lower bound together
with subtractively dithered uniform scalar quantizers and entropy coders, guar-
antee achieving admissible performance levels with data rates that are at most
(approximately) 1.254 bits/sample higher than the corresponding lower bounds.
We show how to design such schemes and simulate a candidate system apply-
ing the designed ECDQ-based linear schemes for di�erent values of the channel
delay. The results demonstrate that the achieved operation data rates are con-
siderably lower than the upper bound. Moreover, the upper bound and the

23



achieved average data rates are increasing functions of channel delay. In other
words, in order to attain a �xed performance level, one should increase the
required actual data rate as the channel delay grows.

6.3 Paper C-The E�ect of Time Delay on the Average

Data Rate and Performance in Networked Control

Systems

In this paper, we consider the same system structure as in paper A and paper B
except for the fact that the channel is single-input multiple output (SIMO) and
imposes random time delay on transmitted data. In such an NCS, the steady-
state variance of the output and the average data rate are random variables
depending on the realization of the channel delay for every coding and control
scheme rendering the system SAWSS. We consider the mean of those random
variables with respect to the distribution of the channel delay as notions for data
rate and performance. We derive a lower bound on the in�mum average data
rate guaranteeing that the average steady-state variance of a system output
over all channel delay realizations is bounded from above by a predetermined
value. Using the idea of information inequalities involving the average directed
information rate and the de�ned average data rate, we obtain a lower bound
on the in�mal desired data rate stated as the average of a function of the power
spectral densities of feedback path signals over all possible realizations of the
delay. The proof approach for this derivation is much simpler and shorter than
the one for similar results in paper A. We utilize this simple approach for the
study of rate-performance trade-o�s in the special case of a known constant
channel delay and rederive the results of paper A and paper B. Moreover, we
show in the constant delay case that changing the position of the time delay
in the feedback loop can have neutral e�ect on the values of system signals if
side the information changes as well.

6.4 Paper D-Sparse Packetized Predictive Control Over

Communication Networks with Packet Dropouts and

Time Delays

In this paper, we investigate the sparse PPC over a channel with known con-
stant time delay and bounded packet dropouts. This channel links the con-
troller to the actuator of a noiseless LTI plant. The plant is fully observable
and an uncorrupted version of its states is received at the controller at each time
instant. So unlike the actuation path, the plant and controller exchange data
over an ideal communication channel in the measurement path. We analyze two
sparse PPC strategies; unconstrained `1-`2 PPC and `2-constrained `0 PPC.
In the former scenario, the controller solves a limited number of �nite-horizon
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unconstrained `1-`2 sparsity-promoting optimization problems each taking a
prediction of future states as input. In the latter regime, the control packets
are solutions to a limited number of �nite-horizon `2-constrained `0 sparsity-
promoting optimization problems. Upon arrival of a packet sequence at the
smart actuator, the actuator selects the control packet associated with the
precise approximation of the current states. We propose e�cient methods for
solving the aforementioned optimization problems and establish conditions of
practical stability and asymptotic stability for unconstrained `1-`2 sparse PPC
and `2-constrained `0 sparse PPC, respectively, in the presence of channel de-
lay. We also show that in both setup, in order to maintain system stability,
increasing channel delay necessitates increasing the number of control packets
to be produced at each time instant. We simulate an example system using
`1-`2 sparse PPC and `2-constrained `0 sparse PPC and show that the system
has the expected stability properties.

6.5 Paper E-Hands-O� Control for Discrete-Time Linear

Systems subject to Polytopic Uncertainties

This paper studies the hands-o� control subject to �nite-horizon linear-quadratic
regulator (LQR) performance constraints. The aim is minimizing the `1 norm
of the control input while making sure that an LQR cost keeps bounded from
above by a prescribed value over a certain time duration. We investigate this
problem for three types of linear discrete-time noiseless plants; deterministic
plants, uncertain plants with discrete uncertainties, uncertain plants with poly-
topic uncertainties. In the �rst two cases, deterministic plants and uncertain
plants with discrete uncertainties, we show that the overall optimization prob-
lems pertaining to the hands-o� control strategies can be expressed as second-
order cone programmings. In the last case, uncertain plants with polytopic
uncertainties, we show that the corresponding LQR-constrained `1 optimiza-
tion problem is relaxed to a second-order cone programming by deriving an
upper bound on the LQR cost function. We consider a real-world plant model
with polytopic uncertainty and show through simulation that the controller
designed based on the proposed LQR-constrained hands-o� strategy leads to
a performance fairly close to the standard LQR performance but with sparser
control inputs.

7 Conclusions and Future Research

Generally speaking, the research reported in this thesis deals with two topics:
data rate-constrained NCSs and hands-o� control. The work associated with
the former topic was about the trade-o�s between data rate, time delay and
control performance in data rate-constrained NCSs. In particular, we derived
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bounds on the i�mum average data rate needed to guarantee achieving a cer-
tain level of quadratic performance in an NCS comprised of a discrete-time
noisy LTI plant with Gaussian initial states and disturbance, a causal but oth-
erwise arbitrary coding and control scheme and an error-free communication
channel with time delay that makes the connection between the encoder and
the decoder. We considered two channel model; one imposing a known con-
stant delay and the other inducing random time delay. In the constant delay
case, we showed that for any admissible performance level, a lower bound on
the corresponding desired in�mum data rate is given by minimizing the SNR,
constrained by the same performance requirement, over an scheme comprised
of LTI pre- and post- �lters and an AWGN channel with feedback and delay.
To prove this, we used two di�erent approaches, though they are both based
on the concept of directed information rate across channels with delay. We also
proposed ECDQ-based linear coding schemes that give any admissible perfor-
mance level with an average data rate which is at most (approximately) 1.254
bits/sample greater than the corresponding lower bound. We also showed that
moving the delay block around the system can lead to equivalent systems if side
information is allowed to change. We illustrated through simulation that all
the derived bounds and empirical data rates are increasing with respect to the
channel delay. In other words, attaining a certain performance level requires
higher data rate if the channel delay is higher. For the case of random channel
delay, we considered the mean of average data rate and steady-state output
variance over all possible realizations of the delay as notions of rate and perfor-
mance, respectively. Considering these notions, we established a lower bound
on the minimum data rate required to guarantee that the performance mea-
sure is bounded. We showed that this lower bound is stated in terms of average
power spectral densities of feedback path signals over all possible realizations
of the channel time delay.

We studied hands-o� control in two settings. In one, the controller gener-
ates a limited number of control packets at each time instant once based on
unconstrained `1-`2 and once based on `2-constrained `0 �nite-horizon sparsity-
promoting optimization problems. We considered a noiseless fully observable
LTI plant whose actuator is connected to the packetized predictive controllers
via a communication link imposing bounded packet dropouts and constant time
delay. We showed that unconstrained `1-`2 and `2-constrained `0 sparse PPC
policies render the overall closed-loop system bounded and asymptotically sta-
ble, respectively, under certain conditions. We showed that in the considered
setup, increasing channel delay means increasing the number of packets gener-
ated by the controller at each time instant. So achieving stability over channels
with higher delays comes with the price of sending more packets at each time
instant and also performance degradation. We demonstrated through simula-
tion that the proposed unconstrained `1-`2 and `2-constrained `0 sparse PPC
strategies indeed bring practical and asymptotic stability to the system. The
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other setup where we used hands-o� control is the control of a linear discrete-
time plant based on minimizing the `1 norm of the control input subject to
an LQR performance constraint. We analyzed this control problem for three
cases: the plant being certain, the plant being subject to discrete uncertainties
and the plant having polytopic uncertainties. We showed for the �rst two cases
that the corresponding LQR-constrained `1-norm optimization problems can
be expressed as second-order cone programming. For the case of polytopic un-
certainty in the plant model, we derived an upper bound on the corresponding
LQR cost which leads to relaxing the related `1-norm optimization problem
to a second-order cone programming. Simulating the proposed method for a
practical plant demonstrated that the obtained control input is much sparser
than the one associated with standard �nite-horizon LQR control while the
resultant performance is close to the standard LQR performance.

In the work on data rate-constrained NCSs, we approximated the in�mum
average data rate that guarantees attaining a certain level of performance by
deriving bounds on it. Though the established bounds are fairly tight, an exact
analytic expression similar to ones obtained in data rate theorem is still missing
for the latter in�mum required data rate. If obtained, such an expression
will give a much better understanding of data rate-performance-time delay
trade-o�s in NCSs. So one possibility for future research will be investigating
a closed-form solution for the problem of �nding the foreshadowed desired
data rate. One approach could be analyzing the Karush�Kuhn�Tucker (KKT)
conditions for the corresponding optimization problem. In our research on data
rate-limited NCSs, we also considered plants with single control input and
single sensor output which is not the case in several real-world applications.
Therefore, deriving bounds in the case of plants having multiple control inputs
and multiple measurement outputs could be a possible direction for future
work. In this case, we hypothesize that the same approach as for the case
with single control input and sensor output can be used but the challenging
factor would be the correlation between signals which should be taken care
of carefully. Future research may also be concerned with studying the e�ect
of vector quantization, instead of symbol-by-symbol coding, on the interplay
between data rate, channel delay and performance in the considered data rate-
constrained NCS.

In the work on sparse PPC over channels with constant delay, we showed
that the number of control packets to be generated by the controller at each
time instant is upper bounded by a �nite value which is an exponential func-
tion of the delay. This means that for large channel delays, the controller
might produce a massive number of packets. Besides the huge load of compu-
tational e�ort which is required in this case, the channel bandwidth might not
be adequate for reliable transmission of such long packet sequences. Hence,
e�cient quantization and coding of control packets in sparse PPC with chan-
nel delay could be one topic for future research. Using multiple descriptions is
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one candidate idea for reducing the rate of data transmission. Finally, in the
LQR-constrained `1-optimal control of uncertain systems, we derived an upper
bound on the LQR cost and use this bound as the performance measure. So if
such a measure is bounded from above by a given value, then the original LQR
cost for every pair of state and input matrices inside the considered polytope
will be upper bounded by that value. However, the conservativeness resulted
form this approach was not evaluated. Analyzing such conservativeness for the
purpose of proposing other methods to attain sparser control inputs than the
ones given by our approach for a �xed LQR cost could be carried out in the
future research.
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1. Introduction

Abstract

The performance of a noisy linear time-invariant (LTI) plant, controlled over

a noiseless digital channel with transmission delay, is investigated in this pa-

per. The rate-limited channel connects the single measurement output of the

plant to its single control input through a causal, but otherwise arbitrary, coder-

controller pair. An information-theoretic approach is utilized to analyze the

minimal average data rate required to attain the quadratic performance when

the channel imposes a known constant delay on the transmitted data. This in�-

mum average data rate is shown to be lower bounded by minimizing the directed

information rate across a set of LTI �lters and an additive white Gaussian

noise (AWGN) channel. It is demonstrated that the presence of time delay in

the channel increases the data rate needed to achieve a certain level of perfor-

mance. The applicability of the results is veri�ed through a numerical example.

1 Introduction

Rate-constrained NCSs are generally studied from two points of view; con-
trol theory and information theory. In the former case, classical nonlinear
control methods are employed. In the latter case, the key idea is extending
information-theoretic notions to the case of closed-loop control. In both frame-
works, stability analysis of linear time-invariant (LTI) systems is well-studied
(see, e.g., [1], [2] as early results and [3], [4] as recent contributions).

However, studies analyzing system performance from an information-theoretic
viewpoint are less abundant in the literature. Fundamental results are pre-
sented in [5]. In this work, for a discrete-time LTI plant, the well-known
Bode's integral is extended to the case of causal rate-limited arbitrary feed-
back. Along the lines of [5], research reported in [6, 7] has investigated bounds
on the minimum data rate which is needed to attain a quadratic performance
level in NCSs with delay-free channels. For the lower bound, [7] shows that
the rate-constrained optimization to �nd desired in�mal data rates over causal
but otherwise arbitrary coder-controller pairs, is reduced to a convex SNR-
constrained optimization problem over an auxiliary LTI feedback loop closed
through an AWGN channel. In [6, 7], it is furthermore shown that the directed
information from the plant output and to the control input provides a lower
bound on the coding rate for any coding policy, and that it su�ces to use lin-
ear coding policies, when the initial state and external disturbances are jointly
Gaussian and the plant is linear. These �ndings were used by [8], to establish
a general SDP framework for the problem of LQG control for fully observable
multiple-input multiple-output (MIMO) LTI plants.

In this paper, we address output feedback control of an NCS comprised of a
noisy LTI plant and a causal encoder-controller-decoder set connected through
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a noiseless digital channel with a constant transmission delay. More speci�cally,
the problem is obtaining the bounds on minimal average data rate required to
guarantee that the steady-state variance of an error signal does not become
larger than a certain value. Motivated by its merits such as simplicity and prac-
tical appeal, we use the approach pursued in [6, 7] to gain outer bounds and
build upon [7]. However, the main departure of this work from [7] is consider-
ing a channel which is not delay-free. So, as the �rst contribution, we rederive
fundamental information inequalities of the system under the delay assump-
tion. Secondly, we characterize the trade-o� among performance, delay, and
minimal desired average data rate. It is shown through a numerical example
that greater transmission delay necessitates greater minimal average data rate
needed to guarantee achieving the considered quadratic level of performance.
Simulation indicates that by employing a simple scalar uniform quantizer in
the LTI architecture that gives the lower bound, the quadratic performance is
attained by operational average data rates at most 0.3 bits away from the lower
bound.

The outline of this work is as follows. Section 2 presents the notation and
some preliminaries. Then the problem of interest is formalized in Section 3.
Section 4 is dedicated to the lower bound characterization. An illustrative
numerical simulation is provided in Section 5. Finally, Section 6 concludes the
paper.

2 Notation And Preliminaries

The set of real numbers is denoted by R with subset R+ as the set of strictly
positive real numbers. N represents the set of natural numbers, based upon
which N0 = N∪{0} is de�ned. Furthermore, k is the time index and for random
processes considered in this paper, k ∈ N0 holds. Magnitude and H2-norm of
a signal are symbolized by |.| and ‖.‖2, respectively. The set U∞ is de�ned as
the set of all proper and real rational stable transfer functions with inverses
that are stable and proper as well. E denotes the expectation operator and log

stands for the natural logarithm. The entry of matrix S on the i-th row and
j-th column is denoted by [S]i,j . Moreover, λmin(S) and λmax(S) represent
eigenvalues of S with the smallest and largest magnitude, respectively.

All random variables and processes in this paper are assumed to be vector
valued, unless otherwise stated. A random process ξ is said to be asymptot-
ically wide-sense stationary (AWSS) if it satis�es limk→∞ E [ξ(k)] = νξ and
limk→∞ E [(ξ(k + τ)− E [ξ(k + τ)])(ξ(k)− E [ξ(k)])

T
] = Rξ(τ) hold, where νξ is

a constant. Cξ = Rξ(0) denotes the corresponding steady-state covariance ma-
trix upon which the steady-state variance of ξ is de�ned as σ2

ξ , trace(Cξ).

The covariance matrix for a scalar random sequence xk1,[x(1) . . . x(k)]T is de-

�ned as Cxk1 = E [(xk1 − E [xk1 ])(xk1 − E [xk1 ])
T

]. Considering Pn, Qn ∈ Rn×n as
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Fig. A.1: Considered NCS

two square matrices, the sequences {Pn}∞n=1 and {Qn}∞n=1 are asymptotically
equivalent if and only if the following holds for �nite %:

lim
n→∞

1

n

n∑
i=1

n∑
j=1

|[Pn −Qn]i,j |
2

= 0

|λmax(Pn)|, |λmax(Qn)| ≤ %, ∀n ∈ N

3 Problem Statement

The structure considered in this work can be found in Fig. A.1 where G is an
LTI plant with u ∈ R as control input and y ∈ R as sensor output. Moreover,
there is a disturbance represented by w ∈ Rnw and the output signal z ∈ Rnz ,
with nw, nz ∈ N, upon which the desired performance is characterized. The
plant has the following transfer-function matrix description:[

z

y

]
=

[
G11 G12

G21 G22

] [
w

u

]
, (A.1)

in which every Gij is proper and of suitable dimensions (nz × nw, nz × 1,
1×nw and 1× 1 for G11, G12, G21 and G22, respectively). The input alphabet
of the channel is represented by A and is de�ned as a countable set of pre�x-
free binary words. Due to the delay, the output of the channel uq(k) follows
uq(k) = yq(k − h) for k ≥ h where yq(k) belongs to A. The average data rate
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across the channel is speci�ed as follows:

R , lim
k→∞

1

k

k−1∑
i=0

R(i), (A.2)

where R(i) denotes the expected length of the i-th binary word yq(i). The
channel input is provided by the encoder E based on the following dynamics:

yq(k) = Ek(yk, ηke ), (A.3)

in which ηe(k) is the side information at time k at the encoder with Ek rep-
resenting an arbitrary (possibly nonlinear or time-varying) deterministic map-
ping. It should be noted that βk is a shorthand for [β(0), · · · , β(k)]. On the
decoder side, we have

u(k) =

{
Dk(ηkd), 0 ≤ k < h,

Dk(yk−hq , ηkd), k ≥ h.

Dk is assumed to be an arbitrary deterministic mapping, like Ek, and ηd(k)

signi�es the side information available at the decoder at time k. It should be
emphasized that E and D in Fig. A.1 are possibly time-varying or nonlinear
causal systems.
Assumption 3.1

The plant G is LTI, proper and free of unstable hidden modes. Moreover, the
open-loop transfer function from u to y is single-input single-output (SISO) and
strictly proper. The disturbance signal, w, is a zero-mean white noise with iden-
tity covariance matrix Cw = I and jointly Gaussian with x0 = [x(−h), · · · , x(0)]T ,
the initial condition, having �nite di�erential entropy.

Assumption 3.2

Each of processes ηe and ηd is jointly independent of (x0, w). So regarding
the dynamics of the system, I(u(k); yk−h | uk−1) = 0 holds for 0 ≤ k < h.
Moreover, upon knowledge of ui and ηid, the decoder is invertible. It means
that there exists a deterministic mapping Qi such that uiq = Qi(u

i, ηid).

Now, suppose that Assumption 3.1 holds. Let Dinf(h) denote the in�-
mum steady-state variance of the output z over all settings u(k) = Kk(γk) for
0 ≤ k < h and u(k) = Kk(yk−h) for k ≥ h with γk independent of x0 and w.
Then the problem of interest is �nding

R(D) = inf
σ2
z≤D
R (A.4)

for any D ∈ (Dinf(h),∞), where the search is to be restricted to encoders with
mapping Ek and decoders with mapping Dk which satisfy Assumption 3.2
and make the NCS of Fig. A.1 strongly asymptotically wide-sense stationary
(SAWSS) (this notion of stability is de�ned in [7]). Moreover, σ2

z denotes the
steady-state variance of z. The optimization problem in (A.4) is feasible if
D ∈ (Dinf(h),∞) (see Appendix A for the proof).
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4 Main Results

Theorem 4.1

For the feedback loop depicted in Fig. A.1 and satisfying Assumptions 3.1 and
3.2, the following holds:

R ≥ I(h)
∞ (y → u) = lim

k→∞

1

k

k−1∑
i=0

I(u(i); yi−h | ui−1), (A.5)

in which I(.; . | .) indicates conditional mutual information (see [9] for the
de�nition). Moreover, as de�ned in [10], I(h)

∞ (y → u) denotes the directed in-
formation rate across the forward channel from y to u with delay h. The proof
can be found in [11].

Now, a lower bound can be derived on the directed information across the
coding scheme of Fig. A.1.

Lemma 4.1

For the NCS of Fig. A.1, assume that (x(0), w, u, y) form a jointly second-order
set of processes and that Assumptions 3.1 and 3.2 hold. Moreover, take yG and
uG into account as the Gaussian counterparts of y and u where (x(0), w, uG, yG)

are jointly Gaussian with the same �rst-and second-order (cross-) moments as
(x(0), w, u, y). Then I(h)

∞ (y → u) ≥ I(h)
∞ (yG → uG).

Proof. The following inequalities and identities will justify the claim:

k−1∑
i=0

I(u(i); yi−h | ui−1)
(a)
= I(x(0), wk−1;uk−1)

(b)

≥ I(x(0), wk−1;uk−1
G )

(c)
=

k−1∑
i=0

I(x(0), wi;uG(i) | ui−1
G )

(d)

≥
k−1∑
i=0

I(x(0), wi−1, yi−hG ;uG(i) | ui−1
G )

(e)
=

k−1∑
i=0

I(yi−hG ;uG(i) | ui−1
G ),

(A.6)

where (a) follows from a slight modi�cation in [7, Lemma B.4], (b) follows from
[7, Lemma B.1], (c) holds form the Markov chain uG(i)−ui−1

G , x(0), wi−wk−1
i+1

based upon (51b) in [7, Theorem B.3], (d) is a consequence of Assumption 3.1
and yiG being a deterministic function of ui−1

G , x(0) and wi, and (e) stems from
(51a) in [7, Theorem B.3] and Assumption 3.1. This completes the proof.
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In what follows we will relate the directed information from yG to uG to their
corresponding power spectral densities:

Lemma 4.2

Consider y and u as jointly Gaussian AWSS processes. Moreover, suppose that
u is SAWSS with |λmin(Cun1 )| ≥ µ, ∀n ∈ N where µ > 0. Then the following
can be obtained:

I(h)
∞ (y → u) =

1

4π

∫ π

−π
log
(Sǔ(ejω)

σ2
ψ

)
dω, (A.7)

in which ψ is a Gaussian AWSS process with independent samples de�ned as:

ψ(k) , u(k)− ũ(k), ũ(k) , E[u(k) | yk−h, uk−1]. (A.8)

Moreover, Sǔ represents the steady-state power spectral density of u.

Proof. Having Gaussianity and joint AWSS-ness of (u, y) in mind and based
on [12, Theorem 2.4] with a little modi�cation, we can conclude that ψ is
Gaussian and AWSS as well. We start by the following equalities:

I(u(i); yi−h | ui−1)
(f)
= h(u(i) | ui−1)− h(u(i) | yi−h, ui−1)

(g)
= h(u(i) | ui−1)− h(ψ(i) + ũ(i) | yi−h, ui−1)

(h)
= h(u(i) | ui−1)− h(ψ(i) | yi−h, ui−1)

(i)
= h(u(i) | ui−1)− h(ψ(i)),

(A.9)

where (f) follows from the de�nition of mutual information and (g) from the
de�nition of ψ, (h) stems from [7, Property 2] and (A.8), and (i) holds from [7,
Property 3]. So the directed information rate can therefore be rewritten as
follows:

I(h)
∞ (y → u) = lim

k→∞

1

k

k−1∑
i=0

{h(u(i) | ui−1)− h(ψ(i))}

(j)
= lim
k→∞

1

k
h(uk−1)− lim

k→∞
h(ψ(k))

(k)
=

1

4π

∫ π

−π
log(2πeSǔ(ejω))dω − 1

2
log(2πeσ2

ψ),

(A.10)

where (j) follows from the chain rule of the di�erential entropy and ψ(k) being
independent of ψk−1. Since the process u is SAWSS with |λmin(Cun1 )| ≥ µ,
∀n ∈ N for some µ > 0, [7, Lemma B.5] will approve the validity of the leftmost
term in (k). The rightmost term is self-explanatory because ψ is Gaussian and
AWSS.
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Fig. A.2: Auxiliary LTI NCS

It follows from Theorem 4.1, Lemma 4.1 and Lemma 4.2 that the rate-
performance pair yielded by any encoder-decoder scheme which renders the
NCS SAWSS, is attainable with a lower rate by a coding scheme comprised of
LTI �lters and an AWGN noise source. Such a scheme is depicted in Fig. A.2.

The NCS of Fig. A.2 is de�ned under the same conditions (Assumption 3.1)
as the main system in Fig. A.1 except for one thing; the arbitrary mappings are
replaced by proper LTI �lters B and J . Moreover, the communication channel
is a delayed AWGN channel with noiseless one-sample-delayed feedback. The
dynamics of this auxiliary coding scheme can be summarized as follows:

u′ = Jz−hr, r = t+ η, t = Bdiag{z−1, 1}
[
r

y′

]
, (A.11)

in which η is the AWGN with zero mean and variance σ2
η. This noise is assumed

to be independent of (x0, w). Additionally, we suppose that the initial state of
B, J , and the delay are deterministic.

Theorem 4.2

For the NCS depicted in Fig. A.1 and satisfying Assumptions 3.1 and 3.2, R(D)

is lower bounded as follows if D ∈ (Dinf(h),∞):

R(D) ≥ ϑ′u(D) , inf
σ2
z′≤D

1

4π

∫ π

−π
log
(Su′(ejω)

σ2
η

)
, (A.12)

where the feasible set for the optimization problem de�ning ϑ′u(D) is all LTI
�lters B and the noise η with σ2

η ∈ R+ rendering the feedback loop of Fig. A.2
internally stable and well-posed when J = 1. In these expressions, σ2

z′ and
Su′ denote the steady-state variance of z′ and the steady-state power spectral
density of u′ in Fig. A.2, respectively.
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Proof. Since D > Dinf(h), there is at least one pair, say Ê and D̂, satisfying
Assumption 3.2, rendering the NCS of Fig. A.1 SAWSS and producing ẑ, ŷ and
û where σ2

ẑ ≤ D holds and

R ≥ I(h)
∞ (ŷ → û) ≥ I(h)

∞ (ŷG → ûG) =
1

4π

∫ π

−π
log
(Sŭ(ejω)

σ2
ψ̂G

)
dω

can be concluded based on Theorem 4.1, if the conditions in Lemma 4.1 and
Lemma 4.2 are met. It should be noted that Sŭ denotes the steady-state power
spectral density of ûG. A coding scheme comprised of linear �lters with a unit-
gain noisy channel and delay h can generate ŷG and ûG which satisfy those
conditions and keep σ2

ẑG
within (Dinf(h),∞). Such a scheme is described as

follows:
ûG(k) = Lk(ŷk−hG , ûk−1

G ) + ψ̂G(k − h), k ∈ N0 (A.13)

where ψ̂G(k) represents a Gaussian noise with zero mean and independent of
(ŷkG, û

k−1
G ). Regarding the causality and linearity of Lk, ûkG can be written as

follows:
ûkG = Qkψ̂

k−h
G + Pkŷ

k−h
G , k ∈ N0. (A.14)

According to the causality in (A.14), joint SAWSS-ness of (ŷG, ûG) and tran-
sitivity of asymptotic equivalence for products and sum of the matrices noted
in [13], the sequences {Qk} and {Pk} are asymptotically equivalent to sequences
of lower triangular Toeplitz matrices. Moreover, Lk renders the NCS internally
stable and well-posed. With all of this in mind, by setting J = 1 and B as a
concatenation of linear �lters with the steady-state behaviour of Lk in (A.13)
and considering a variance for η equal to σ2

ψ̂G
, the system of Fig. A.2 will be

rendered well-posed and internally stable where Su′ = Sŭ and σ2
ẑG

= σ2
z′ are

resulted. Then according to Lemma 4.2, the following can be concluded:

I(h)
∞ (y′ → u′) =

1

4π

∫ π

−π
log
(Su′(ejω)

σ2
η

)
dω =

1

4π

∫ π

−π
log
(Sŭ(ejω)

σ2
ψ̂G

)
dω,

which completes the proof.

Lemma 4.3

Consider the LTI loop of Fig. A.2 with �xed σ2
η ∈ R+. De�ne ϑ

′

r as follows:

ϑ
′

r(B, J, σ
2
η) ,

1

4π

∫ π

−π
log
(Sr(ejω)

σ2
η

)
, (A.15)

in which Sr represents the steady-state power spectral density of r. Then for
any ρ > 0, upon the existence of the pair (B, J) = (B1, J1) making the system
of Fig. A.2 internally stable and well-posed, there exist another pair, comprised
of the biproper �lter J2 and B2, which renders the feedback loop of Fig. A.2
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Fig. A.3: Equivalent archtiectural viewpoint of internal stability

internally stable and well-posed, preserves the the steady-state power spectral
density of z′ and satis�es the following:

ϑ
′

r(B1, J1, σ
2
η) = ϑ

′

r(B2, J2, σ
2
η) =

1

2
log(1 +

σ2
t

σ2
η

)|(B,J)=(B2,J2) − ρ. (A.16)

Proof. It is well-known that the system of Fig. A.2 is well-posed and internally
stable if and only if the transfer function T from [η, w, ψ1, ψ2]T to [z′, y′, r, u′]T

in Fig. A.3 belongs toRH∞. By Ti and ri, we refer to the transfer-function ma-
trix T and signal r when B and J are set such that (B, J) = (Bi, Ji), i ∈ {1, 2}.
Moreover, Byi and Bri represent elements of B (B = [Br By]) in the situation
where B = Bi. Now, consider the following set of �lters:

J2 = zd1J1V
−1, By2 = z−d1By1, Br2 = z(1− (1−Br1z−1)V −1), (A.17)

in which d1 indicates the relative degree of J1 and V ∈ U∞ is chosen in such
a way that V (∞) = 1. Consequently, J2 is biproper and T2 can be written as
follows:

T2 = diag{zd1I, zd1I, V, zd1I} × T1 × diag{I, z−d1I, z−d1I, z−d1I}.

So regarding the de�nition of d1 and properties of V , T2 ∈ RH∞ if and only
if T1 ∈ RH∞. Moreover, based on the same argument, using (B2, J2) would
give the same power spectral density for z′ as for the case where (B1, J1) is
utilized. Let δ1, . . . , δm represent the zeros of Γr1 lying on the unit circle. Now
for ζ ∈ (0, 1) we de�ne the following:

Γ̂r1 , Γr1

m∏
i=1

z(z − δi)−1
, Vζ , (Γ̂r1)

−1
Γ̂r1(∞)

m∏
i=1

z(z − ζδi)−1
.

Hence, Vζ ∈ U∞ and Vζ(∞) = 1 can be deduced for every ζ ∈ (0, 1). By
following the same procedure as for the proof of [6, Theorem 5.2], the existence
of ζ ∈ (0, 1) will be shown in such a way that for any ρ > 0, setting V = Vζ
will give a pair (B2, J2) that satis�es (A.16).
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Fig. A.4: Auxiliary system for ϕ′(D) minimization

Corollary 4.1

If Assumptions 3.1 and 3.2 hold for the NCS of Fig. A.1 and D ∈ (Dinf(h),∞),
then

R(D) ≥ 1

2
log(1 + ϕ′(D)), ϕ′(D) , inf

σ2
z′≤D

σ2
t

σ2
η

, (A.18)

where the optimization is done over all LTI �lter pairs (B, J) and the noise
variance σ2

η ∈ R+ making the system in Fig. A.2 internally stable and well-
posed.

Proof. According to the feasibility of �nding ϑ′u(D) (see [11] for the proof),
there exist the triplet (Bζ , 1, σ

2
ηζ

), with Bζ a proper LTI �lter and σ2
ηζ
∈ R+,

that guarantees σ2
z′ ≤ D for the system of Fig. A.2. Furthermore, based upon

the de�nition of ϑ′u and ϑ′r in (A.12) and (A.15), the following can be derived
for any ζ > 0:

ϑ′u(D) + ζ ≥ ϑ
′

r(Bζ , 1, σ
2
ηζ

).

So regarding Lemma 4.3, since there exist a biproper �lter J̃ζ and a proper one
B̃ζ making the LTI feedback loop of Fig. A.2 internally stable and well-posed
and keeping σ2

z′ intact, the following can be concluded:

ϑ′u(D) + ζ ≥ 1

2
log(1 +

σ2
t

σ2
η

)|(B,J,σ2
η)=(B̃ζ ,J̃ζ ,σ2

ηζ
) − ρ (A.19)

Now the proof is completed by noting that (A.19) holds for any ζ, ρ > 0

To characterize ϕ′(D), we will mostly use properties of linear systems and
some results onH2 optimization with input-delay. Consider the auxiliary struc-
ture of Fig. A.4, where except for shifting the delay block to the plant model,
which leads to

Ga =

[
G11 z−hG12

G21 z−hG22

]
,
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Fig. A.5: Stability analysis of the equivalent system

the same assumptions as Fig. A.2 hold. The NCS of Fig. A.4 is internally
stable and well-posed if and only if the transfer function Ta from [η, w, ψ1, ψ2]T

to [za, ya, ra, ua]T in Fig. A.5 is a member of RH∞. It can be easily shown that
Ta = T . So the feedback loops of Fig. A.4 and Fig. A.2 are equivalent in the
sense of internal stability and well-posed-ness. Moreover, the SNR and output
variance of the NCS depicted in Fig. A.2 can be stated in terms of H2-norms
as follows:

σ2
t

σ2
η

= ‖M − 1‖22 + ‖ByMG21‖22σ
−2
η ,

σ2
z′ =

∥∥∥G11 +G12N(1−G22N)
−1
G21

∥∥∥2

2
+ ‖G12JM‖22σ

2
η,

(A.20)

where N , JByz
−h(1−Brz−1)

−1
and M , (1−Brz−1 −G22Jz

−hBy)
−1
.

Likewise, the following holds for the structure of Fig. A.4:

σ2
ta

σ2
η

= ‖Ma − 1‖22 + ‖ByMaG21‖22σ
−2
η ,

σ2
za =

∥∥∥G11 +G12z
−hNa(1−G22z

−hNa)
−1
G21

∥∥∥2

2
+ ‖G12JMa‖22σ

2
η,

(A.21)

in which Na = JBy(1−Brz−1)
−1

and Ma = M . As seen, comparing (A.20)
and (A.21) signi�es the equalities (σ2

t /σ
2
η) = (σ2

ta/σ
2
η) and σ2

z′ = σ2
za . So every

triplet (B, J, σ2
η) that can in�mize the SNR while making the system output

satisfy σ2
z′ ≤ D for the NCS of Fig. A.4, can do the same for the the LTI system

of interest, in Fig. A.2, and vice versa. In other words, the NCSs in Fig. A.2 and
Fig. A.4 are equivalent regarding the SNR-performance optimization problem
in (A.18) as well. This problem is studied for such feedback systems as auxiliary
system of Fig. A.4 in [7]. Consequently, it can be concluded that the problem
of �nding ϕ′(D) is equivalent to an SNR-constrained optimal control problem
which was proved to be convex. As another result, ϕ′(D) being a monotonically
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Fig. A.6: Bounds on R(D) in (A.4) for di�erent values of time delay h

decreasing function of D can be deduced. All in all, the interplay between the
desired performance, the average data rate and the time delay is characterized
through (A.18), (A.20) and (A.21).

5 Simulation Example

Consider the the following transfer function representation for the plant G in
NCS of Fig. A.1:

z =
0.165

(z − 2)(z − 0.5789)
(w + u), y = z,

where (x0, w) satis�es Assumption 3.1. Using the results of the previous sec-
tion, we simulate the lower bound on R(D) obtained in (A.18) regarding �ve
di�erent values of delay (h = {0, 1, 2, 3, 4}) and for each h, over a range of
D > Dinf(h). Fig. A.6 demonstrates the behaviour of the lower bound with
respect to D and h. Additionally, it shows the operational rates when using
scalar uniform quantizers for h = 0 and h = 4. First, as expected, ϕ′(D) in
(A.18) is a monotonically decreasing function of D. Secondly and more im-
portantly, Dinf(h) increases when h grows (see [14]). So greater delay yields
worse best performance. The most signi�cant outcome is associated with the
behaviour of R(D) in (A.4) with respect to delay. It can be observed from
Fig. A.6 that for a �xed D, ϕ′(D) is increasing in h. Therefore, a delay in
the channel forces an increase in the required in�mum data rate to achieve a
quadratic level of performance. The greater delay, the higher rate to be spent
in order to get a certain level of performance. Indeed, this �nding extends
the delay-free results of [7]. Another observation is the convergence of the ob-
tained in�mal data rates to the minimum rate required for stabilizability as

58



6. Conclusions

G

w z

yu

x0

K

z-h

Fig. A.7: Standard feedback loop for proving feasibility of �nding R(D)

D →∞. As illustrated in Fig. A.6, high rates are required to attain the ideal
non-networked performance Dinf(h). Along the lines of [6, 7], we now simply
replace the AWGN η in the independent coding scheme depicted in Fig. A.2,
by a uniform scalar quantizer in order to assess the operational performance
caused by a simple coding scheme. It is interesting to note that the obtained
operational average data rate in Fig. A.6 is at most around 0.3 bits away from
the derived lower bound at all performance.

6 Conclusions

In this paper, rate-constrained networked control systems comprising noisy
LTI plants, causal but otherwise arbitrary coding-control schemes and digital
noiseless communication channels with time delay, have been studied. For such
NCSs, a certain level of performance is attainable if and only if the average data
rate does not fall below a minimal value. A lower bound on this in�mum rate
has been obtained. Through a numerical example, it has been illustrated that
the channel's time delay increases the in�mum average data rate needed to
achieve a prescribed level of performance. Moreover, by using a simple scalar
quantizer, operational average data rates fairly close (around 0.3 bits) to the
lower bound have been obtained.

Appendices

A Feasibility Proof of Dinf(h)

Suppose that in the standard architecture depicted in Fig. A.7, G, x0 and
w satisfy Assumption 3.1 and K follows u(k) = Kk(yk−h). Regarding the
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Gaussianity of x0 and w and the fact that G is LTI, it can be implied from
some results in [15] that:

Dinf(h) = inf
K∈κ

σ2
z ,

in which σ2
z denotes the variance of output z and κ is the set of all proper LTI

�lters which render the system of Fig. A.7 internally stable and well-posed.
The assumptions considered for G guarantee that �nding Dinf(h) is feasible.
The feasibility of �nding ϑ′u(D) in (A.12) and ϕ′u(D) in (A.18) follows from
the feasibility of Dinf(h) [11].
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1. Introduction

Abstract

This paper presents an upper bound on the minimum data rate required to

achieve a prescribed closed-loop performance level in networked control systems

(NCSs). The considered feedback loop includes a linear time-invariant (LTI)

plant with single measurement output and single control input. Moreover, in

this NCS, a causal but otherwise unconstrained feedback system carries out

zero-delay variable-rate coding, and control. Between the encoder and decoder,

data is exchanged over a rate-limited noiseless digital channel with a known

constant time delay. Here we propose a linear source-coding scheme that with

the use of entropy-coded dithered quantizers (ECDQs), attains each quadratic

performance level with a rate that exceeds the lower bound in [1] by at most

(approximately) 1.254 bits per sample. The upper bound obtained by ECDQ

is demonstrated, via simulations, to be an increasing function of the channel

time delay at any given performance. In other words, attaining a speci�c per-

formance level necessitates achieving a higher data rate when the channel time

delay grows. The theoretical framework is demonstrated via an illustrative ex-

ample.

1 Introduction

There are two general approaches for analysis and design of rate-limited NCSs.
One is based on classical nonlinear control arguments while the other applies
information-theoretic tools to feedback systems. Stabilization of linear time-
invariant (LTI) loops is covered well with both methodologies [2�5]. Perfor-
mance results are reported, for instance, in [6, 7] where the control-based ap-
proach is used. It should be pointed out that despite the rich literature on
NCSs subject to quantization, here the focus is on studies going beyond sta-
bility issues. Indeed, we focus on works analyzing operational rates that are
necessary to achieve prescribed performance levels and that can be compared
to existing bounds. In [6], the best mean squared error (MSE) performance is
evaluated for di�erent values of data rate. This work considers an NCS which is
controlled according to a packetized predictive control (PPC) strategy together
with �xed rate vector quantization. Feedback loop properties such as dual ef-
fect, certainty equivalence and separation between coding and control design
are studied in [7] for a linear discrete-time plant, where a linear quadratic (LQ)
cost is to be minimized. Employing information-theoretic approaches, [8�10]
establish performance results. In [8, 9], the aim is obtaining the minimum data
rate needed to attain a quadratic performance level in NCSs with delay-free
channels. Inspired by a common approach in information theory, the authors
of [8, 9] �rst derive a lower bound on the required minimum data rate. Then
since the scheme giving such theoretical lower bound is not necessarily realiz-
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able in practice, they propose a method to desgin practically implementable
schemes that make the system meet the same performance requirement with
rates that are higher than the lower bound but limited from above by a certain
value. This upper bound determines how close the operational data rates can
get to the corresponding lower bounds. Hence, in [8, 9], �rst it is shown that
the desired minimum data rate is lower bounded by minimizing the directed
information rate1 over an LTI scheme including an additive white Gaussian
noise (AWGN) channel. Then, they propose a method to design actual cod-
ing schemes by using ECDQs. The use of ECDQs is motivated by advantages
such as analysis simplicity and easy implementation [13]. Following [8, 9], the
concepts of directed information rate and ECDQ-based linear coding schemes
are used in [10] for investigating the rate-performance trade-o� in discrete-time
LQG control problems.

Recent methods for dealing with delay in NCSs can be categorized into
two frameworks: robustness and adaptation [14]. In the robustness frame-
work, stability or performance conditions are obtained through constructing a
Lyapunov-Krasovskii functional regardless of delay size information. For exam-
ple, [15] derives a less conservative stability criterion by incorporating integral
terms into the considered functional. In the adaptation approach, the di�er-
ences between NCSs and conventional delay systems are taken into account.
Most of the contributions utilizing this approach model NCSs as stochastic
switched systems [16] or employ predictive control [17].

Although there are works in the literature studying the performance of
NCSs with channels subject to both rate limitations and time-delays (see, e.g.,
[18] and [19]), only a few of them analyze system's performance by means
of information theoretic tools. For instance, in [1], the authors consider a
channel with time delay and derive a lower bound on minimal average data
rate required to attain a certain level of performance. To do so, they use
the idea of minimizing directed information as in [8]. Among others, in [1] the
authors demonstrate via numerical simulations that when time-delay increases,
this results in having larger lower bound. However, in [1], there are no results
related to �nding an upper bound on the desired data rate.

In [1], it was suggested (without any proof), that in order to achieve op-
erational rates that are near the lower bound, one could use a simple ECDQ
coding scheme. In this paper, we leverage upon this idea, and formally establish
the technical results required to guarantee a desired closed-loop performance
under an operational average data rate constraint and subject to a known chan-
nel delay. In particular, we �rst utilize the LTI pre-, post-, and feedback �lters
derived in [1], in order to stabilize the considered NCS so as to guarantee a
desired performance, and to reduce the memory in the system by decorrelating
the output of the quantizer. This makes it possible to employ zero-delay coding

1For details on directed information, see, e.g., [11, 12].
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without introducing a signi�cant rate loss. We propose a simple subtractively
dithered uniform scalar quantizer, where the dither is uniformly distributed
over the quantization cells, and then we apply memoryless entropy coding on
the output of the scalar quantizer. We show how to design the coding scheme,
in order to guarantee that the closed-loop system is stable, and furthermore
that the desired performance is achieved. The cost in terms of an increase
in the operational bitrate as compared to that described by the lower bound
turns out to be small. We establish a loose upper bound, which is at most
1.254 bits greater than the lower bound, and demonstrate via simulations that
the operational rates are in fact less than 0.64 bits above the lower bound.
Our simulations also reveal that there is an increase in the operational bitrate
caused by the delay. Hence, achieving a speci�c level of performance over a
channel with greater time delay, requires higher average data rate. It is inter-
esting to note that our results reveal that while any (stabilizable) LTI system
can always be stabilized for any �nite known channel delay, the support of the
set of achievable performances decreases as the delay is increased. Thus, if the
channel delay is too large, it is not possible to achieve certain performances
even if one allows arbitrarily high bitrates and any coding scheme (which can
even use memory).

The remainder of this paper is organized as follows. Section 2 provides
the notation and preliminaries. Section 3 formulates the main problem. In
Section 4, we give the main results. A numerical example is presented in
Section 5. Finally, Section 6 draws conclusions.

2 Notation and Preliminaries

The set of natural numbers is represented by N and we de�ne N0 = N ∪ {0}.
k symbolizes the time index of one-sided random processes, k ∈ N0. Moreover,
R and R+ denote the set of real numbers and strictly positive real numbers,
respectively. In order to indicate the expectation operator, E is used and log

is assumed to represent the natural logarithm. [S]i,j signi�es the entry of
matrix S on the i-th row and j-th column. For such a matrix, the eigenvalues
with the smallest and largest magnitude are denoted by λmin(S) and λmax(S),
respectively.

Unless otherwise stated, all random variables and processes are vector val-
ued. If a random process ξ satis�es limk→∞ E [ξ(k)] = νξ and

lim
k→∞

E [(ξ(k + τ)− E [ξ(k + τ)])(ξ(k)− E [ξ(k)])
T

] = Rξ(τ),

then it is called asymptotically wide-sense stationary (AWSS). For such a pro-
cess, the steady-state covariance matrix is speci�ed by Cξ = Rξ(0) which
de�nes its steady-state variance as σ2

ξ , trace(Cξ). If xk1 is a scalar ran-

dom sequence, i.e. xk1, [x(1) . . . x(k)]T , then its covariance matrix is de�ned
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as Cxk1 = E [(xk1 − E [xk1 ])(xk1 − E [xk1 ])
T

]. Two sequences of square matrices
{Pn}∞n=1 and {Qn}∞n=1 (Pn, Qn ∈ Rn×n) are asymptotically equivalent if and
only if

lim
n→∞

1

n

n∑
i=1

n∑
j=1

|[Pn −Qn]i,j |
2

= 0

|λmax(Pn)|, |λmax(Qn)| ≤ %, ∀n ∈ N

for some % <∞.

3 Problem Formulation

The considered NCS is depicted in Fig. B.1 wherein G represents an LTI plant
with a control input and a measurement output denoted by u ∈ R and y ∈ R,
respectively. The disturbance input is symbolized by w ∈ Rnw while z ∈ Rnz is
the output that de�nes the performance measure. The relation between plant
inputs and its outputs is characterized as follows:[

z

y

]
=

[
G11 G12

G21 G22

] [
w

u

]
, (B.1)

where every Gij is a proper transfer matrix with suitable dimensions (nz×nw,
nz × 1, 1 × nw and 1 × 1 for G11, G12, G21 and G22, respectively). Let us
de�ne the input alphabet of the channel as a countable set of pre�x-free binary
words and denote it by A. According to Fig. B.1, the noiseless communication
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3. Problem Formulation

link is described by uq(k) = yq(k − h) for k ≥ h, where h ∈ N0 stands for the
constant delay induced by the channel and yq(k) belongs to A. The expected
length of the i-th binary word yq(i) is denoted byR(i). Accordingly, we adopt
the following de�nition for the average data rate over the channel2:

R , lim
k→∞

1

k

k−1∑
i=0

R(i). (B.2)

Moreover, the dynamics of the encoder is speci�ed by an arbitrary (possibly
nonlinear or time-varying) deterministic mapping Ek as follows:

yq(k) = Ek(yk, ηke ), (B.3)

where ηe(k) denotes the side information at time k at the encoder. It is worth
pointing out that βk stands for [β(0), · · · , β(k)]. Likewise, the arbitrary de-
terministic mapping Dk determines the following input-output relationship for
the decoder:

u(k) =

{
Dk(ηkd), 0 ≤ k < h,

Dk(yk−hq , ηkd), k ≥ h.
(B.4)

The side information available at the decoder at time k is represented by ηd(k).
Note that E and D in Fig. B.1 are possibly time-varying or nonlinear causal
systems.

Assumption 3.1

The transfer matrix in (B.1) represents a proper LTI plant without any un-
stable hidden modes. Furthermore, G22 is an strictly proper transfer function
describing the single-input single-output (SISO) open-loop system from u to
y. The initial condition, x0 = [x(−h), · · · , x(0)]T , has �nite di�erential en-
tropy and is jointly Gaussian with the disturbance signal w. This signal is a
zero-mean white noise with identity covariance matrix Cw = I.

Assumption 3.2

There is a joint statistical independence held between side information pro-
cesses ηe and ηd, and the sequence (x0, w). This independence together with
the dynamics of the system yields the conclusion that I(u(k); yk−h | uk−1) = 0

holds for 0 ≤ k < h. Furthermore, the decoder input can be reconstructed from
the past and present of control input and side information. So the decoder is
invertible given ui and ηid; there exists a deterministic mapping Qi such that
uiq = Qi(u

i, ηid).

To state the main problem, we �rst de�ne Dinf(h) as the in�mum steady-
state variance of the output z over all mappings u(k) = Kk(γk) for 0 ≤ k < h

and u(k) = Kk(yk−h) for k ≥ h. For such a setting, it is assumed that γk is
independent of x0 and w. Let us further suppose that Assumption 3.1 holds

2All rates are measured in bits/sample.
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for the NCS of Fig. B.1. Now, the problem of interest can be cast as follows:

R(D) = inf
σ2
z≤D
R, (B.5)

where σ2
z denotes the steady-state variance of z, and D ∈ (Dinf(h),∞). The

optimization in (B.5) is performed over all encoders Ek and decoders Dk satis-
fying Assumption 3.2 and rendering the NCS of Fig. B.1 SAWSS (this notion of
stability is de�ned in [8, De�nition 2.2]). Moreover, D belonging to the interval
(Dinf(h),∞) is a necessary assumption for the feasibility of the optimization
problem in (B.5).

4 Upper Bound Problem

In this section, we show that R(D) can be bounded from above by an average
data rate that is about 1.254 bits per sample larger than the corresponding
theoretical lower bound. Therefore, achieving any stationary performance level
D ∈ (Dinf(h),∞) is possible with rates within a gap of 1.254 bits per sample
above the lower bound. We show that such average data rates are given by
constructing coding schemes that make use of �lters which, when placed around
an AWGN channel, yield a directed information feedback rate equal to the lower
bound on R(D). We start by restating some key results from [1]. Since the
lower bound is given based on an SNR-constrained optimization over the LTI
scheme in Fig. B.2, �rst we need to describe this system. The auxiliary NCS
of Fig. B.2 results from setting a set of LTI �lters and an AWGN channel
as coding scheme for the system of Fig. B.1. This scheme is speci�ed by the
following dynamics:

u′ = Jz−hr′, r′ = t′ + η′, t′ = Bdiag{z−1, 1}
[
r′

y′

]
, (B.6)
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where B and J are proper LTI �lters, and η′ indicates AWGN with zero mean
and variance σ2

η′ . We assume that η′ is independent of (x0, w).

Lemma 4.1 ( [1, Lemma 4.3])

Consider the LTI loop of Fig. B.2 with �xed σ2
η′ ∈ R+. De�ne ϑ

′

r′ as follows:

ϑ
′

r′(B, J, σ
2
η′) ,

1

4π

∫ π

−π
log
(Sr′(ejω)

σ2
η′

)
, (B.7)

in which Sr′ represents the steady-state power spectral density of r′. Then
for any ρ > 0, upon the existence of the pair (B, J) = (B1, J1) making the
system of Fig. B.2 internally stable and well-posed, there exist another pair,
comprised of the biproper �lter J2, and B2, which renders the feedback loop
of Fig. B.2 internally stable and well-posed, preserves the steady-state power
spectral density of z′ and satis�es the following:

ϑ
′

r′(B1, J1, σ
2
η′) = ϑ

′

r′(B2, J2, σ
2
η′) =

1

2
log(1 +

σ2
t′

σ2
η′

)|(B,J)=(B2,J2) − ρ. (B.8)

Corollary 4.1 ( [1, Corollary 4.1])

If Assumptions 3.1 and 3.2 hold for the NCS of Fig. B.1 and D ∈ (Dinf(h),∞),
then

R(D) ≥ 1

2
log(1 + ϕ′(D)), ϕ′(D) , inf

σ2
z′≤D

σ2
t′

σ2
η′
, (B.9)

where the optimization is done over all LTI �lter pairs (B, J) and the noise
variance σ2

η′ ∈ R+ making the system in Fig. B.2 internally stable and well-
posed. Moreover, σ2

t′ and σ
2
z′ represent the steady-state variances of t

′ and z′,
respectively.

De�nition 4.1

According to the time delay in the channel, the coding scheme formulated in
(B.3) and (B.4) is called linear if and only if there exist proper LTI �lters B
and J , and zero-mean i.i.d random sequence η in such a way that the dynamics
of the coding scheme can be rewritten as follows:

u = Jz−hr, r = t+ η, t = Bdiag{z−1, 1}
[
r

y

]
, (B.10)

where η is assumed to be independent of (x0, w). Moreover, the initial condition
of B, J and feedback channel delay z−1 are deterministic. The coding scheme
de�ned in (B.10) extends the class of linear coding schemes de�ned in [8] to
the case where the channel imposes a constant delay of h.

A linear source-coding scheme can be realized by entropy-coded dithered
quantization accompanied with LTI �lters, as depicted in �gures B.3 and B.4.
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Fig. B.3: The proposed ECDQ-based linear coding scheme

In other words, by implementing an ECDQ and making use of LTI �lters, the
linear dynamics described by (B.10) are related to the main general scheme in
(B.3) and (B.4) as follows:

yE(k) = Fq(t(k) + d(k))

yq(k) = Ok(yE(k), d(k))

uD(k) = O−1
k−h(uq(k), d(k − h))

rh(k) = uD(k)− d(k − h),

(B.11)

where Fq represents a uniform quantizer with resolution ∆ ∈ R+, Fq : R→ {i∆
; i ∈ Z}. Furthermore, d(k) is a dither signal to be accessed at both encoder
and decoder. Entropy coding for the lossless parts are denoted by the mapping
Ok and its complementary O−1

k for the encoder and decoder, respectively. So
the symbol yq(k) sent through the channel is a function of yE(k) conditioned

t
ECDQ

G
~

w~
0x

~

z~

d

rh

Fig. B.4: ECDQ setup in the feedback path
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upon d(k).

Lemma 4.2

For the architecture depicted in Fig. B.4, consider G̃ as a proper real ratio-
nal transfer matrix where the scalar transfer function from rh to t is strictly
proper. Assume that the ECDQ in the feedback path follows the dynamics of
(B.11) and has �nite and positive step size ∆. Furthermore, suppose that the
disturbance w̃ is a white noise process second-order with x̃0, the initial state
of G̃. Then given the dither d as an i.i.d process with a uniform distribution
over (−∆/2,∆/2) and independent of (w̃, x̃0), the error r− t is i.i.d, uniformly
distributed over (−∆/2,∆/2) and independent of (w̃, x̃0).

Proof. Considering the schemes described through (B.10) and (B.11), let us
call the transfer matrix from [w̃ r]T to [z̃ t]T in Fig. B.4 G̃h. It can be
deduced from the relation between r an rh (rh = rz−h) that G̃h has the same
characteristics as G̃, in that G̃h is proper and real rational and the SISO open-
loop transfer function from r to t is strictly proper. The remainder of the proof
follows immediately from [8, Lemma 5.1].

According to Lemma 4.2, when used in the setting of Fig. B.1, the coding
scheme stated through (B.11) together with the �lters in (B.10) form a lin-
ear coding scheme if d(k) has the same properties as the dither considered in
Lemma 4.2. This class of linear coding schemes is called ECDQ-based linear
coding schemes [8, 9]. The ECDQ-based linear coding scheme built based on
(B.11) and (B.10) is depicted in Fig. B.3. An upper bound on the operational
average data rate in the NCS of Fig. B.1 is characterized in next lemma when
utilizing an ECDQ-based linear coding scheme in the feedback path.

Lemma 4.3

Provided that the Assumption 3.1 holds, for any ECDQ-based linear source-
coding scheme rendering the NCS of Fig. B.1 SAWSS, the average data rate is
upper bounded as follows:

R <
1

2
log

(
1 +

σ2
t

σ2
η

)
+

1

2
log

(
2πe

12

)
+ log 2. (B.12)

As for (B.10), σ2
t denotes the steady-state variance of the signal t, and σ

2
η = ∆2

12

is the variance of the quantization error (noise) in the ECDQ-based linear
source-coding scheme.

Proof. Based on Assumption 3.1, [1, Appendix A] shows that the problem of
�nding ϕ′(D) in (B.9) is feasible. So there exist proper LTI �lters B and J , and
an AWGN, say η, that brings SAWSS-ness to the NCS of Fig. B.1. Regarding
the de�nition of internal stability, keeping such a pair of �lters and setting
η = 0 will not alter the stability status of the system. Therefore, the open-
loop system between r and t is internally stable and well-posed when using
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unity feedback (t = r). Now according to the properties of the dither stated in
Lemma 4.2, (B.12) is immediately concluded from [9, Corollary 5.3].

Now, according to Lemma 4.3, the desired minimal average data rate R(D)

can be bounded from above through an ECDQ-based linear coding scheme
based on the following result:

Theorem 4.1

Let the feedback loop of Fig. B.1 satisfy Assumption 3.1. For any D > Dinf(h),
there exists an ECDQ-based linear source-coding scheme that meets Assump-
tion 3.2, renders the NCS of Fig. B.1 SAWSS, and outputs σ2

z ≤ D in such a
way that

R <
1

2
log (1 + ϕ′(D)) +

1

2
log

(
2πe

12

)
+ log 2, (B.13)

where ϕ′(D) is as de�ned in (B.9).

Proof. Here the feasibility of �nding ϕ′(D) in (B.9) is used again. So since
D ∈ (Dinf(h),∞), for any ζ > 0, the triplet (Bζ , Jζ , σ

2
ηζ

) exists in such a way
that setting proper LTI �lters B = Bζ , J = Jζ and the AWGN σ2

η′ = σ2
ηζ
∈ R+,

will render the NCS of Fig. B.2 internally stable and well-posed, results in
σ2
z′ ≤ D and

σ2
t′

σ2
η′
≤ ϕ′(D) + ζ. (B.14)

Without loss of generality and according to Jensen's inequality and Lemma. 4.1,
Jζ can be considered as a biproper �lter. Now, let us set an ECDQ-based linear

coding scheme comprising (B, J,∆) = (Bζ , Jζ ,
√

12σ2
ηζ

), as coding scheme in

the NCS of Fig. B.1, with zero initial state for �lters and delays. Considering
the dynamics of the system and the variance of uniform processes, such a
setting is guaranteed to be SAWSS by construction and based on lemma 4.2
and de�nition of Bζ , Jζ and σ2

ηζ
. Moreover, in this case, the following holds

for the steady-state variance of the signal t in (B.10) and system output z:

σ2
z ≤ D,

σ2
t

σ2
η

≤ ϕ′(D) + ζ. (B.15)

The aforementioned setup meets the conditions in Lemma 4.3 as well. So for
a suitable choice of ρ > 0, the following bound can be derived on the average
length of yq:

R <
1

2
log

(
1 +

σ2
t

σ2
η

)
+

1

2
log

(
2πe

12

)
+ log 2− ρ.

Then, the rightmost inequality in (B.15) will give

R <
1

2
log (1 + ϕ′(D) + ζ) +

1

2
log

(
2πe

12

)
+ log 2− ρ. (B.16)
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The upper bound in (B.13) can be obtained by setting ζ small enough. We go
on with the proof by proving that the ECDQ-based linear coding scheme noted
above satis�es Assumption 3.2. Based on Lemma 4.2, every condition in As-
sumption 3.2 can be guaranteed for the proposed scheme except invertibility of
the decoder. According to the de�nition of ECDQ-based linear coding schemes,
by taking the same steps as in [9, Corollary 5.1], it can be shown that knowing
rk and dk is equivalent to knowing ukq . Moreover, since J is biproper with
deterministic initial state, knowledge of rk is equal to knowledge of uk+h. As a
result, uk−hq can be reconstructed from uk conditioned upon knowing ηkd = dk.
So the decoder is invertible and the proof is complete.

Technically speaking, a design approach is proposed in the proof of Theo-
rem 4.1. This approach indicates the way of building a linear coding scheme
that can render the NCS of Fig. B.1 SAWSS and guarantee σ2

z ≤ D with a rate
less than the upper bound derived in (B.13).

5 Simulation Results

Suppose that the generalized plant G, to be controlled in the architecture of
Fig. B.1, is described as follows:

z =
0.165

(z − 2)(z − 0.5789)
(w + u), y = z.

Moreover, assume that (x0, w) is set in such a way that Assumption 3.1 holds.
We calculate the lower bound stated in (B.9) for three di�erent values of time
delay, h = {0, 1, 2}, over an interval from D > Dinf(h) to 50. To do so, we
utilize the technique proposed in [1]. As a departure form the results in [1]
and as the most important part of this simulation example, we design actual
coding and control schemes by employing the results of Section 4, and apply
those to the system of interest. The results are illustrated in Fig. B.5. For
each D > Dinf(h), we use the corresponding controllers (B, J) obtained from
the optimization problem in (B.9). Furthermore, for the sake of quantization
and coding, we utilize ECDQs with properties stated in Lemma 4.2. Those
properties include the quantization resolution and the support for the uniform
dither, which are determined based on the optimal noise variance from (B.9).
As shown in Fig. B.5, the behaviour of the lower bound on R(D) (all the curves
referred to as LB) with respect to the channel time delay, is in agreement with
stated results form our previous work [1]. Moreover, Fig. B.5 demonstrates that
the upper bound (the curves referred to as UB) varies as a function of delay, in
the same manner as the lower bound. So for a speci�c D > Dinf(h), increasing
delay makes the upper bound larger. This result follows from (B.13) where the
derived upper bound di�ers from the lower bound by only a constant.
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Fig. B.5: Bounds on R(D) in (B.5) for di�erent values of time delay h

The operational rates and entropies, the main outcomes of this simulation
study, are illustrated in Fig. B.5 as well. We have used 106-sample-long re-
alizations, where the dither is fully known at both sides of the channel. The
operational data rates, referred to as OR, are achieved by employing mem-
oryless Hu�man entropy coding that does not incorporate dither values into
the prior information for coding. However, the rates are at most about 0.6

less than the upper bound. So even when using an entropy-coder encoding
unconditioned upon dither knowledge, the upper bound is rather loose. The
operational entropy of output of the quantizer, referred to as OE, is measured
under the same conditions. Another interesting result is related to the be-
haviour of the operational average data rates with respect to the delay. It can
be observed from the curves that for a �xed D > Dinf(h), the desired average
data rate grows by increasing h. In other words, larger delay in the channel
necessitates spending higher average data rates to achieve a certain level of
quadratic performance. The same goes for the estimated entropy. Compared
to the delay-free case, an NCS closed over a channel with time delay incurs
greater entropy to meet a speci�c performance requirement.

6 Conclusions

This paper has investigated the performance of a rate-limited NCS. In the con-
sidered system, a noisy LTI plant is controlled over a noiseless channel with rate
constraints and known constant time delay. For this system, we have derived
an upper bound on this minimal data rate. More precisely, we have suggested
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a simple coding and control scheme using a zero-delay ECDQ that can attain
the prescribed performances with rates at most 1.254 bits/sample away from
the corresponding lower bounds. We have illustrated via a numerical example
that systems with larger time delays in the channel need higher operational
average data rates to attain a quadratic cloosed-loop performance level.
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1. Introduction

Abstract

This paper studies the performance of a feedback control loop closed via an

error-free digital communication channel with transmission delay. The system

comprises a discrete-time noisy linear time-invariant (LTI) plant whose sin-

gle measurement output is mapped into its single control input by a causal,

but otherwise arbitrary, coding and control scheme. We consider a single-

input multiple-output (SIMO) channel between the encoder-controller and the

decoder-controller which is lossless and imposes random time delay. We de-

rive a lower bound on the minimum average feedback data rate that guarantees

achieving a certain level of average quadratic performance over all possible real-

izations of the random delay. For the special case of a constant channel delay,

we obtain an upper bound by proposing linear source-coding schemes that at-

tain desired performance levels with rates that are at most 1.254 bits per sample

greater than the lower bound. We give a numerical example demonstrating that

bounds and operational rates are increasing functions of the constant delay.

In other words, to achieve a speci�c performance level, greater channel delay

necessitates spending higher data rate.

Keywords

Networked control systems, data rate constraints, time delay, information the-
ory, optimal control.

1 Introduction

Taking communication imperfections into account for analysis and design has
proved to be an interesting topic within the area of control theory during re-
cent years. This interest is motivated by advantages of communication networks
over point-to-point wiring and, on the other side, by the complexity that com-
munication constraints impose on classical control problems [1]. Time delay,
packet dropout and data rate constraints (quantization) are among prominent
challenges [2�5].

Using an information-theoretic approach, [6, 7] report primary derivations
related to system performance. In these works, it is shown that the presence of
a �nite-capacity communication channel in a strictly causal feedback loop in-
troduces a new performance limitation which di�ers from conventional Bode's
formula by a constant quantifying channel information rate. Moreover, the
authors derive inequalities among entropy rate of internal signals (inside the
loop) and external signals (outside the loop), resulting in a general perfor-
mance bound which is a�ected by �nite feedback capacity. Inspired by [6, 7],
lower and upper bounds are derived on the minimum data rate that guarantees
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achieving a prescribed level of quadratic performance in [8�10]. These works
consider noisy linear time-invariant (LTI) plants with Gaussian disturbances,
controlled over an error-free digital channel without delay. In particular, [10]
shows that over all causal mappings which represent coding and control, the
average data rate is bounded from below by the directed information rate gen-
erated by the mappings that render the sensor input and control output jointly
Gaussian. Moreover, it is proved in [10] that in an auxiliary LTI structure, the
minimum signal-to-noise ratio (SNR) which guarantees stability and meeting a
quadratic performance requirement gives the lower bound on the desired mini-
mal data rate. For the upper bound analysis, [10] suggests employing entropy-
coded dithered quantizers (ECDQs). Such a simple coding scheme is designed
based on the aforementioned SNR-constrained optimization giving the lower
bound. Inspired by [8] and [10], the authors of [11] present a method based
upon semide�nite programming (SDP) to characterize the trade-o� between
directed information rate and linear quadratic Gaussian (LQG) performance
in rate-constrained networked control systems (NCSs) with fully-observable
multiple-input multiple-output (MIMO) plants. In [12], the authors derive a
lower bound on the zero-delay rate distortion function associated with vector-
valued Gauss-Markov processes and mean-square error distortion constraint.
Based on the separation principle, this bound is in fact the lower bound on
the minimum data rate required for attaining LQG performance in control of
fully observable plants. Then [12] utilizes the optimal realization that corre-
sponds to the foreshadowed class of vector-valued Gaussian sources to derive
an upper bound on zero-delay rate distortion function using variable-length
entropy coding with lattice quantization. Similar ideas are employed in [13]
for establishing bounds on minimum mutual informations, across a delay-free
channel, that guarantee achieving speci�c linear quadratic regulator (LQR)
performance levels. Speci�cally, [13] derives the lower bound based on Shan-
non's lower bound and power entropy inequalities whereas the upper bound is
established via variable-length coding and lattice-based quantization methods.

NCSs subject to network-induced delays are generally analyzed according to
two methodologies: robustness and adaptation [3]. The aim in the robustness
framework is deriving conditions for certain stability or performance require-
ments by constructing Lyapunov-Krasovskii functionals that do not incorporate
time-stamp information as a variable. For instance, in [14], stabilization and
H∞ performance conditions for a singular cascade NCS are obtained. Fuzzy-
model-based control is another approach in the robustness framework, where
the rules are based on the size of delays, and the controller is required to be ro-
bust over the delay range [15, 16]. In the adaptation framework, one method is
modelling NCSs as stochastic switched systems. The recent results on stability
and H2/H∞ performance of Markov jump linear systems (MJLSs) are reported
in [17] and [18], respectively. The second approach in this framework is pre-
dictive control; a method which is currently quite popular in NCSs. According
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to this technique, the actuator selects among a sequence of control commands
based on the transmission delays experienced by them [19�21].

In all the aforementioned results on system performance, either the e�ect
of channel delay is neglected, or the rate limitation is not taken into account.
However, looking into the literature, one can �nd works investigating perfor-
mance issues in NCSs with both rate constraints and network-induced delays
(see, e.g., [22�25]). Even so, a few has utilized the information-theoretic ap-
proach to treat systems with such limitations. For example, [26] derives bounds
on the minimum individual (non-asymptotic) rate needed to guarantee meeting
an individual performance requirement (boundedness of the maximum `2-norm
of states).

In this paper, we study the performance of a discrete-time LTI plant with
Gaussian initial state in a loop with Gaussian exogenous inputs and random
or constant channel delay on the feedback path. For the setup with random
delay in the channel, we seek the in�mum average data rate required to achieve
a prescribed quadratic performance level. We show that the average data rate
over all possible realizations of the delay is lower bounded by the average di-
rected information rate. We prove for the random channel delay case that under
certain stationarity assumptions, the average directed information rate can be
stated in terms of average power spectral densities of the involved signals. We
obtain a lower bound on the desired minimal average data rate which is stated
as the average of a function of the power spectral densities of feedback path
signals over all possile realizations of the delay. To establish all these results,
we utilize the tools adopted in [8] and [10]. However, compared to [10] and [8],
the channel is not delay-free in our setup. In other words, we extend the infor-
mation inequalities in [10] to the case where there exists a random time delay
between the sensor output and the control input.

For the setup with known constant delay in the channel, we show that the
above lower bound on the in�mum average data rate required for attaining
quadratic performance is equal to a function of in�mum SNR of the channel
over schemes comprised of LTI �lters and AWGN channels with feedback and
delay that meet the quadratic performance constraint. Our contribution in
this case is showing how the presence of the channel delay a�ects the scheme
yielding the lower bound. This gives an insight to the interplay between time
delay, average data rate and performance in the considered NCS. We also prove
that even over a channel with a constant delay, any admissible performance level
can be achieved by an EDCQ-based linear coding scheme which generates an
average data rate at most (approximately) 1.254 bits per sample away from the
corresponding lower bound. We illustrate via a numerical example that lower
and upper bounds as well as empirical rates and entropies are all increasing
functions of channel delay. This in turn implies that channels with larger
delays demand higher average data rates to allow for attaining a certain system
performance.
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Compared to our previous works in [27] and [28], �rst, we here study the
case of random channel delay and second, we employ a simpler proof than
information inequalities and identities in [27] and [28]. In this work, we also
show the e�ect of having a delay at di�erent places in the loop on system
signals. The last departure from our previous results is that we incorporate
some eliminated proofs of [27] into this paper.

The remainder of the paper is organized as follows. Section 2 introduces the
notation. Section 3 formulates the main problem. Section 4 analyzes the lower
bound problem for the setup with random channel delay. Section 5 derives a
lower bound on the desired minimal data rate in the case of constant channel
delay. The analysis of upper bound problem in the constant delay case is
presented in Section 6 where the equivalence between systems with di�erent
delay locations is investigated. A numerical example is given in Section 7.
Finally, Section 8 concludes the paper.

2 Notation

By R, we denote the set of real numbers whose subset R+ represents the set
of strictly positive real numbers. The set N0 is de�ned as N0 , N ∪ {0} where
N symbolizes the set of natural numbers. The time index of every considered
signal, denoted by k in most cases, belongs to N0. Symbols E, log, |.|, and
‖.‖2 represent operators for expectation, natural logarithm, magnitude and
H2-norm, respectively. Moreover, λmin(S) and λmax(S) are respectively the
largest and smallest eigenvalues of the square matrix S for which the element
on the i-th row and j-th column is denoted by [S]i,j . In addition, βk is short-
hand for β(0), . . . , β(k) where β(k) denotes the k-th sample of a discrete-time
signal. Furthermore, for the time-dependent set α(i), i ∈ N0, αk is de�ned as
αk , α(0)× · · · × α(k). However, if α is a �xed set, then αk , α× · · · × α (k
times).

Random variables and processes are vector valued, unless otherwise stated.
Take v and q into account as two random variables with known marginal and
joint probability distribution functions (PDFs). Their joint PDF is represented
by f(v, q) while the marginal PDFs of v and q are symbolized by f(v) and f(q),
respectively. The conditional PDf of v given q is denoted by f(v|q) and Ev(.)

is the operator for the expectation with respect to the distribution of v. We
de�ne the di�erential entropy of v and the conditional di�erential entropy of v
given q as h(v) , −Ev(log f(v)) and h(v|q) , −Ev,q(log f(v|q)), respectively.
The mutual information between v and q is symbolized by by I(v; q) and

de�ned as I(v; q) , −Ev,q(log(f(v)f(q)/f(v, q))). Moreover, the de�ni-
tion of the conditional mutual information between random variables v and q
given the random variable r is given by I(v; q|z) , I(v, r; q)− I(r; q). All the
information-theoretic de�nitions presented in this paragraph are standard and
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Fig. C.1: Considered NCS with a channel imposing random delay

follow [29].
We call the random process ξ asymptotically wide-sense stationary (AWSS)

if limk→∞E[ξ(k)] = νξ and Cξ , Rξ(0) and

lim
k→∞

E[(ξ(k + τ)−E[ξ(k + τ)])(ξ(k)−E[ξ(k)])
T

] = Rξ(τ)

hold, where νξ is a �nite constant. Accordingly, the steady-state covariance
matrix and the steady-state variance of ξ are de�ned as σ2

ξ , trace(Cξ), re-

spectively. For the scalar random sequence xk1 , [x(1) . . . x(k)]T , we de�ne

the covariance matrix as Cxk1 = E[(xk1 −E[xk1 ])(xk1 −E[xk1 ])
T

]. Assume that
Pn, Qn ∈ Rn×n are square matrices. Then the sequences {Pn}∞n=1 and {Qn}∞n=1

are called asymptotically equivalent if and only if they satisfy the following ex-
pression for �nite %:

lim
n→∞

1

n

n∑
i=1

n∑
j=1

|[Pn −Qn]i,j |
2

= 0

|λmax(Pn)|, |λmax(Qn)| ≤ %, ∀n ∈ N.

3 Problem Formulation

We consider the feedback loop of Fig. C.1 where the plant is LTI with one con-
trol input and one sensor output denoted by u ∈ R and y ∈ R, respectively. The
plant G is disturbed by a vector-valued zero-mean white noise which is repre-
sented by w ∈ Rnw and has identity covariance matrix, i.e. Cw = I. Moreover,
as depicted in Fig. C.1, the plant outputs the vector-valued signal z ∈ Rnz upon
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which the performance measure is characterized. The relationship between the
mentioned set of inputs and outputs is described by a transfer-function matrix
as follows: [

z

y

]
=

[
G11 G12

G21 G22

] [
w

u

]
, (C.1)

where the dimensionality of each Gij is determined by the dimensions of cor-
responding pair of inputs and outputs. So nz × nw, nz × 1, 1 × nw and 1 × 1

are the dimensions for G11, G12, G21 and G22, respectively.

Assumption 3.1

Every entry of the transfer-function matrix in (C.1) is proper with no unstable
hidden modes. Moreover, G22, which describes the single-input single-output
(SISO) open-loop system from u to y, is strictly proper. The initial states of
the plant denoted by x0 = {x(−hmax), . . . , x(0)} are jointly Gaussian with and
independent of the disturbance signal w and has a �nite di�erential entropy.

As depicted in Fig. C.1, the output of the plant, y, is processed into a binary
word by the encoder E and transmitted over the error-free channel. Such
transmission is accompanied with a random delay. Let h(k) denote the delay
experienced by the binary word yq(k) constructed at time k at the encoder. We
assume that h(k) is an independent and identically distributed (i.i.d.) process
which has a bounded support at each time step, i.e., h(k) ∈ {h1, . . . , hm},
∀k ∈ N0 where hi < hi+1 (i = 1, 2, . . . ,m − 1). In order to avoid unnecessary
notational complexity and without loss of generality, we set h1 as h1 = 0 and hm
as hm = hmax. The marginal distribution of the delay is assumed to be known
and described by Pr{h(k) = hj} = αj where

∑m
j=1 αj = 1. Such characteristics

introduce a channel with the following input-output relationship:

uq(k) = [yq(i)]i∈S(k), k ∈ N0 (C.2)

where S(k) is de�ned as

S(k) , {i : i+ h(i) = k} (C.3)

for every k, i ∈ N0. Denoting the cardinality of S(k) by s(k), we can im-
ply form (C.2) that uq(k) is a vector comprised of s(k) ≤ hmax + 1 binary
words which speci�es the output of the channel at time k. Note that s(k) is a
random variable depending on the channel delay. We assume that yq(i) is dis-
carded at the decoder-controller side if i < 0. Moreover, under aforementioned
circumstances, binary words transmitted over the considered channel are not
necessarily received in the same order they were emitted. It should be also
emphasized that the channel does not allow for any data loss. The average
data rate across the channel is de�ned as

R , lim
k→∞

1

k

k−1∑
i=0

R(i), (C.4)
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Fig. C.2: Considered NCS with a detailed model of coding and control scheme

where R(i) indicates the expected length of the binary word yq(i).
A more detailed presentation of the feedback path in the NCS of Fig. C.1

is provided by Fig. C.2. As depicted, the encoder-controller is comprised of
a lossy and a lossless component. The lossy part E outputs the symbol yE
according to the following dynamics:

yE(k) = Ek(yk, ηke ), (C.5)

where ηe(k) ∈ Λe(k) symbolizes the side information at time k at the lossy
encoder. Ek : Rk+1 × Λke 7→ As is a deterministic map and As represents a
�xed countable set. At each time instant, the encoder is assumed to know the
time delays experienced by previous binary words and the time delay of the
current binary word to be sent over the channel. Therefore, hk is known at
the encoder ∀k ∈ N0. This implies that yE(k) can be reconstructed perfectly
h(k) steps later at the decoder if yq(k) is constructed by using yE(k) and only
those samples of yk−1

E which will be already available at the decoder at time
k + h(k). Note that having access to ykq at the decoder at the time k + h(k) is
not assured. So the lossless encoder O outputs the binary symbol yq based on

yq(k) = HEk(yE(k), yEf (k), ηko ), (C.6)

in which yEf (k) is a sequence comprising the elements of yk−1
E for which the

associated binary words will have reached the decoder by the time k + h(k),
i.e., {yE(i) : i ∈ N0, i ≤ k − 1, i + h(i) ≤ k + h(k)}. Moreover, ηo(k) ∈ Λo(k),
and HEk : Af(k)

s × Λko 7→ A(k) is an arbitrary deterministic mapping where
k − hmax + h(k) + 1 ≤ f(k) ≤ k + 1. So f(k) − 1 speci�es the cardinality of
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the sequence yEf (k). Note that since no dropout occurs during data transmis-

sion, yk−hmax+h(k)
q will certainly have been received at the decoder by the time

k+ h(k). In addition, A(k) is a countable set of pre�x-free binary code words,
which speci�es the input alphabet of the channel at each time instant.

On the receiver side, uq(k) is available as the input to the lossless decoder.
This decoder, shown by O−1, generates uD as

uD(k) = HDk(uqf (k), ηko , S(k)), (C.7)

where uqf (k) is a sequence comprised of elements of ukq that have time indices

less than or equal to the largest time index of yq in uq(k), i.e., uqf (k) , {yq(i) : i

∈ N0, yq(i) ∈ ukq , i ≤ m(k)} where m(k) = maxS(k), ∀k ∈ N0. Such selection
of data for lossless decoding is in accordance with the information utilized in
(C.6) for encoding. Furthermore, HDk : Ag(k) × Λko × N0

s(k) 7→ As(k)
s , where

k − hmax + 1 ≤ g(k) ≤ k + 1, represents an arbitrary deterministic mapping.
It should be noted that according to the channel model, g(k) is a random
variable denoting the cardinality of uqf (k) and

∑k
i=0 s(i) ≤ k holds for all

k ∈ N0. Moreover, based on the de�nition of uqf and (C.6), the information
provided by (uqf (k), ηko , S(k)) is enough for the lossless decoder to reconstruct
every element of {yE(i)}i∈S(k) perfectly. Therefore

uD(k) = [yE(i)]i∈S(k), k ∈ N0

where S(k) is de�ned as in (C.3). Indeed for such reconstruction, the knowledge
of the delay is required at the decoder. Hence, we further assume that the
decoder is provided by S(k) through for example timestamping. Finally, the
decoder-controller gives the control input via

u(k) = Dk(ukD, η
k
d). (C.8)

where ηd(k) signi�es the side information available at the decoder at time k
and is contained in the well-de�ned set Λd(k). So ηd(k) satis�es ηd(k) ∈ Λd(k).
Moreover, Dk : Atu(k)

s ×Λkd 7→ R, k − hmax + 1 ≤ tu(k) ≤ k + 1, is an arbitrary
deterministic mapping where tu(k) is the cardinality of Sk. It should be noted
that Λo(k) in ηo(k) ∈ Λo(k) is de�ned as Λo(k) , Λe(k)∩Λd(k). We state some
additional properties of the setting described above in the following remarks.

Remark 3.1

It can be implied from (C.5)-(C.8) that u(k) and uk are functions of (ylk , ηe
lk , ηkd)

where lk = maxSk for every k ∈ N0. It thus follows from the de�nition of S(k)

and assuming no dropout in the considered channel that k − hmax ≤ lk ≤ k.
This implies that the controller has access to the largest and smallest amount
of sensor information when the channel delay is zero and hmax, respectively.
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Remark 3.2

It can be implied from the de�nition of S(k) in (C.3) that uq(k) can have at
most hmax+1 entries at each time step. So the number of the words that can be
received at the decoder at each time instant belongs to the set {0, . . . , hmax+1}.
Therefore, since the channel input yq is a scalar process, (C.2) describes a single-
input multiple-output (SIMO) channel. Moreover, S(k), as a stochastic process,
cannot be i.i.d because in the considered channel, no transmitted binary word
is received at the decoder more than once.

For further analysis, we consider the following assumption.

Assumption 3.2

At each time instant k ∈ N0, the side information pair (ηe(k), ηd(k)) together
with h(k), and consequently S(k), are statistically independent of (x0, w(k)).
Therefore, it can be implied from the dynamics of the system that

I(u(k); y(k − hi) | uk−1) = 0

for any hi ∈ {1, ..., hmax} with k− hi < 0. Moreover, upon knowledge of ui, ηid
and Si, the decoder is invertible. It means that for each i ∈ N0, there exists a
deterministic mapping Qi such that uiq = Qi(u

i, ηid, S
i).

Remark 3.3

In Appendix A, we will prove that for the architecture of Fig. C.2, any encoder
and non-invertible decoder with mappings E , O, O−1 and D, can be replaced
by another set of mappings with the same input-output relationship and lower
average data rate where the decoder is invertible .

For the purpose of expressing the information rate in terms of spectral densities
of the signals of the system, we use the following notion of stability:

De�nition 3.1

A scalar AWSS process x is called strongly asymptotically wide-sense stationary
(SAWSS) if its covariance matrix is asymptotically equivalent to the covariance
matrix of the wide sense stationary (WSS) process, say x̄, to which it converges,
i.e., {Cxn1 }

∞
n=1 and {C x̄n1 }

∞
n=1 are asymptotically equivalent. Furthermore, in

an SAWSS NCS, all internal signals are SAWSS and their cross-covariance
matrices are asymptotically equivalent to the cross-covariance matrices of cor-
responding WSS processes to be converged to.

Clearly, SAWSS-ness implies AWSS-ness but not vice versa; for both signals
and systems. For each coding scheme satisfying (C.5)-(C.8) and rendering
the NCS of Fig. C.1 SAWSS, the steady-state variance of the output z is a
random variable which depends on the realization of h(k). The same goes for
the average data rate. We make explicit such dependence by writing σ2

z(hk)

and R(hk), and consider the means of these variables (over all realizations of
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hk) as our performance measure and data rate of interest, respectively. Such
notions of performance and rate, represented by σ2

za and Ra respectively, are
formulated as follows:

σ2
za =

∑
hk∈H
k→∞

Pr(hk)σ2
z(hk)

Ra =
∑
hk∈H
k→∞

Pr(hk)R(hk)
(C.9)

where H denotes the support set for possible realizations of the delay h(k).
Moreover, R(hk) and σ2

z(hk) indicate that the average data rate and steady-
state variance are functions of delay. Generally speaking, we are interested
in �nding the minimal Ra for which having a bounded σ2

za is feasible. Let
Dinf(hr) denote the smallest average steady-state variance of z that can be
achieved, when the random delay h(k), with the aforementioned properties, is
present in the channel. Hence, Dinf(hr) is obtained by minimizing the average
steady-state variance of z over all (possibly nonlinear and time-varying) settings
u(k) = Kk(ylk) that render the NCS of Fig. C.1 SAWSS. Note that lk is de�ned
as in Remark 3.1. Under the condition that Assumption 3.1 holds, the problem
of our interest is to �nd

Ra(D) = inf
σ2
za≤D

zzRa, (C.10)

where D ∈ (Dinf(hr),∞), and σ2
za represents the average steady-state vari-

ance of the output z over all realizations of the delay. The feasible set of
the optimization problem in (C.10) is comprised of all encoder-controller and
decoder-controller pairs described by (C.5)-(C.8), satisfying Assumption 3.2
and rendering the NCS of Fig. C.1 SAWSS.

Remark 3.4

It is straightforward to see from (C.5)-(C.8) that the concatenation of the
decoder-controller pair and the channel in the NCS of Fig. C.1 is equivalent
to a decoder-controller pair with the same mapping and side information that
applies a time delay with same properties as characterized in (C.2), on its
received data, and that is followed by a delay-free channel. So the system
depicted in Fig. C.1 is equivalent to the feedback loop of Fig. C.3 in which the
encoder and the plant are the same and the inputs have the same properties
as in Fig. C.1.

The equivalence pointed out in Remark 3.4 between systems of Fig. C.1 and
the NCS of Fig. C.3 will assist us deriving a lower bound on the average data
rate Ra in the next Section.
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Fig. C.3: Auxiliary system equivalent to the main NCS in the random delay case

4 Lower Bound Problem in the Presence of Ran-

dom Delay

In this section, we establish a lower bound on Ra(D). To do so, we derive
inequalities and identities that describe the relationship between the �ow of
information and system performance in the NCS of Fig. C.1. Therefore, we
will update fundamental derivations in [10, 28] for the case where the channel
delay is randomly distributed. As the �rst result, we show how the average
data rate Ra is bounded from below in the following theorem.

Theorem 4.1

Consider the feedback loop depicted in Fig. C.1 for which Assumptions 3.1 and
3.2 hold. Then

Ra ≥ Iha∞ (y → u) = lim
k→∞

1

k

∑
hk−1∈H

[Pr(hk−1)

k−1∑
i=0

I(u(i); yli | ui−1)]

where I(.; . | .) represents conditional mutual information. According to [30],
Iha∞ (y → u) speci�es the average directed information rate across the forward
channel from y to u in the NCS of Fig. C.1 over all possible realizations of the
channel delay.

Proof. It can be implied from [10, Theorem 3.1] that, for each realization h∞

of the delays, the average data rate (C.4) in the feedback loop of Fig. C.3 is
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bounded from below as

R(h∞) ≥ I∞(y → u) = lim
k→∞

1

k

k−1∑
i=0

I(u(i); yi | ui−1). (C.11)

Based upon the chain rule of mutual information, the bound in (C.11) can be
restated as

R(h∞) ≥ lim
k→∞

1

k

k−1∑
i=0

[I(u(i); yli | ui−1) + I(u(i); yili+1 | ui−1, yli)], (C.12)

where the de�nition of li is given in Remark 3.1. From the dynamics of the
plant, we can easily conclude that the sequence yili+1 is only a function of x(0)

and w, once ui−1 is given. Furthermore, it stems from (C.2)-(C.8) that upon
the knowledge of yli , side informations ηid and ηlie will be the only variables
describing u(i), ∀i ∈ N0. Latter observations together with the fact that As-
sumption 3.2 holds for the system of Fig. C.1 yield the conclusion that the
rightmost term of (C.12) amounts to zero, ∀i ∈ N0. So we have

R(h∞) ≥ lim
k→∞

1

k

k−1∑
i=0

I(u(i); yli | ui−1) (C.13)

for the NCS of Fig. C.3. Now by averaging both sides of (C.13) with respect to
the delay realizations, as in (C.9), and noting that the feedback loop of Fig. C.3
is equivalent to the system of Fig. C.1, based on Remark 3.4, our claim follows
immediately.

The next lemma shows that joint Gaussianity of two signals lowers the directed
information rate between them when these are connected through a channel
with random delay.

Lemma 4.1

Suppose that the NCS of Fig. C.1 satis�es Assumption 3.1 and Assumption 3.2.
For this system, if (x(0), w, u, y) represents a jointly second-order set of pro-
cesses, then the following holds:

Iha∞ (y → u) ≥ Iha∞ (yG → uG),

where yG and uG symbolize the Gaussian counterparts of y and u, respectively,
in a way that (x(0), w, uG, yG) are jointly Gaussian with the same �rst-and
second-order (cross-) moments as (x(0), w, u, y).

Proof. According to [10, Lemma 3.1], the directed information rate from sensor
output to the control input in the auxiliary NCS of Fig. C.3 is bounded as
follows:

I∞(y → u) ≥ I∞(yG → uG),
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where I∞(y → u) and I∞(yG → uG) are de�ned as in (C.11). We conclude
based on (C.2)-(C.8), the dynamics of the plant and the system of Fig. C.3
satisfying Assumption 3.2 that I(u(i); yili+1 | ui−1, yli) = 0,∀i ∈ N0. This
together with the chain rule of mutual information lead to

lim
k→∞

1

k

k−1∑
i=0

I(u(i); yli | ui−1) ≥ lim
k→∞

1

k

k−1∑
i=0

I(uG(i); yG
li | uGi−1). (C.14)

Now the proof is complete by taking average over all possible realizations of
the delay from both sides of (C.14) and considering that based on Remark 3.4,
the system of Fig. C.1 is equivalent to the feedback loop in Fig. C.3.

If the above Gaussian signals are stationary as well, then the average directed
information rate can be stated in terms of the average power spectral density
of the involved signals. The next lemma will state such result formally.

Lemma 4.2

Suppose that the control input u in the NCS of Fig. C.1 is SAWSS for every
realization of the channel delay. For each realization, assume that there exists
a µ > 0 in such a way that |λmin(Cun1 )| ≥ µ, ∀n ∈ N. Let further consider the
sensor output y jointly AWSS with u. Then the average directed information
rate is equal to an integral term as follows:

Iha∞ (y → u) =
∑
hk∈H
k→∞

Pr(hk)[
1

4π

∫ π

−π
log
(Sǔ(ejω, hk)

σ2
ψ(hk)

)
dω],

where ψ is a Gaussian AWSS process that has independent samples. Such a
random process is described as

ψ(k) , u(k)− ũ(k), ũ(k) , E[u(k) | ylk , uk−1] (C.15)

for each realization of the random delay. Moreover, Sǔ represents the steady-
state power spectral density of u.

Proof. It can be deduced from [10, Lemma 3.2] that in the NCS of Fig. C.3,
the following holds for the directed information rate :

I∞(y → u) =
1

4π

∫ π

−π
log
(Sū(ejω)

σ2
n

)
dω,

in which n is a Gaussian AWSS process with independent samples and I∞(y → u)

is de�ned as in (C.11). The noise n is calculated as follows:

n(k) , u(k)− û(k), û(k) , E[u(k) | yk, uk−1].
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As already mentioned before, based on the plant dynamics, the knowledge of
ui−1 will render yili+1 dependent only on x(0) and wi for any i ∈ N0. Moreover,
according to (C.2)-(C.8), knowing yli , one can determine u(i) by only �guring
out ηdi and ηeli , ∀i ∈ N0. Since, based on Assumption 3.2, (x0, w) and (ηd, ηe)

are independent, the following is yielded:

lim
k→∞

1

k

k−1∑
i=0

I(u(i); yli | ui−1) =
1

4π

∫ π

−π
log
(Sū(ejω)

σ2
n

)
dω,

E[u(k) | yk, uk−1] = E[u(k) | ylk , uk−1].

(C.16)

From (C.16), it can be concluded that n(k) is actually equal to ψ(k) as in
(C.15) for the NCS of Fig. C.3. Now, our claim is given by taking average from
both sides of upper (C.16) and noting that based on Remark 3.4, the systems
in Fig. C.3 and Fig. C.1 are equivalent.

We are now ready to present a lower bound on Ra(D). A corollary follows:

Corollary 4.1

Suppose that the NCS of Fig. C.1 satis�es Assumption 3.1. Then Ra(D) is
lower bounded as follows:

Ra(D) ≥ inf
σ2
za≤D

∑
hk∈H
k→∞

Pr(hk)
1

4π

∫ π

−π
log
(Sǔ(ejω, hk)

σ2
ψ(hk)

)
dω,

where ψ and ǔ are de�ned as in (C.15) and the in�mum is restricted to all
mappings satisfying (C.5)-(C.8) and Assumption 3.2, and producing signals y
and u with properties as stated in Lemma 4.2.

Proof. The claim follows immediately from Theorem 4.1 and Lemma 4.2.

5 Lower Bound Problem in the Case of the Con-

stant Delay

In this section, we consider the same NCS as described in Section 3 but with a
channel that imposes a known constant delay, say h steps, on the transmitted
data. The corresponding feedback loop is depicted by Fig. C.4. The problem
we investigate here is a special case of the problem formalized in (C.10) where
the channel delay is constant and therefore, there is only one realization for
the channel delay. In this case, we consider the notation Ra(D) = R(D)

and Dinf(hr) = Dinf(h). In Appendix B.1, we prove that �nding R(D) is
feasible if D ∈ (Dinf(h),∞). We show that in order to obtain a lower bound on
R(D), one can minimize the directed information rate over an auxiliary coding
scheme formed of LTI �lters and an AWGN channel with feedback and delay.
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Fig. C.4: Considered NCS in the constant delay case

Inequalities and identities related to the delay-free version of this optimization
derived in [10] will be extended to the case with a constant channel delay. We
start by deriving a lower bound on the average data rate R in the following
theorem.

Theorem 5.1

Suppose that the feedback system of Fig. C.4 satis�es Assumptions 3.1 and
3.2. Then the average data rate R is lower bounded as follows:

R ≥ I(h)
∞ (y → u) = lim

k→∞

1

k

k−1∑
i=0

I(u(i); yi−h | ui−1), (C.17)

where I(h)
∞ (y → u) is the directed information rate across the forward chan-

nel from y to u with constant delay h (see [30, De�nition 1] for the formal
de�nition).

Proof. Considering that lk = h holds at any k ∈ N0 for the NCS of Fig. C.4,
we can conclude the claim immediately from Theorem 4.1.

The directed information rate in (C.17) will be reduced if the involved signals
are jointly Gaussian. This result is formalized by the following lemma.

Lemma 5.1

Suppose that Assumptions 3.1 and 3.2 hold for the NCS of Fig. C.4. Further-
more, consider (x(0), w, u, y) as a jointly second-order set of random processes.
Denote the Gaussian counterparts of y and u by yG and uG, respectively,
where (x(0), w, uG, yG) are jointly Gaussian with the same �rst-and second-
order (cross-) moments as (x(0), w, u, y). Then I(h)

∞ (y → u) ≥ I(h)
∞ (yG → uG).
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Proof. Recall that lk = h, ∀k ∈ N0, for the considered case with constant
channel delay. The claim follows immediately from Lemma 4.1.

It can be implied from Lemma 5.1 that by minimizing directed information
rate over a scheme that renders y and u jointly Gaussian, one can obtain a
lower bound on R(D). Now, we will show that the directed information rate
can be stated in terms of power spectral densities of the involved processes if
such signals meet certain stationarity conditions.

Lemma 5.2

Suppose that u is an SAWSS process with |λmin(Cun1 )| ≥ µ, ∀n ∈ N where
µ > 0. Moreover, assume that u is jointly Gaussian and AWSS with the sensor
output y. Then the directed information rate between u and y is expressed as

I(h)
∞ (y → u) =

1

4π

∫ π

−π
log
(Sǔ(ejω)

σ2
ψ

)
dω,

where ψ represents a Gaussian AWSS process with independent samples de�ned
by

ψ(k) , u(k)− ũ(k), ũ(k) , E[u(k) | yk−h, uk−1].

Furthermore, Sǔ denotes the steady-state power spectral density of u.

Proof. Immediate from Lemma 4.2 by noting that lk = h holds for the NCS of
Fig. C.4 at every time instant k ∈ N0.

It can be implied from Theorem 5.1 and Lemma 5.2 that the rate-performance
pair yielded by any coding and control scheme satisfying Assumption 3.2 which
renders the NCS of Fig. C.4 SAWSS is attainable with a lower or equal rate if
there exists a scheme that generates (y, u) jointly Gaussian with (x0, w) while
rendering the system SAWSS. Due to the Gaussianity of (x0, w) and the fact
that the plant is LTI, a jointly Gaussian pair (y, u) can be produced by a
coding-control scheme comprised of LTI �lters and an AWGN noise source.
Such a scheme is depicted in Fig. C.5. The NCS of Fig. C.5 satis�es all of the
assumptions and conditions that hold for the system of Fig. C.4. However, the
arbitrary mappings are replaced by proper LTI �lters B and J in the auxiliary
feedback loop of Fig. C.5.

In addition, for such an NCS, a delayed AWGN channel with noiseless one-
sample-delayed feedback serves as communication channel. The coding-control
scheme in the NCS of Fig. C.5 is described via the following dynamics:

u′ = Jz−hr, r = t+ η, t = Bdiag{z−1, 1}
[
r

y′

]
,

where η is a zero-mean white Gaussian noise with variance σ2
η and independent

of (x0, w), and B = [Br By]. It should be emphasized that Assumption 3.1
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Fig. C.5: The LTI structure giving the lower bound in the constant delay case

holds for the initial states x0, the plant G and the disturbance input w in the
NCS of Fig. C.5. Furthermore, the initial states of the �lters B and J , and the
delay blocks are deterministic. As the system depicted in Fig. C.5 is a special
case of the structure of Fig. C.4, we use apostrophes for presenting signals in
Fig. C.5 that have counterparts in the NCS of Fig. C.4.

Theorem 5.2

If the NCS of Fig. C.4 satis�es Assumption 3.1 and Assumption 3.2 and
D ∈ (Dinf(h),∞) holds, then

R(D) ≥ ϑ′u(D) , inf
σ2
z′≤D

1

4π

∫ π

−π
log
(Su′(ejω)

σ2
η

)
, (C.18)

where σ2
z′ and Su′ represent the steady-state variance of z

′ and the steady-state
power spectral density of u′ in Fig. C.5, respectively. Moreover, the feasible set
for the optimization in (C.18) is the set comprised of all LTI �lters B and the
noise η with σ2

η ∈ R+ that render the system of Fig. C.5 internally stable and
well-posed with J = 1.

Proof. See Appendix B.2.

Theorem 5.2 implies that doing the optimization in (C.18) over the auxiliary
LTI system of Fig. C.5, with the AWGN channel and delay, will give a lower
bound on the minimal data rate required to achieve a certain performance level
in the arbitrary (possibly nonlinear and time-varying) structure of Fig. C.4.
The following results show how the lower bound derived in (C.18) can be sim-
pli�ed to a bound which is easier to compute.

Lemma 5.3

For the NCS of Fig. C.5, let describe ϑ
′

r by

ϑ
′

r(B, J, σ
2
η) ,

1

4π

∫ π

−π
log
(Sr(ejω)

σ2
η

)
, (C.19)
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where σ2
η ∈ R+ is �xed and Sr denotes the steady-state power spectral density

of r. Moreover, suppose that the pair (B, J) = (B1, J1) renders the feedback
loop of Fig. C.5 internally stable and well-posed. Then for any ρ > 0, there
exists another pair with a biproper �lter, say J2, and a proper one, say B2, that
renders the system of Fig. C.5 internally stable and well-posed, and preserves
the steady-state power spectral density of z′ in a way that the following holds:

ϑ
′

r(B1, J1, σ
2
η) = ϑ

′

r(B2, J2, σ
2
η) =

1

2
log(1 +

σ2
t

σ2
η

)|(B,J)=(B2,J2) − ρ. (C.20)

Proof. See Appendix B.3.

Intuitively speaking, the results of Theorem 5.2 and Lemma 5.3 imply that
R(D) can be bounded from below by a logarithmic term as in (C.20) which
is a function of channel SNR in the NCS of Fig. C.5. Such an intuition will
assist us with deriving a lower bound which is computationally appealing in
the following corollary.

Corollary 5.1

Take the feedback loop of Fig. C.4 into account as an NCS that satis�es As-
sumptions 3.1 and 3.2. Then for every D ∈ (Dinf(h),∞), the following holds:

R(D) ≥ 1

2
log(1 + ϕ′(D)), ϕ′(D) , inf

σ2
z′≤D

σ2
t

σ2
η

, (C.21)

in which σ2
t and σ2

z′ symbolize the steady-state variances of t and z′ in the
auxiliary system of Fig. C.5, respectively. For the optimization problem in
(C.21), a candidate solution is an LTI �lter pair (B, J) together with noise
variance σ2

η ∈ R+ that cause the system in Fig. C.5 to become internally stable
and well-posed.

Proof. See Appendix B.4.

6 Upper Bound Problem in the Presence of Con-

stant Delay

In this section, we show that for any D ∈ (Dinf(h),∞), one can always �nd a
scheme that guarantees attaining σ2

z ≤ D with an average data rate which has
a distance of about 1.254 bits per sample from the theoretical lower bound.
For such a scheme, we propose a design approach which utilizes the �lters
that together with an AWGN with feedback and delay, render the directed
information rate over the channel equal to the lower bound on R(D).
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De�nition 6.1

We call a coding scheme with input-output relationship as in (C.5)-(C.8) in the
constant channel delay case linear if and only if its dynamics can be restated
as follows:

u = Jz−hr, r = t+ η, t = Bdiag{z−1, 1}
[
r

y

]
, (C.22)

where B = [Br By] and J are proper LTI �lters with deterministic initial con-
dition. Moreover, η represents a zero-mean i.i.d random sequence independent
of (x0, w). The initial state of the one-step-delay feedback channel is assumed
to be deterministic.

The realization of linear source coding schemes can be carried out by using
entropy-coded dithered quantizers (ECDQs) together with LTI �lters. First,
implementing an ECDQ causes the following relationship between (uq, yq) in
(C.2) and (C.6), and (r, t) in (C.22):

yE(k) = Fq(t(k) + d(k))

yq(k) = Ok(yE(k), d(k))

uD(k) = O−1
k−h(uq(k), d(k − h))

rh(k) = uD(k)− d(k − h),

(C.23)

in which by Fq, we denote a uniform quantizer with resolution ∆ ∈ R+,
Fq : R → {i∆; i ∈ Z}. Additionally, d(k) represents a dither signal whose
access are provided to both encoder and decoder. The mapping Ok and its
complementary O−1

k formalize entropy coding for the lossless parts at the en-
coder and decoder, respectively. The following lemma presents an interesting
property of ECDQs when being set up in an LTI feedback loop.

Lemma 6.1

Consider the feedback loop depicted in Fig. C.6 and suppose that the plant
G̃ is described by a proper real rational transfer-function matrix in which the
transfer function from rh to t is scalar and strictly proper. For such a system,
assume that the input-output relationship of the ECDQ in the feedback path
is given by (C.23) with �nite and positive quantization step size ∆. Moreover,
take the disturbance w̃ into account as a white noise process jointly second-
order with x̃0, the initial state of G̃. Then if the dither d is an i.i.d process
with a uniform distribution over (−∆/2,∆/2) and independent of (w̃, x̃0), the
error r− t is i.i.d, uniformly distributed over (−∆/2,∆/2) and independent of
(w̃, x̃0).

Proof. See Appendix B.5.

99



Paper C.

t
ECDQ

G
~

w~
0x

~

z~

d

rh

Fig. C.6: ECDQ setup in the feedback path

It can be implied from above that combining the LTI �lters in (C.22) with the
ECDQ in (C.23) in a setting as depicted in Fig. C.7 will lead to a linear coding
scheme for the NCS of Fig. C.4 as long as d(k) meets the same criteria as for
the dither in Lemma 6.1. If so, the obtained coding scheme is called a linear
ECDQ-based coding scheme. If such a scheme is implemented on the feedback
path of the main NCS of Fig. C.4, the average data rate is bounded from above
by a certain value which is shown in the following lemma.

Lemma 6.2

Suppose that Assumption 3.1 holds for the NCS of Fig. C.4. Then the existence
of an ECDQ-based linear source-coding scheme rendering the NCS of Fig. C.4
SAWSS is certi�ed in such a way that the average data rate satis�es

R <
1

2
log

(
1 +

σ2
t

σ2
η

)
+

1

2
log

(
2πe

12

)
+ log 2. (C.24)

In (C.24), the variance of the quantization error (noise) of the ECDQ-based

yqy
B J

t
Fq 𝒪 𝒪-1yℰ uq u𝒟

r

u

d d

-

-
z-h

z-h
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Fig. C.7: The proposed ECDQ-based linear coding scheme
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linear source-coding scheme is set as σ2
η = ∆2/12. Moreover, σ2

t represents the
steady-state variance of the signal t in (C.22).

Proof. See Appendix B.6.

Now, through the following theorem, we use the result of Lemma 6.2 to show
that utilizing ECDQ-based linear coding schemes can lead to an upper bound
on the desired minimal average data rate R(D).

Theorem 6.1

Let Assumption 3.1 hold for the closed-loop system of Fig. C.4. Then for each
D ∈ (Dinf(h),∞), one can always �nd an ECDQ-based linear source-coding
scheme satisfying Assumption 3.2 and rendering the feedback loop of Fig. C.4
SAWSS in such a way that σ2

z ≤ D is resulted and the average data rate is
bounded as

R <
1

2
log (1 + ϕ′(D)) +

1

2
log

(
2πe

12

)
+ log 2, (C.25)

where the de�nition of ϕ′(D) is given in (C.21).

Proof. See Appendix B.7.

In the following remark, we state how the upper bound derived in Theorem 6.1
can be considered as an upper bound on Ra(D) in the case of random channel
delay.

Remark 6.1

The upper bound in (C.25) will be an upper bound on Ra(D) in the ran-
dom channel delay case if coding and control schemes are linear ECDQ-based
schemes designed as in the proof of Theorem 6.1 for the delay hmax where the
decoder-controllers have bu�ers installed at their inputs sending only yq(k−hmax)

for processing at each time instant k ∈ N0. Clearly, this is due to the fact that
at every time step k ∈ N0, yq(k − hmax) is available at the decoder. Such an
upper bound does not seem to be tight since imposing a delay of hmax steps on
transmitted data is actually a worst-case scenario.

The bounds derived in this section and the previous section limit the desired
average data rate R(D) in the NCS of Fig. C.4. In this system, the constant
delay is induced by the digital communication channel between the encoder-
controller and the decoder-controller. One concern is the e�ect of delay location
on the derived bounds. The following lemma takes a step in addressing this
issue by showing how the system signals change when the time delay block is
moved to a di�erent location in the feedback loop of Fig. C.4.

Lemma 6.3

Consider the NCS of Fig. C.4 and two other systems each of which yielded by
moving the delay component in the NCS of Fig. C.4 to either the measurement
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Fig. C.8: Three possible locations for the delay component in the case with constant channel
delay

path (between the sensor and the encoder-controller) or the actuation path
(between the decoder-controller and the plant). Fig. C.8 depicts the locations
where the time delay occurs in these cases. Then systems are not necessarily
equivalent across the cases if the only di�erence between them is the delay loca-
tion. However, the equivalence can be assured by allowing the side information
to change across the cases.

Proof. See Appendix B.8.

7 Numerical Simulation

Take the following transfer function into account as the model describing the
generalized plant G in the NCS of Fig. C.4:

z =
0.165

(z − 2)(z − 0.5789)
(w + u), y = z,

Let us set the disturbance signal w and initial states x0 in such a way that
Assumption 3.1 is satis�ed. We calculated lower and upper bounds on R(D)

as derived in (C.21) and (C.25). For computing these bounds, we made use
of the equivalence between the NCSs of Fig. C.5 and Fig. C.12, shown in
the proof of Lemma 5.3, in that we adopted the method in [10] which solves
SNR-performance optimization problems similar to the one de�ning ϕ′(D) for
such systems as the NCS of Fig. C.12. The bounds are computed for three
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Fig. C.9: Bounds on R(D) in (C.21) and actual data rates and entropies for di�erent values
of time delay h

di�erent values of channel delay, h = {0, 1, 2}, with respect to D varying over
a range from Dinf(h) to 50 for each h. Moreover, we designed actual linear
ECDQ-based coding schemes, and for each selected D in the latter interval, we
simulated the NCS of Fig. C.4. To do so, we utilized the �lters giving the lower
bound on R(D) according to the procedure suggested in [10, Theorem 5.1].
The results are demonstrated in Fig. C.9. In this �gure, the curves referred
to as LB and UB present the lower and upper bounds on R(D), respectively.
We can compare Dinf(h) among cases with di�erent values of channel delay
as well. As shown, greater Dinf(h) is associated with larger channel delay, as
expected according to [31]. Evaluating how the bounds change in response
to changes in the delay is one of the main purposes of this simulation study.
We can observe from the bounds plotted in Fig. C.9 that when D is �xed,
increasing the delay will enlarge the bounds on R(D). In other words, the
greater the delay is, the higher average data rate is to be used in order to
achieve a �xed quadratic performance level. Moreover, Fig. C.9 shows that the
lower (upper) bound curves converge to the minimum data rate required for
mean square stability as D grows larger. From [32], we know that the minimal
data rate guaranteeing stabilizability of the NCS of Fig. C.5 is only a function
of unstable poles of the plant G. On the other hand, we use the equivalent
system of Fig. C.12 for the purpose of calculating bounds. So the observation
with convergence of bounds to the minimal data rate needed for stability comes
from the fact that incorporating time delay into the model of the plant Ga will
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not a�ect its unstable poles.
Simulation results are illustrated in Fig. C.9 as well. The curves referred to

as OR and OE present the average data rates and entropies achieved by using
actual linear coding schemes. Furthermore, 106-sample-long realizations have
been considered for the dither. The coding task in all utilized schemes is done
by memory-less Hu�man coders which do not take the past information of the
dither into account as prior knowledge for coding. In addition to the average
data rate, the entropy of the output of the quantizer has been estimated for
the aforementioned setup. The gap of around 0.4 bits per sample between the
measured entropy and the lower bound indicates that for each h ∈ {0, 1, 2}, 0.4

bits per sample of the gap between the actual rates and lower bound is caused
by replacing the AWGN with uniform dither and the remainder 0.25 bits per
sample corresponds to sample-by-sample coding. It can be observed that the
actual rates and entropies have the same properties as the properties of bounds
mentioned in the previous paragraph. The most prominent property is related
to the behaviour of the achieved rates and entropies as a function of channel
delay, i.e., for a system with greater time delay in the channel, higher rates are
required to guarantee quadratic performance requirements.

8 Conclusions

In this paper, the trade-o� between average data rate and performance in net-
worked control systems has been studied. Two setups have been investigated,
each of which incorporates an LTI plant with Gaussian disturbance and initial
states, and scalar control input and sensor output. Moreover, both of them
have causal, but otherwise arbitrary, mappings on their feedback paths which
are responsible for coding and control. The only di�erence between the two
considered systems is the model of the channel that carries out data transmis-
sion between the encoder-controller and the decoder-controller. In one case,
the digital communication channel is SIMO and information to be exchanged
are exposed to random delay. In the other system, the channel is error-free
as well but it is SISO and imposes constant delay on transmitted data. For
the case with random channel delay, we considered notions for rate and perfor-
mance which show the average behaviour of the system over all realizations of
the delay. We have shown that for such a setup, data rate is lower bounded by
average directed information rate from the sensor output to control input, and
if y and u are jointly Gaussian, the average directed information rate would be
lowest. Moreover, we have shown that when y and u satisfy certain stationarity
assumptions, the average directed information rate between them is a function
of the average power spectral densities of these signals over all realizations of
the channel delay. We have shown that in�mum value of this function over
all arbitrary coders and controllers that cause system signals have those Gaus-
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sianity and staionarity properties lower bounds the in�mum average data rate
required to attain a prescribed quadratic performance.

For the constant delay case, which is a special case of the system with ran-
dom channel delay, we approximated (by deriving bounds) the minimal average
data rate that certi�es attaining a certain performance level. Employing the
fundamental information inequalities and identities derived for the random de-
lay case, we showed that this desired minimal average data rate is bounded
from below when coder-controllers and the channel behave as a concatenation
of proper LTI �lters and an AWGN channel with feedback and delay. Then
we showed that by approximating such schemes with simply implementable
linear ECDQ-based coding schemes, one can achieve any (legitimate) perfor-
mance level by actual rates which are at most 1.254 bits per sample higher
than the lower bound. The results illustrated through the simulation show
that bounds and empirical rates are increasing functions of channel delay for
a �xed performance level. It means larger delay in the channel necessitates
higher minimal average data rate that is needed for achieving a certain level of
quadratic performance.

Future research will concern with �nding closed-form solution for the lower
and upper bound problems in the case of random channel delay, �nding analytic
expression for the desired in�mum data rate, deriving lower and upper bounds
with shorter gap between them, plants with model uncertainties and vector
quantization.

Appendices

A Invertibility of the Decoder

Lemma A.1

Consider a coding scheme described through (C.5)-(C.8) that has a non-invertible
decoder, and let Ř(k) be de�ned as Ř(k) , H(yE(k) | yEf (k), ηko ). For such
scheme, assume that u(k) = u0(k) and Řf (k) = Řf0(k), ∀k ∈ N0, where
Řf (k) , [Ř(i))]Ti∈S(k). Then there exists another coding scheme constructing
the control input u(k) = u0(k) with an invertible decoder in such a way that
Řf (k) ≤ Řf0(k), ∀k ∈ N0.

Proof. Suppose that mappings in (C.7)-(C.8) represent a non-invertible decoder
at time k in a way that upon knowledge of ηid and S

i, perfect reconstruction of
uiq from ui has been possible for all i ≤ k − 1. Then there exist uD1, uD2 ∈ As
such that u(k) = Dk(uD1, u

k−1
D , ηkd) = Dk(uD2, u

k−1
D , ηkd). Let S1 and S2 be

associated with uD1 and uD2 respectively. Two possible cases can occur. In the
�rst case, S1 and S2 are unequal, i.e., S1 6= S2. Since S is known at the decoder
at each time step, this case does not contradict the invertibility. That is due
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to the fact that the knowledge of S would determine whether u(k) is caused by
uD1 or uD2. However, the situation is not the same in the case where S1 = S2.
Since both uD1 and uD2 are vector-valued variables, uD1 6= uD2 means that at
least one entry of uD1 is not equal to the entry with the same dimension in
uD2. The corresponding elements of uD1 and uD2 that are not equal to each
other are denoted by pairs (uD1j , uD2j), 1 ≤ j ≤ m, 1 ≤ m ≤ hmax + 1. Since
S1 = S2, for each j, both uD1j and uD2j have been exposed to the same delay,
say hj , 0 ≤ hj ≤ hmax. So if we denote the output of the lossy encoder that
corresponds to uDnj by yEnj , then uDnj(k) = yEnj(k− hj). It should be noted
that n is a positive integer which is at most equal to the size of the set As. Let
pnj represent the conditional probability of having yEnj at the encoder given

(yEf (k − hj), η
k−hj
o ) at time k − hj . The encoder-decoder set (Ē , D̄) can be

de�ned with exactly the same properties as (E ,D) but di�erent from it in the
sense that Ē outputs only yE1j at time k − hj with probability p1j + p2j . This
means having only uD1j at time k as decoder input instead of receiving either
uD1j or uD2j . Let us de�ne tj , k − hj ; k ≥ hj . Then

Ř(tj) |(E,D) = Ř0(tj)

(aa)
= −

∑
n/∈{1,2}

pnj ln pnj − p1j ln p1j − p2j ln p2j

(ab)

≥ −
∑

n/∈{1,2}

pnj ln pnj − (p1j + p2j) ln(p1j + p2j)

(ac)
= Ř(tj) |(Ē,D̄)

in which (aa) results from the de�nition of entropy and Ř(k), (ab) can be
concluded based on the fact that the function − ln(pnj) is monotonically de-
creasing, and (ac) follows from the de�nition of Ř(k) for the scheme (Ē , D̄). So
Ř(tj) |(Ē,D̄) ≤ Ř(tj) |(E,D) for tj ≥ 0, and consequently Řf (k) ≤ Řf0(k).

The above procedure can be iterated for every pair with the same char-
acteristics as (uD1, uD2) to make sure that there are no two inputs of the
reproduction decoder mapped into one identical u(k) at time instant k. Such
iteration will then yield an invertible decoder. In other words, when the pair
(Ē , D̄) is used, knowing (ui, ηid, S

i) is equivalent to knowing (uiD, η
i
d, S

i) with
u(i) = u0(i) and Řf (i) ≤ Řf0(i), ∀i ≤ k. Our main claim now follows by
repeating the above for every k ≥ 0.

B Proofs

B.1 Feasibility Proof for Dinf(h), ϑ
′
u(D) and ϕ′(D)

Suppose that in the standard architecture depicted in Fig. C.10, G, x0 and
w satisfy Assumption 3.1 and K follows u(k) = Kk(yk−h). Considering the
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Fig. C.10: Standard feedback loop over which Dinf(h) is de�ned

Gaussianity of x0 and w and the fact that G is LTI, we can imply from some
results in [33] that:

Dinf(h) = inf
K∈κ

σ2
z ,

in which σ2
z denotes the steady-state variance of output z and κ is the set of all

proper LTI �lters which render the system of Fig. C.10 internally stable and
well-posed. The assumptions considered for G guarantee that �nding Dinf(h)

is feasible. Since Dinf(h) can be obtained, for every ζ ∈ (0, D −Dinf(h)),
there exists K1 ∈ κ which gives σ2

z1 , σ2
z |K=K1≤ Dinf(h) + ζ < D for the

system of Fig. C.10. Applying K1 to this system results in a stable set-
ting which is a special case of the NCS depicted in Fig. C.5 with J = 1

and r = t = K1y
′ where the steady-state variance of t, σ2

t = σ2
t1 , is �nite.

Therefore, since K1 ∈ κ, it can bring internal stability and well-posed-ness to
the feedback loop of Fig. C.5 in the presence of any additive noise η with
steady-sate variance σ2

η ∈ R+. So σ2
z′ = σ2

z1 + χzσ
2
η and σ2

t = σ2
t1 + χtσ

2
η

can be concluded, when taking η into account as an AWGN with �nite vari-
ance σ2

η for the system of Fig. C.5. It should be noted that χt, χz ≥ 0

depend only on K1. Now by choosing ζ = (D −Dinf(h))/3 and the vari-
ance σ2

η = (D −Dinf(h))/(3χz) for the AWGN, there exists K1 ∈ κ ren-
dering the NCS of Fig. C.5 internally stable and well-posed in a way that
σ2
z′ |(B,J,σ2

η)=(K1,1,σ2
η) ≤ Dinf(h) + 2

3 (D −Dinf(h)) < D. Then the following can
be obtained for the structure of Fig. C.5:

σ2
t

σ2
η

|(B,J,σ2
η)=(K1,1,σ2

η) =
3σ2

t1χz

D −Dinf(h)
+ χt <∞. (C.26)

So considering Jensen's inequality and concavity of logarithm, we can deduce
that the problem of �nding ϑ

′

u(D) in (C.18) is feasible for every D > Dinf(h).
The feasibility of the problem of �nding ϕ′(D) in (C.21) is inferred immediately
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from (C.26) for any D > Dinf(h).

B.2 Proof of Theorem 5.2

Due to the validity of D > Dinf(h), one can always �nd at least one coding-
control pair, say Ê and D̂, that while satisfying Assumption 3.2, renders the
NCS of Fig. C.4 SAWSS in such a way that σ2

ẑ ≤ D and

R ≥ I(h)
∞ (ŷ → û) ≥ I(h)

∞ (ŷG → ûG) =
1

4π

∫ π

−π
log
(Sŭ(ejω)

σ2
ψ̂G

)
dω. (C.27)

In (C.27), processes ẑ, ŷ and û are the counterparts of z, y and u in Fig. C.4,
respectively. Moreover, the inequalities and identities in (C.27) stem from
Theorem 5.1 if conditions in Lemma 5.1 and Lemma 5.2 are satis�ed. Therefore,
(ŷG, ûG) are jointly Gaussian counterparts of (ŷ, û) as in Lemma 5.1 and Sŭ
represents the steady-state power spectral density of ûG as in Lemma 5.2.
The pair (ŷG, ûG) with conditions stated in Lemma 5.1 can be generated by
a scheme which certi�es σ2

ẑG
∈ (Dinf(h),∞) and is comprised of linear �lters

with a unit-gain noisy channel and delay h as follows:

ûG(k) = Lk(ŷk−hG , ûk−1
G ) + ψ̂G(k − h), k ∈ N0, (C.28)

in which ψ̂G(k) denotes a Gaussian noise with zero mean and independent of
(ŷkG, û

k−1
G ). Since Lk is a linear and causal mapping, we can redescribe ûkG as

ûkG = Qkψ̂
k−h
G + Pkŷ

k−h
G , k ∈ N0. (C.29)

It follows from causality in (C.29) that ∀k ∈ N, Bk and Gk are lower triangular
matrices with Bk−1 and Gk−1 on the top left corners. This together with
the fact that (ŷG, ûG) are jointly SAWSS allow us to conclude that based on
transitivity of asymptotic equivalence for products and sum of the matrices
in [34], the sequences {Qk} and {Pk} are asymptotically equivalent to sequences
of lower triangular Toeplitz matrices. Furthermore, using Lk as in (C.28) will
bring internal stability and well-posed-ness to the corresponding NCS. Now
let us set J = 1 and B as a concatenation of linear �lters with the same
behaviour as steady-state behaviour of Lk in (C.28) for the auxiliary system of
Fig. C.5. Moreover, suppose that η has a variance equal to σ2

ψ̂G
. So based on

the asymptotic equivalence between the matrix representations of L and {Lk},
choosing J , B and η as above will render the system of Fig. C.5 well-posed and
internally stable. More speci�cally, the latter set of �lters and the noise will
give WSS processes to which ûG and ẑG converge. Therefore, for the control
input u′ and error signal z′ in the feedback loop of Fig. C.5, Su′ = Sŭ and
σ2
ẑG

= σ2
z′ hold. Then based on Lemma 5.2, the directed information rate in
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y’

BJ
tr

´

u’

w

x0

z-1

z’

G
z-h

Ã1 Ã2

Fig. C.11: The LTI system whose internal stability guarantees the internal stability of the
auxiliary system in Fig. C.5

the NCS of Fig. C.5 can be expressed as

I(h)
∞ (y′ → u′) =

1

4π

∫ π

−π
log
(Su′(ejω)

σ2
η

)
dω =

1

4π

∫ π

−π
log
(Sŭ(ejω)

σ2
ψ̂G

)
dω, (C.30)

First, we can deduce that any pair (Ê, D̂) with properties stated above has a
counterpart comprised of LTI �lter B, J = 1 and the white Gaussian noise η
in architecture of Fig. C.5 in such a way that I∞(y′ → u′) ≤ I∞(ŷ → û) and
σ2
ẑ = σ2

z′ . Secondly, the main problem is �nding the in�mum of R over all
mappings (Ê, D̂). With all of this in mind, it can be implied from (C.30) and
(C.27) that the lower bound for R(D) would be equal to the rightmost term of
(C.18) which completes the proof.

B.3 Proof of Lemma 5.3

The necessary and su�cient condition for the feedback loop of Fig. C.5 to be
internally stable and well-posed is that every entry of the transfer function ma-
trix from input [η, w, ψ1, ψ2]T to outputs [z′, y′, r, u′]T in the system of Fig. C.11
belongs to RH∞ [35]. Such a transfer function matrix, which we denote by T ,
is described as follows:

T =


G12Jz

−hM G11 +G12Jz
−hByMG21 G12z

−h(1−Brz−1)M G12Jz
−hByM

G22Jz
−hM G21(1−Brz−1)M G22z

−h(1−Brz−1)M G22Jz
−hByM

M G21ByM G22z
−hByM ByM

JM G21JByM (1−Brz−1)M JByM

 ,
where

M , (1−Brz−1 −G22Jz
−hBy)

−1
.

Now, let us shift the delay block in the system of Fig. C.5 to the plant model
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BJ

´

w

x0

z-1

Ga

za

ya

tara

ua

Fig. C.12: The equivalent system with the same ϕ′(D) as the NCS of Fig. C.5

in a way that for the newly obtained system, the plant is described by

Ga =

[
G11 z−hG12

G21 z−hG22

]
. (C.31)

Such an auxiliary NCS is depicted by Fig. C.12. Except for the plant model
(C.31), everything in the feedback loop of Fig. C.12 is assumed to be the
same as in the system of Fig. C.5. The internal stability and well-posed-ness
of the feedback loop of Fig. C.12 is guaranteed if and only if every entry of
the transfer-function matrix, say Ta, from [η, w, ψ1, ψ2]T to [za, ya, ra, ua]T in
Fig. C.13 belongs to RH∞. It is straightforward to see that Ta = T . So an
equivalence holds between internal stability and well-posed-ness of the system
of Fig. C.12 and the NCS of Fig. C.5. In other words, every triplet (B, J, σ2

η)

rendering the feedback loop of Fig. C.12 internally stable and well-posed, will
bring internal stability and well-posed-ness to the NCS of Fig. C.5 as well. One

BJ

´

w

x0

z-1

Ga

za

ya

tara

ua
Ã2Ã1

Fig. C.13: The auxiliary feedback loop characterizing the internal stability of the NCS of
Fig. C.12
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other implication of Ta = T is that using an stabilizing (B, J, σ2
η) commonly

for NCSs of Fig. C.5 and Fig. C.12 will lead to an identical ϑ
′

r(B, J, σ
2
η). This

is due to the properties of LTI systems exposed to Gaussian and stationary
inputs. Furthermore, those properties lead to deriving the following H2-norm
expressions for SNR and variance of the output z′ in the NCS of Fig. C.5:

σ2
t

σ2
η

= ‖M − 1‖22 + ‖ByMG21‖22σ
−2
η ,

σ2
z′ =

∥∥∥G11 +G12N(1−G22N)
−1
G21

∥∥∥2

2
+ ‖G12JM‖22σ

2
η,

(C.32)

in which N , JByz
−h(1−Brz−1)

−1
. Likewise, the SNR and variance of the

output z in the NCS of Fig. C.12 is formalized in terms of H2-norms as follows:

σ2
ta

σ2
η

= ‖Ma − 1‖22 + ‖ByMaG21‖22σ
−2
η ,

σ2
za =

∥∥∥G11 +G12z
−hNa(1−G22z

−hNa)
−1
G21

∥∥∥2

2
+ ‖G12JMa‖22σ

2
η,

(C.33)

where Ma = M and Na , JBy(1−Brz−1)
−1
. It follows from (C.32) and

(C.33) that (σ2
t /σ

2
η) = (σ2

ta/σ
2
η) and σ2

z′ = σ2
za . Therefore, upon using the

same stabilizing triplet (B, J, σ2
η), the channel SNR and the variance of the

output characterizing performance will be the same for the NCSs of Fig. C.5
and Fig. C.12.

According to [10, Lemma 4.1], for any pair (B, J) = (B1, J1) that renders
the feedback loop of Fig. C.12 internally stable and well-posed, there exists
another pair with the same properties as for (B2, J2) in this lemma. Then our
claims follow immediately from the above equivalences between the NCS of
Fig. C.12 and the NCS of Fig. C.5.

B.4 Proof of Corollary 5.1

The feasibility of obtaining ϑ′u(D), caused by D belonging to (Dinf(h),∞),
certi�es the existence of a triplet, say (Bζ , 1, σ

2
ηζ

), that leads to σ2
z′ ≤ D for

the system of Fig. C.5. In the latter triplet, Bζ is assumed to be a proper LTI
�lter and σ2

ηζ
∈ R+. This together with the de�nition of ϑ′u and ϑ′r in (C.18)

and (C.19), respectively, yields the following:

ϑ′u(D) + ζ ≥ ϑ
′

r(Bζ , 1, σ
2
ηζ

),∀ζ ∈ R+.

Moreover, the triplet (Bζ , 1, σ
2
ηζ

) with aforementioned properties meets the

conditions in Lemma 5.3. Therefore, another triplet, say (B̃ζ , J̃ζ , σ
2
ηζ

), exists in
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such a way that implementing it brings internal stability and well-posed-ness,
keeps σ2

z′ intact, and yields

ϑ′u(D) + ζ ≥ 1

2
log(1 +

σ2
t

σ2
η

)|(B,J,σ2
η)=(B̃ζ ,J̃ζ ,σ2

ηζ
) − ρ (C.34)

for the LTI feedback loop of Fig. C.5. Note that J̃ζ is a biproper �lter while
B̃ζ only needs to be proper. Now the fact that (C.34) holds for any ζ, ρ > 0,
the de�nition of ϕ′(D) in (C.21), and the claim of Theorem 5.2 complete the
proof.

B.5 Proof of Lemma 6.1

Let G̃h denote the transfer-function matrix from [w̃ r]T to [z̃ t]T in Fig. C.6.
Since rh is related to r by rh = rz−h, we can conclude that G̃h meets the
conditions of being proper and real rational, and containing a strictly proper
SISO open-loop transfer function from r to t. Now having the schemes de-
scribed via (C.22) and (C.23) in mind, we can deduce our claim immediately
from [10, Lemma 5.1].

B.6 Proof of Lemma 6.2

Let us assume that a linear source coding scheme is implemented in the feedback
path of the main system in Fig. C.4. Due to the feasibility of �nding ϕ′(D),
which necessitates satisfaction of Assumption 3.1, we can conclude the existence
of proper LTI �lters B and J that together with an AWGN, say η, render the
NCS of Fig. C.4 SAWSS. It stems from some properties of internal stability
that the system will still be stable if one keeps the latter �lters B and J and
only sets η as η = 0. This signi�es that in the case of unity feedback (t = r),
internal stability and well-posed-ness are guaranteed for the open-loop system
between r and t. We come immediately to the conclusion that (C.24) holds
based on [8, Corollary 5.3] and statistical characteristics of the dither mentioned
in Lemma 6.1.

B.7 Proof of Theorem 6.1

Considering the feasibility of �nding ϕ′(D), results of Lemma 5.3, lemma 6.1,
and Lemma 6.2, and invertibility of the decoder, we conclude the claim by
following the same steps as in [10, Theorem 5.1].

B.8 Proof of Lemma 6.3

One of the common feedback loop components across the considered cases
in Fig. C.8 is the LTI plant G which is described by state-space di�erence
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equations as follows:

G :


x(k + 1) = Ax(k) +B1w(k) +B2u(k)

z(k) = C1x(k) +D11w(k) +D12u(k)

y(k) = C2x(k) +D21w(k),

(C.35)

where x ∈ Rnx represents plant states and u, w, y and z are inputs and outputs
de�ned as in (C.1). Moreover, A, B1, B2, C1, C2, D11, D12, and D21 are time-
invariant matrices of appropriate dimensions. According to the recursion in
(C.35), the states and outputs of the plant at each time instant i ∈ N0 can
be expressed in terms of initial conditions, disturbance and control inputs as
follows: 

x(i) = Aix(0) + B1(i)wi−1 + B2(i)ui−1

z(i) = C1A
ix(0) +D11(i)wi +D12(i)ui

y(i) = C2A
ix(0) +D21(i)wi +D22(i)ui−1,

(C.36)

where the involved matrices are de�ned as

B1(i) = [Ai−1B1 A
i−2B1 . . . B1]

B2(i) = [Ai−1B2 A
i−2B2 . . . B2]

D11(i) = [C1A
i−1B1 C1A

i−2B1 . . . C1B1 D11]

D12(i) = [C1A
i−1B2 C1A

i−2B2 . . . C1B2 D12]

D21(i) = [C2A
i−1B1 C2A

i−2B1 . . . C2B1 D21]

D22(i) = [C2A
i−1B2 C2A

i−2B2 . . . C2B2].

For the case where the time delay is imposed by the error-free digital chan-
nel between the encoder-controller and the decoder-controller, the relationship
between the control input and the sensor output is characterized based on
(C.5)-(C.8). The dynamics described by (C.5)-(C.8) can be summarizd in the
constant channel delay case as follows:

yq(k) = Ek(yk, ηke )

uq(k) = yq(k − h)

u(k) = Dk(ukq , η
k
d),

(C.37)

where Ek and Dk represent causal, but otherwise arbitrary, mappings at each
k ∈ N0. It follows from (C.37) that uk can be stated as an arbitrary function,
say Nk, of (ηkd , y

k−h, ηk−he ), i.e., uk = Nk(ηkd , y
k−h, ηk−he ). Then from (C.36)

and by induction, we can conclude that at each time instant k ∈ N0, x(k) is a
function of (x(0), wk−1, ηk−1

d , ηk−1−h
e ), z(k) is a function of (x(0), wk, ηkd , η

k−h
e ),

and y(k) is a function of (x(0), wk, ηk−1
d , ηk−1−h

e ).
In the second case, it is the link between the decoder-controller and the

plant that induces the time delay. For such a setting, Ek, Dk, ηe(k) and ηd(k)
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yield a scheme with following dynamics:

yq(k) = Ek(yk, ηke )

uq(k) = yq(k)

u(k) = Dk−h(uk−hq , ηk−hd ).

(C.38)

It follows from (C.38) that in this case, uk can be expressed as

uk = Mk(yk−h, ηd
k−h, ηk−he ),

∀k ∈ N0, where Mk is an arbitrary mapping which is speci�ed by {Ei}k−hi=0

and {Di}k−hi=0 . Substituting such an expression into (C.36) an by induction, we
can rederive x(k), z(k), and y(k) as functions of (x(0), wk−1, ηk−h−1

d , ηk−1−h
e ),

(x(0), wk, ηk−hd , ηk−he ), and (x(0), wk, ηk−h−1
d , ηk−h−1

e ), respectively.
As the third case, we focus on a structure in which the delay is introduced

by the path between the sensor and the encoder-controller. In this situation,
the coding scheme is described by causal mappings Ek and Dk, and side infor-
mations ηe(k) and ηd(k), as follows:

yq(k) = Ek(yk−h, ηke )

uq(k) = yq(k)

u(k) = Dk(ukq , η
k
d).

Taking the same steps as for the previous cases, we derive uk = Sk(yk−h, ηd
k, ηke ),

∀k ∈ N0, where Sk is a causal mapping and a function of {Ei}ki=0 and {Di}ki=0.
Then considering (C.36) and based on induction, we come to the conclusion
that for the closed-loop system considered in this case, x(k) is a function of
(x(0), wk−1, ηk−1

d , ηk−1
e ), z(k) is a function of (x(0), wk, ηkd , η

k
e ), and y(k) is a

function of (x(0), wk, ηk−1
d , ηk−1

e ) for all k ∈ N0.
According to the above observations, comparing system states x, sensor

output y, and the output z at each time instant indicates that such signals
are not necessarily equal across the three cases studied above if the systems
share the design (mappings for coding and control and side information) and
have the same initial conditions and exogenous inputs. So values of each signal
change by relocating the delay component in the NCS of Fig. C.4. However, it
is straightforward to see from the structure of the variables describing processes
x, z, and y that the equivalence over cases can be obtained under the condition
that everything is the same across the cases except for side information which
can be considered as decision variable.

114



References

References

[1] X. M. Zhang, Q. L. Han, and X. Yu, �Survey on recent advances in networked
control systems,� IEEE Transactions on Industrial Informatics, vol. 12, no. 5,
pp. 1740�1752, Oct. 2016.

[2] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, �Feedback control under
data rate constraints: An overview,� Proceedings of the IEEE, vol. 95, no. 1, pp.
108�137, Jan. 2007.

[3] L. Zhang, H. Gao, and O. Kaynak, �Network-induced constraints in networked
control systems�a survey,� IEEE Transactions on Industrial Informatics, vol. 9,
no. 1, pp. 403�416, Feb. 2013.

[4] J. Baillieul and P. J. Antsaklis, �Control and communication challenges in net-
worked real-time systems,� Proceedings of the IEEE, vol. 95, no. 1, pp. 9�28,
Jan. 2007.

[5] A. S. Matveev and A. V. Savkin, Estimation and control over communication

networks. Springer Science & Business Media, 2009.

[6] N. C. Martins and M. A. Dahleh, �Feedback Control in the Presence of Noisy
Channels: �Bode-Like� Fundamental Limitations of Performance,� IEEE Trans-

actions on Automatic Control, vol. 53, no. 7, pp. 1604�1615, Aug. 2008.

[7] N. C. Martins, M. A. Dahleh, and J. C. Doyle, �Fundamental limitations of
disturbance attenuation in the presence of side information,� IEEE Transactions

on Automatic Control, vol. 52, no. 1, pp. 56�66, Jan. 2007.

[8] E. I. Silva, M. S. Derpich, and J. Østergaard, �A framework for control system de-
sign subject to average data-rate constraints,� IEEE Transactions on Automatic

Control, vol. 56, no. 8, pp. 1886�1899, Aug. 2011.

[9] ��, �An achievable data-rate region subject to a stationary performance con-
straint for LTI plants,� IEEE Transactions on Automatic Control, vol. 56, no. 8,
pp. 1968�1973, Aug. 2011.

[10] E. I. Silva, M. S. Derpich, J. Østergaard, and M. A. Encina, �A characterization
of the minimal average data rate that guarantees a given closed-loop performance
level,� IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2171�2186,
Aug. 2016.

[11] T. Tanaka, P. M. Esfahani, and S. K. Mitter, �LQG control with minimum
directed information: semide�nite programming approach,� IEEE Transactions

on Automatic Control, vol. 63, no. 1, pp. 37�52, Jan. 2018.

[12] P. Stavrou, J. Ostergaard, and C. D. Charalambous, �Zero-delay rate distortion
via �ltering for vector-valued Gaussian sources,� IEEE Journal of Selected Topics

in Signal Processing, pp. 1�1, 2018.

[13] V. Kostina and B. Hassibi, �Rate-cost tradeo�s in control,� arXiv preprint

arXiv:1612.02126v2, 2016.

[14] Z. Du, D. Yue, and S. Hu, �H-in�nity stabilization for singular networked cas-
cade control systems with state delay and disturbance,� IEEE Transactions on

Industrial Informatics, vol. 10, no. 2, pp. 882�894, May 2014.

115



References

[15] M. A. Khanesar, O. Kaynak, S. Yin, and H. Gao, �Adaptive indirect fuzzy sliding
mode controller for networked control systems subject to time-varying network-
induced time delay,� IEEE Transactions on Fuzzy Systems, vol. 23, no. 1, pp.
205�214, Feb. 2015.

[16] R. Lu, H. Cheng, and J. Bai, �Fuzzy-model-based quantized guaranteed cost
control of nonlinear networked systems,� IEEE Transactions on Fuzzy Systems,
vol. 23, no. 3, pp. 567�575, Jun. 2015.

[17] J. Xiong, J. Lam, Z. Shu, and X. Mao, �Stability analysis of continuous-time
switched systems with a random switching signal,� IEEE Transactions on Auto-

matic Control, vol. 59, no. 1, pp. 180�186, Jan. 2014.

[18] L. Qiu, Y. Shi, F. Yao, G. Xu, and B. Xu, �Network-based robust H2/H∞ control
for linear systems with two-channel random packet dropouts and time delays,�
IEEE Transactions on Cybernetics, vol. 45, no. 8, pp. 1450�1462, Aug. 2015.

[19] Z. Pang, G. Liu, D. Zhou, and M. Chen, �Output tracking control for networked
systems: A model-based prediction approach,� IEEE Transactions on Industrial

Electronics, vol. 61, no. 9, pp. 4867�4877, Sept. 2014.

[20] H. Li and Y. Shi, �Network-based predictive control for constrained nonlinear
systems with two-channel packet dropouts,� IEEE Transactions on Industrial

Electronics, vol. 61, no. 3, pp. 1574�1582, Mar. 2014.

[21] W. Yao, L. Jiang, J. Wen, Q. Wu, and S. Cheng, �Wide-area damping con-
troller for power system interarea oscillations: A networked predictive control
approach,� IEEE Transactions on Control Systems Technology, vol. 23, no. 1,
pp. 27�36, Jan. 2015.

[22] Y. Nakahira, �LQ vs. `∞ in controller design for systems with delay and quan-
tization,� in Proceedings of the 55th IEEE Conference on Decision and Control

(CDC), Dec. 2016, pp. 2382�2389.

[23] Q. Han, Y. Liu, and F. Yang, �Optimal communication network-based h∞ quan-
tized control with packet dropouts for a class of discrete-time neural networks
with distributed time delay,� IEEE Transactions on Neural Networks and Learn-

ing Systems, vol. 27, no. 2, pp. 426�434, Feb 2016.

[24] K. Liu, E. Fridman, K. H. Johansson, and Y. Xia, �Quantized control under
round-robin communication protocol,� IEEE Transactions on Industrial Elec-

tronics, vol. 63, no. 7, pp. 4461�4471, Jul. 2016.

[25] W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Ne²i¢, �Networked
control systems with communication constraints: Tradeo�s between transmission
intervals, delays and performance,� IEEE Transactions on Automatic Control,
vol. 55, no. 8, pp. 1781�1796, Aug. 2010.

[26] J. Zhang and C.-C. Wang, �On the rate-cost of Gaussian linear control systems
with random communication delays,� in Proceedings of the 2018 IEEE Interna-

tional Symposium on Information Theory (ISIT), Jun. 2018, pp. 2441�2445.

[27] M. Barforooshan, J. Østergaard, and M. S. Derpich, �Interplay between transmis-
sion delay, average data rate, and performance in output feedback control over
digital communication channels,� in Proceedings of the 2017 American Control

Conference (ACC), May 2017, pp. 1691�1696.

116



References

[28] M. Barforooshan, J. Østergaard, and P. A. Stavrou, �Achievable performance
of zero-delay variable-rate coding in rate-constrained networked control systems
with channel delay,� in Proceedings of the IEEE 56th Annual Conference on

Decision and Control (CDC), Dec. 2017, pp. 5991�5996.

[29] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley
& Sons, 2012.

[30] M. S. Derpich, E. I. Silva, and J. Østergaard, �Fundamental inequalities and
identities involving mutual and directed informations in closed-loop systems,�
arXiv preprint arXiv:1301.6427, 2013.

[31] K. Hashikura, �H2/H∞ controller design for input-delay and preview systems
based on state decomposition approach,� Ph.D. dissertation, Tokyo Metropolitan
University, 2014.

[32] E. Johannesson, �Control and communication with signal-to-noise ratio con-
straints,� Ph.D. dissertation, Lund University, 2011.

[33] K. J. Åström, Introduction to stochastic control theory. Courier Corporation,
2012.

[34] R. M. Gray, �Toeplitz and circulant matrices: A review,� Foundations and Trends
in Communications and Information Theory, vol. 2, no. 3, pp. 155�239, 2006.

[35] B. A. Francis, A course in H∞ control theory. Berlin; New York: Springer-
Verlag, 1987.

117



References

118



Paper D

Sparse Packetized Predictive Control Over

Communication Networks with Packet Dropouts and

Time Delays

Mohsen Barforooshan, Masaaki Nagahara, and Jan Østergaard

Technical report.



Paper D.

c© 2018 the authors

120



1. Introduction

Abstract

This paper studies sparse packetized predictive control (PPC) for a feedback

loop closed over a digital communication channel with time delay and bounded

packet dropouts. In the considered networked control system (NCS), the chan-

nel is located between the controller and the actuator of a linear time-invariant

(LTI) plant. We analyze the system under two PPC strategies. In one case, the

controller computes each control packet by solving an sparsity-promoting uncon-

strained `1-`2 optimization problem. In the other case, the sparsity-promoting

optimization based on which the controller performs is an `2-constrained `0

problem. We propose e�ective approaches for solving these optimization prob-

lems. Moreover, we establish practical and asymptotic stability conditions in

terms of design parameters for unconstrained `1-`2 and `2-constrained `0 PPC,

respectively, in the presence of constant channel delay. We show in both cases

that to maintain stability while increasing the channel delay, the proposed sparse

PPC strategies necessitate increasing the upper bound on overall size of the se-

quence of control packets generated at each time instant by the controller. We

show, through simulation, that when the channel delay is higher, the controllers

designed according to the proposed method can indeed bring the desired stability

properties to the system but with lower performance.

1 Introduction

Networked control systems (NCSs) are feedback loops whose components (plants,
sensors, controllers, actuators, etc.) are linked via communication channels.
The imperfections associated with communication networks introduce new con-
straints to control problems [1, 2]. Non-ideal communications in data networks
can be caused by quantization, data packet dropouts, and network-induced
delays, to name a few, which bring challenges into the analysis and synthe-
sis of NCSs [3, 4]. For instance, stability cannot be achieved if the rate of
data transmission is lower than a minimal value [5], or if the probability of
the packet loss or the value of transmission delay is greater than a speci�c
upper bound [6, 7]. Similar trade-o�s exist between communication imperfec-
tions and control performance in NCSs [8�10]. In general, designing control
strategies that guarantee attaining certain performance levels despite the pres-
ence of communication constraints is one of the main goals in the theory and
application of NCSs.

Minimizing the control e�ort is another goal in practical control design
which is of high necessity. This is motivated by various environmental, eco-
nomical and technical merits which control e�ort minimization brings about.
For instance, it causes less energy consumption [11, 12], reduces the emission
of polluters such as CO and CO2 [13], attenuates noise and vibration [14], and
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prevents system equipments from being saturated [15]. One way to minimize
the control e�ort is maximizing the number of time intervals over which the
control input is equal to zero [16]. This approach is pursued in maximum
hands-o� control [17, 18]. In fact, maximum hands-o� control addresses the
above environmental and economical concerns by prolonging the overall period
of time for which the actuator is o� [19, 20].

Sparse packetized predictive control (PPC) lies in the intersection of maxi-
mum hands-o� control and networked control. To gain a grasp on this control
strategy, we �rst need to explain PPC. In a PPC setup, the controller gener-
ates a packet containing tentative future control inputs and sends it over the
channel to the actuator. The purpose of producing a control packet, instead
of one single control command, is rendering the system robust against channel
uncertainties such as data loss and transmission delay. The actuator stores
each successfully received packet whose elements will be used, according to a
selection logic, as control inputs in the upcoming time instants when no packet
reaches the plant. In PPC, the control packets are computed based on a �nite-
horizon model predictive control (MPC) strategy [21�26]. Particularly, in the
sparse PPC, the cost function associated with this MPC is a sparsity-promoting
cost function [27, 28] which is commonly used in maximum hands-o� control.
So maximum hands-o� control is of two favours when applied to NCSs. One is
saving the fuel and energy by putting less control e�ort. The other is reducing
the size of data transmitted over the channel in that vector symbols with many
zero elements are easier to be compressed. In [29], the unconstrained `1-`2 and
`2-constrained `0 problems are considered as sparsity-promoting optimization
problems. The packetized predictive controllers proposed in [29] solve the un-
constrained `1-`2 and `2-constrained `0 optimizations online by employing fast
iterative shrinkage- thresholding algorithm (FISTA) and orthogonal matching
pursuit (OMP) approaches, respectively. Moreover, the authors of [29] show
the practical stability for unconstrained `1-`2 PPC and asymptotic stability for
`2-constrained `0 PPC over a delay-free channel subject to bounded dropouts.

In this paper, we study sparse PPC for an NCS comprised of a fully ob-
servable discrete-time noiseless linear time-invariant (LTI) plant whose states
are transmitted to the controller perfectly (no communication limitation in the
measurement path). However, the control packets sent from the controller to
the plant are subject to bounded dropouts and constant time delays. We an-
alyze the system under two sparse PPC policies. One is unconstrained `1-`2

sparse PPC for which we derive conditions of practical stability. In the second
case, every control packet is a solution to a �nite-horizon sparsity-promoting
`2-constrained `0 optimization problem at each time instant. In this case, we
show that asymptotic stability is guaranteed under certain tuning conditions.
The aforementioned notions of stability together with the delay imposed by
the channel, say h steps, make us consider PPC strategies that instead of
producing one packet at a time, generates a number of control packets each
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based on a prediction of system states of h time steps later. Therefore, at each
time instant, the controller uses the available current plant states and memory
to make a number of predictions for the plant states at h time instant later.
Then for each prediction, the controller solves the corresponding unconstrained
`1-`2 or `2-constrained `0 optimization problem and gives a sequence of con-
trol packets. We show that the length of this sequence, which is equal to the
number of predictions, is upper bounded by a �nite value which is an expo-
nential function of channel delay. Upon the arrival of a sequence on the other
sider of the channel, the actuator selects the packet associated with the precise
prediction of the current plant states. We utilize the methodology followed
in [29] for stability analysis and solving the corresponding sparsity-promoting
optimization problems in both cases of unconstrained `1-`2 sparse PPC and
`2-constrained `0 sparse PPC. This is due to the advantages such as simplicity
of the stability analysis and e�ectiveness (in sense of speed and convergence) of
solving algorithm proposed in [29]. However, unlike [29], we consider a channel
which induces a known constant delay on transmitted packets and accordingly,
a di�erent regime of control packet production. Therefore, as the �rst con-
tribution, by deriving stability conditions, we propose how to design sparse
`1-`2 and `2-constrained `0 PPC schemes that stabilize the system despite the
existing channel delay. As the second contribution, we reveal insights to the
trade-o� between channel delay, size of the control packets and system stability
and performance by showing that when the channel delay is larger, the upper
bound on the number of packets to be sent over the channel will be higher and
in the particular case of unconstrained `1-`2 sparse PPC for unstable plants,
the upper bound on the `2-norm of system states at each time instant grows
as channel delay increases. We verify, through a numerical example, that the
proposed unconstrained `1-`2 and `2-constrained `0 sparse PPC schemes bring
practical and asymptotic stability to the system, respectively, via sparse control
commands. Moreover, simulation results illustrate that in the case of unstable
plants, increasing the channel delay degrades system performance while it does
not a�ect system stability.

The paper is organized as follows. Section 2 introduces the notation. Sec-
tion 3 presents the problem formulation. Stability analysis is provided by Sec-
tion 4. In Section 5, a numerical example is given. Finally, Section 6 concludes
the paper.

2 Notation

We denote the set of natural numbers by N and de�ne the set N0 as N0 , N∪{0}.
An identity matrix with dimensions n is represented by In×n where n ∈ N.
Moreover, MT symbolizes the transpose of the matrix (vector) M . Consid-
ering the vector z = [z1, . . . , zn]T ∈ Rn, we de�ne ‖z‖1 , |z1|+ · · ·+ |zn|,
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Fig. D.1: Considered PPC system

‖z‖2 ,
√
zT z and ‖z‖∞ , max{|z1|, . . . , |zn|}. Moreover, the positive de�nite

matrix W > 0 de�nes ‖z‖W as ‖z‖W ,
√
zTWz. By supp(z) = {i : zi 6= 0},

we denote the support set of the vector z based on which the `0-norm of z
is de�ned as ‖z‖0 , |supp(z)| where |supp(z)| is the cardinality of the set
supp(z). Therefore, `0-norm of a vector is the number of its non-zero ele-
ments. Minimum and maximum eigenvalue of the Hermitian matrix W is de-
noted by λmin(W ) and λmax(W ), respectively. Moreover, we de�ne σmax(W )

as σmax(W ) , λmax(WTW ).

3 Problem Formulation

We consider a discrete-time LTI plant with the following state-space represen-
tation:

x(k + 1) = Ax(k) +Bu(k), k ∈ N0, (D.1)

where x(k) ∈ Rn and u(k) ∈ R represent the plant states and the control input,
respectively. Moreover, A and B are time-invariant matrices of appropriate
dimensions and assumed to be reachable.

The plant described through (D.1) is controlled in the feedback loop of
Fig. D.1 where a digital communication channel connects the controller to
the actuator. We assume that the channel imposes a known constant delay
on transmitted data. Such a time delay is an integer multiplier of the system
sampling period and denoted by h ∈ N0. Moreover, data packet dropouts occur
across the channel. The binary random process l(k) represents the packet loss.
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If l(k) = 0, then the sequence of packets generated at time instant k will be
dropped and if l(k) = 1, the packets will arrive at the actuator h steps later.
Let assume that the packetized predictive controller in the NCS of Fig. D.1
is not aware of lk at each time instant k ∈ N0. This controller generates a
sequence of control packets, which is speci�ed by

U(x(k)) = [U(x̂1(k + h; k)) . . . U(x̂s(k)(k + h; k))]T ,

where U(x̂i(k + h; k)) = [u0(x̂i(k + h; k)) . . . uN−1(x̂i(k + h; k))]T denotes a
packet containing tentative future control inputs generated based on the pre-
diction x̂i(k + h; k) of x(k + h) for every i ∈ {1, . . . , s(k)} and k ∈ N0. The
controller makes use of {U(x(i))}ki=0 and xk to carry out such predictions and
come up with possible values for x(k + h). We show later on that for every
k ∈ N0, s(k) is a random integer less than 2h. Then the controller forwards
U(x(k)) as a sequence of data packets over the channel. On the plant side,
the actuator is connected to a bu�er that stores each newly received packet se-
quence over its previous contents. Suppose that the time is k and U(x(k − h))

arrives at the actuator. Then the bu�er writes U(x(k−h)) over whatever data
is already available in it. For any j ∈ N0, let us denote by x̂p(j)(j; j − h)

the precise prediction of x(j) made at time j − h, i.e., x̂p(j)(j; j − h) = x(j),
p(j) ∈ {1, . . . , s(j − h)}. The actuator selects the packet U(x̂p(k)(k; k − h))

and applies u0(x̂p(k)(k; k − h)) to the plant as the control input. At the next
time instant, if the packet sequence U(x(k−h+ 1)) is received, then the bu�er
writes it over U(x(k−h)) and applies u0(x̂p(k+1)(k+1; k+1−h)) to the plant.
Otherwise, the bu�er selects u1(x̂p(k)(k; k−h)) as the control input. Then until
the successful arrival of the next packet sequence U(x(k + n − h)), n ≥ 2, the
remaining elements of U(x(k − h)) are applied in a successive manner to the
plant as control inputs.

Assumption 3.1

In the NCS of Fig. D.1, the control input is zero at the �rst h time instants,
i.e., u(k) = 0, ∀k ∈ {0, . . . , h − 1}. Moreover the packet sequence U(x(0))

reaches the bu�er at time k = h. The number of consecutive packet dropouts
is uniformly bounded from above by N − 1. In other words, the bu�er never
becomes empty and at each time instant, there is a new control input to be
applied to the plant.

It can be implied from boundedness of the number of consecutive packet
dropouts mentioned in the above assumption that the sequence {l(i)}∞i=1 cannot
be i.i.d. In the following lemma, l(k) having a binary distribution assists us to
show that when it comes to predicting x(k + h) at any k ∈ N0, the number
of possible values is bounded form above by a constant value which is only a
function of channel time delay.
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Fig. D.2: The tree structure showing the possible values for x(k + h) at time k

Lemma 3.1

Consider the NCS of Fig. D.1 where Assumption 3.1 holds. Suppose that
N ≥ 2 and the controller has access to xk and {U(x(i))}ki=0 at each time
instant k ∈ N0. Moreover, assume that the controller is to calculate all the
possible values {x̂i(k + h; k)}s(k)

i=0 for x(k + h) at time k as pointed out above.
Then s(k) ≤ 2h at each time instant k ∈ N0.

Proof. According to Assumption 3.1, u(k) = 0, ∀k ∈ {0, . . . , h − 1} and the
packet sequence U(x(0)) reaches the bu�er at time k = h. So the controller
knows x(h − 1) and u(h − 1) at k = 0 and x(h) and u(h) at time instant
k = 1. Therefore, according to the dynamics of the plant in (D.1), there is no
uncertainty in predicting the value of x(h) and x(h+1) at time k = 0 and k = 1,
respectively. At time k = 2, the possible value of x(2+h) depends on the value
of l(1) to which the controller does not have access. So according to the fact
that l(k) is a binary random variable at each k ∈ N0 and N ≥ 2, s(2) = 2, i.e.,
x(h+ 2) ∈ {x̂1(2 + h; 2), x̂2(2 + h; 2)}. At time step k = 3, the controller can
calculate the exact x(h + 3) bay knowing the values of l(1) and l(2). Again,
since such knowledge is not provided, the controller can only calculates the
potential values for x(h+ 3) according ot all possible combinations of l(1) and
l(2). However, it could be that the case l(1) = l(2) = 0 is impossible to happen
due to the boundedness of consecutive packet dropouts. So s(3) is either equal
to 3 or 4. However, s(3) certainly follows s(3) ≤ 22. Assuming that the channel
delay is large enough and by induction, we can conclude that the calculation of
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3. Problem Formulation

the of possible values for x(k+h) follows a tree structure as depicted in Fig. D.2
where s(k) ≤ 2k − 1 for every k < h+ 2. From time k = h + 2, the controller
has access to the exact value of the states for which it calculated the possible
values h time steps later. For example, at time h + 2, the controller knows
x(h+ 2). So based on the aforementioned tree structure, the upper bound on
the number of potential values of x(2h+2) becomes half of what was expected.
There are at most 2h+1/2 possible values for x(2h+ 2), i.e., s(h+ 2) ≤ 2h. The
same occurs for all the future time instants and this completes the proof.

The MPC strategy employed to generate the control packets in the NCS
of Fig. D.1 is �nite-horizon. So, the controller computes control packets by
minimizing s(k) �nite-horizon cost functions at each time instant k ∈ N0. For
every xj = x̂j(k + h; k), j ∈ {1, . . . , s(k)}, the latter cost function is described
by

J(xj , uj) = T (x
′

Nj) +

N−1∑
i=0

S(x
′

ij , uij), (D.2)

in whichN denotes the time horizon and x
′

ij is calculated based on the recursion

x
′

(i+1)j = Ax
′

ij + Buij for any i ∈ {0 . . . N − 1} where x
′

0j = x̂j(k + h; k).

So, x
′

0j represents the j-th candidate value for x(k + h) and x
′

1j , ..., x
′

Nj are
predictions of future states x(k+h+1), ..., x(k+h+N), respectively, based on
x̂j(k + h; k). Moreover, {uij}N−1

i=0 denote tentative future control inputs that
de�ne uj as uj , [u0j . . . u(N−1)j ]

T = [u0(x̂j(k+h; k)) . . . uN−1(x̂j(k+h; k))]T ,
j = 1, . . . , s(k). Note that the controller has access to plant states x(k) at each
time step k ∈ N0. The functions S and T in (D.2) symbolize stage cost and
terminal cost, respectively.

As already mentioned before, the aim is achieving robustness against net-
work uncertainties while addressing fuel and data size concerns by designing
a packetized predictive controller that generates only a few non-zero control
inputs. Therefore, we set J(xj , uj) together with some constraints in such a
way that the optimization problem related to the above packetized predictive
setup gives sparse control packets. To do so, we consider two di�erent pairs of
�nal and stage costs (S, T ) that together with their corresponding constraints,
de�ne two types of sparsity-promoting optimization problems. One is called
unconstrained `1-`2 optimization and the other is `2-constrained `0 optimiza-
tion. We formalize these problems for the NCS of Fig. D.1 in the following
subsection.

3.1 Unconstrained `1-`2 Optimization

In this case, the cost function has the general form of (D.2) where S(x
′

ij , uij) =

‖x′ij‖
2

Q
+ ν|uij| and T (x

′

N ) = ‖x′Nj‖
2

P
. We assume that ν > 0, and Q and P
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are positive de�nite matrices. Since future state prediction is carried out based
on x

′

(i+1)j = Ax
′

ij +Buij for i = 0, ..., N − 1 and j = 1, . . . , s(k), then the cost
function J can be rewritten as follows:

J(xj , uj) = ‖Muj −Kxj‖22 + ‖xj‖2Q + ν‖uj‖1, (D.3)

where xj = x
′

0j and uj = [u0j . . . u(N−1)j ]
T . Additionally, we have

Γ =


B 0 . . . 0

AB B . . . 0
...

...
. . .

...
AN−1B AN−2B . . . B

 , Λ =


A

A2

...
AN


upon which M in (D.3) is de�ned as M = Q̂

1
2 Γ and K = −Q̂ 1

2 Λ, where
Q̂ = diag{Q, . . . , Q, P}. So the control packet associated with x̂j(k + h; k) at
each time instant k ∈ N0 is given by

uj(xj) = arg min
uj∈RN

‖Muj −Kxj‖22 + ‖x− j‖2Q + ν‖uj‖1, (D.4)

where j ∈ {1, . . . , s(k)}. According to [30], the solution to the unconstrained
`1-`2 optimization problem is a sparse vector that can be obtained through
several methods. For such an optimization problem, simulation often gives a
solution that is much sparser than the solution of `0 problem, which we address
in the next subsection. However, if the plant is unstable, attaining asymptotic
stability (converging x(k) to zero as time goes to in�nity) is never guaranteed
for the closed-loop system in the case of sparse PPC with unconstrained `1-`2

optimization [29]. Instead, practical stability (x(k) converging to a neighbor-
hood of zero as time goes to in�nity) can be attained in this case by choosing
Q > 0, P > 0 and ν > 0 appropriately; a result which we show in Section 4.1.

It should be emphasized that reexpressing J(xj , uj) as in (D.3) is only based
on the update rule of the state prediction x

′

(i+1)j = Ax
′

ij+Buij and has nothing
to do with the channel delay or the way the actuator selects the control input.

3.2 `2-Constrained `0 Optimization

We formalize the cost function J(xj , uj) for this case by setting T in (D.2)
as T (x

′

Nj) = 0 and choosing S in such a way that S(x
′

ij , uij) = 0 if uij = 0

and S(x
′

ij , uij) = 1 if uij is non-zero. Furthermore, in this case, the controller
solves a constrained optimization problem whose constraint is speci�ed by the
following set:

υ(xj) = {uj ∈ RN : ‖x
′

Nj‖
2

P
+

N−1∑
i=0

‖x
′

ij‖
2

Q
≤ ‖xj‖2Π}, (D.5)

128



4. Stability Analysis

where weighting matrices P , Q, and Π are positive de�nite and selected in
such away that for all xj ∈ Rn, υ(xj) is non-empty . Moreover, xj = x

′

0j and
uj = [u0j . . . u(N−1)j ]

T as de�ned beforehand. The control packet pertaining to
x̂j(k + h; k) at each time instant k ∈ N0 in the `2-constrained `0 PPC is given
by

uj(xj) = arg min
uj∈υ(xj)

‖uj‖0

υ(xj) = {uj ∈ RN : ‖Muj −Kxj‖22 ≤ ‖xj‖
2
Π}

(D.6)

for j = 1, . . . , s(k), where M and K are de�ned as in the previous case.
Deriving υ(xj) as in (D.6), which is a di�erent presentation from (D.5), is
based on the recursion x

′

(i+1)j = Ax
′

ij + Buij that predicts the future states

x(k + h+ 1), ..., x(k + h+N) by x
′

1j , ..., x
′

Nj .
To solve the NP hard `2-constrained `0 optimization problem [31], we use

OMP approach. This is motivated by the fact that OMP has proven to be
an e�cient method for solving such problems as (D.6) with combinatorial na-
ture [29, 32]. It should be noted that in the case of `2-constrained `0 PPC, the
structure of the sparsity-promoting optimization is independent of the value of
channel time delay or the selection mechanism of the actuator. More speci�-
cally, in the above setup, the optimization problem related to (D.6) is stated
in the same way as a function of xj , uj , and weighting matrices for di�erent
values of channel time delay and di�erent logics for the bu�er.

4 Stability Analysis

In this section, we derive conditions under which the considered unconstrained
`1-`2 and `2-constrained `0 sparse PPC strategies render the system of Fig. D.1
stable. We seek deterministic stability for both unconstrained `1-`2 PPC and
`2-constrained `0 PPC, though the notion of convergence in each case is di�erent
from the other.

4.1 Stability of Unconstrained `1-`2 PPC

In this subsection, we present the stability analysis of the considered system
in Fig. D.1 supposing that it is controlled according to (D.4). As already
mentioned before, the unconstrained `1-`2 sparse PPC cannot bring asymptotic
stability to the system if the plant has unstable poles. We start by showing
where this result stems from in the following proposition.

Proposition 4.1

Suppose that for a j ∈ {1, . . . , s(k)}, xj in (D.4) belongs to the set Γj where
Γj , {xj ∈ Rn : ‖MTKxj‖∞ ≤ ν/2}. Then uj(xj) = 0.
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Proof. See [33, Appendix B].

It can be implied from Proposition 4.1 that if at any time instant k ∈ N0, the
exact prediction of x(k + h), say xp, satis�es xp ∈ Γp, l(k) = 1 and A has
eigenvalues outside the unit circle, then signals in the system of Fig. D.1 will
start diverging from the origin. Since there is no constraint in (D.4) preventing
any xj from falling into Γj , then asymptotic stability is not guaranteed when
using `1-`2 PPC. So we consider another notion of stability which can be assured
for the NCS of Fig. D.1 in this case.

De�nition 4.1

The feedback loop of Fig. D.1 is said to be practically stable if there exists
% ∈ R+ in such a way that lim

k→∞
‖x(k)‖2 ≤ %.

To establish the conditions of practical stability, we investigate the value func-
tion V de�ned as

V (xj) , min
uj∈RN

J(xj , uj), (D.7)

where J(xj , uj) is as in (D.3). We �rst derive upper and lower bounds on V (xj)

in the following theorem.

Lemma 4.1

The value function V (xj) is bounded as

λmin(Q)‖xj‖22 ≤ V (xj) ≤ τ(‖xj‖2) (D.8)

for any xj ∈ Rn. In (D.8), τ(y) , αy + (β + λmax(Q))y2, α = ν
√
nσmax(M†K)

and β , λmax(Π?), where matrices M† and Π? are speci�ed via

M† = (MTM)−1MT , Π? = KT (I −MM†)M. (D.9)

Proof. The claim follows immediately from [29, Lemma 5] by noting that the
cost function J(xj , uj) in (D.7) is de�ned in the same way as for the case with
delay-free channel studied in [29, Lemma 5].

According to the recursion x
′

(i+1)j = Ax
′

ij + Buij , where i = 0, . . . , N − 1,

j = 1, . . . , s(k) and x
′

0j = x̂j(k + h; k), every prediction x
′

fj of x(k + f + h),
1 ≤ f ≤ N based on x̂j(k+h; k), can be stated as a function of x̂j(k+h; k) and
tentative control inputs at each time instant k ∈ N0. We denote the function as-
sociated with prediction x

′

fj by g
f (x̂j(k+h; k)) and call it f -th iterated mapping

with optimal vector U(x̂j(k+h; k)) = [u0(x̂j(k+h; k)) . . . uN−1(x̂j(k+h; k))]T .
By induction and considering the logics of the bu�er, for every j ∈ {1, . . . , s(k)}
we have

gf (x̂j(k + h; k)) = Af x̂j(k + h; k) +

f−1∑
l=0

Af−1−lBul(x̂j(k + h; k)), (D.10)
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where f = 1, . . . , N . For the j associated with the exact prediction of x(k+ h)

and where l(k) = 1, the di�erence equation in (D.10) describes the dynamics
of the plant when the control packets are lost in the channel f times in a row
after k + h. The following result determines the relationship between V (xj)

and V (gf (xj)).

Lemma 4.2

Suppose that there exists ζ > 0 de�ning r = µ2N/ζ in such a way tha the
following Riccati equation holds for P ≥ 0:

P = ATPA−ATPB(BTPB + r)
−1
BTPA+Q. (D.11)

Then any xj ∈ Rn, j ∈ {1, . . . , s(k)} satis�es

V (gf (xj))− V (xj) ≤ −λmin(Q)‖xj‖22 + ζ, (D.12)

where f = 1, 2, . . . , N .

Proof. Based on the same de�nition for J(xj , uj) and same recursions pre-
dicting the future states across the case with channel delay and the case with
delay-free channel, we can deduce the claim immediately from [29, Lemma 7].

The bounds derived in (D.8) and (D.12) are all functions of xj . However, the
above results will be used in the following Lemma to obtain a state-independent
bound through introducing a contraction property for the optimal costs during
periods of consecutive packet dropouts:

Lemma 4.3

If (D.11) holds for P > 0 with r = µ2N/ζ and ζ > 0, then there exists a real
constant ϕ∈ (0, 1) in such a way that V (gf (xj)) satis�es

V (gf (xj)) ≤ ϕV (xj)+λmin(Q)/4 + ζ,

for every xj ∈ Rn, j = 1, . . . , s(k), and every f belonging to the set {1, 2, . . . , N}.

Proof. The claim can be concluded immediately from [29, Lemma 8] based
upon the fact that J(xj , uj) and update rule for future states prediction are
de�ned identically across cases of delay-free channel and channel with delay in
the NCS of Fig. D.1.

Utilizing the above results, we establish su�cient conditions for practical sta-
bility in the case where the considered system is controlled based on an un-
constrained `1-`2 PPC strategy over a channel with known constant delay and
dropouts. Such conditions are expressed in the following theorem.
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Theorem 4.1

Consider the NCS of Fig. D.1 under the unconstrained `1-`2 sparse PPC (D.4)
and suppose that Assumption 3.1 holds. Moreover, assume that P > 0 is
chosen in such a way that (D.11) holds with r = µ2N/ζ, where ζ > 0. Then
at each time instant k ∈ N0, ‖x(k)‖2 is bounded. Moreover, the steady-state
`2-norm of x(k) is bounded from above as follows:

lim
k→∞

‖x(k)‖2 ≤ Ψ ,

√
1

1− ϕ
(

ζ

λmin(Q)
+

1

4
), (D.13)

where ϕ is de�ned as

ϕ , 1− λmin(Q)(α+ βλmax(Q))−1.

Proof. let tn represent the time instant when a packet is received by the actu-
ator for the n+ 1-th time, i.e., l(tn − h) = 1. The set comprising all such time
steps is de�ned as follows:

T , {tn}n∈N0
⊆ N0,

where tn+1 > tn,∀n ∈ N0. Moreover, let qn specify the number of packet
dropouts between tn and tn+1. Thus, qn is given by

qn = tn+1 − tn − 1, ∀n ∈ N0. (D.14)

It is clear that qn ≥ 0 with equality when there is no dropout between tn
and tn+1. Suppose that the current time instant is tn, n ∈ N0, and the packet
sequence U(x(tn−h)) is received at the actuator. As already mentioned before,
the actuator selects the packet generated based on the exact prediction of
x(tn) at time tn − h, i.e., U(x̂p(tn)(tn; tn − h)) = U(x(tn)) There will be qn
consecutive dropouts in the channel until the arrival of the next control packet
at time tn+1. Within the interval between tn and tn+1, the control inputs
u0(x(tn)), . . . , uqn(x(tn)), produced based on the unconstrained `1-`2 PPC in
the NCS of Fig.D.1, are applied to the plant in a successive manner and the
states x(tn+ 1), . . . , x(tn+ qn+ 1) are generated. Based on Assumption 3.1, qn
satis�es qn ≤ N − 1. Then according to the update rule for state predictions,
plant dynamics (D.1) and Lemma 4.3, the value function of x(k) is bounded as

V (x(k)) ≤ ϕV (x(tn))+Θ (D.15)

for all k ∈ {tn+1, tn+2, . . . , tn+qn+1} where Θ is de�ned as Θ , λmin(Q)/4+ζ.
It should be noted that since u(k) = 0 for k = 0, 1, ..., h− 1, then tn ≥ h holds
for all n ∈ N0. It follows from tn+1 = tn + qn + 1 and (D.15) that

V (x(tn+1)) ≤ ϕV (x(tn))+Θ. (D.16)
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applying induction to (D.16) and based on Assumption 3.1 where it is pointed
out that U(x(0)) reaches the actuator at time h, we can derive the following
upper bound on the value function of x(tn):

V (x(tn)) ≤ ϕnV (x(h)) + (1 + · · ·+ ϕn−1)Θ,

Then it follows from Lemma 4.1 that

V (x(tn)) ≤ ϕnτ(‖x(h)‖2) + (1− ϕ)−1Θ.

Now the inequality in (D.15) yields

V (x(k)) ≤ ϕn+1τ(‖x(h)‖2) + (1− ϕ)−1Θ.

for any k ∈ {tn + 1, . . . , tn+1}. We can use the lower bound on V (xj) in
Lemma 4.1 to deduce

‖x(k)‖2 ≤

√
V (x(k))

λmin(Q)
≤

(
ϕn+1τ(‖x(h)‖2)

λmin(Q)
+ Ψ2

) 1
2

, (D.17)

where Ψ is de�ned as in (D.13). The derivation in (D.17) together with the
inequality

√
a+ b ≤

√
a+
√
b, ∀a, b ≥ 0, will give

‖x(k)‖2 ≤
√
ϕn+1

√
τ(‖x(h)‖2)

λmin(Q)
+ Ψ. (D.18)

Finally, since k → ∞ implies n → ∞ and x(h) is �nite for a �nite h, the
steady-state `2-norm of the states is bounded as follows:

lim
k→∞

‖x(k)‖2 ≤ Ψ,

which completes the proof of practical stability for the unconstrained `1-`2

sparse PPC.

Remark 4.1

According to Assumption 3.1, the system runs with no control input at the �rst
h time steps, i.e., u(k) = 0, k = 0, . . . , h− 1. So in the case where the plant is
unstable, system states grows with respect to time over the interval [0, h] which
means x(i+ 1) ≥ x(i) for every i ∈ {0, . . . , h− 1}. This implies that increasing
the channel delay h while keeping the initial states and every other component
of the system intact will lead to a greater x(h). Therefore, according to (D.18),
the `2-norm of the states ‖x(k)‖2 is bounded by a larger value at each time
instant k ∈ {N0} if the channel delay is greater. However, since h is �nite,
increasing the delay will not a�ect the stability of the system, i.e., the system
will be still practically stable for greater delays. So, in the unconstrained `1-`2
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sparse PPC of certain LTI plants over channels with constant time delay, the
practical stability can be achieved for greater delays but with the price of worst
system performance.

4.2 Stability of `2-Constrained `0 PPC

Here, we establish conditions under which the asymptotic stability is guar-
anteed in the `2-constrained `0 PPC case. The corresponding optimization
problem is formalized by (D.6). First, we investigate the feasibility of this
problem in the following Lemma.

Lemma 4.4

Assume that for any j ∈ {1, . . . , s(k)}, k ∈ N0, υ∗(xj) is de�ned as

υ∗(xj) , {uj ∈ RN : ‖Muj −Kxj‖22 ≤ ‖xj‖
2
Π∗}.

in which Π∗ is given by (D.9) and xj = x̂j(k + h; k). Then Π ≥ Π∗ yields
υ(xj) ⊇ υ∗(xj) where υ(xj) is de�ned as in (D.6). The feasible set υ(xj)

associated with any Π ≥ Π∗ is closed, convex and non-empty over RN .

Proof. The set υ(xj) (as a function of xj) and matrices Π∗ and Π are de�ned in
the same way as U(x) (as a function of x),W andW ∗ in [29, Lemma 10] for the
system with delay-free channel, respectively. Therefore, the claim immediately
follows from [29, Lemma 10].

It stems from Lemma 4.4 that Π∗ > 0 is the "smallest" Π which guarantees that
�nding the control packet sequence U based on (D.6) is feasible. Let denote the
di�erence between Π and Π∗ in the previous lemma by ξ. Hence, ξ is described
by

ξ = Π−Π∗ > 0. (D.19)

In the following lemma, ξ is used to characterize feasible solutions for the
optimization problem associated with (D.6).

Lemma 4.5

Any feasible solution to the optimization problem associated with (D.6), namely
uj ∈ υ(xj), can be written as

uj = u∗j + ψ(xj), ‖Mψ(xj)‖22 ≤ ‖xj‖
2
ξ ,

for every j ∈ {1, . . . , s(k)}, k ∈ N0, where ψ(xj) ∈ RN , u∗j ∈ υ∗(xj) and ξ is
de�ned as in (D.19).

Proof. The claim follows immediately from [29, Lemma 11] by noting that the
optimization problem in (D.6) comprises a cost function and a constraint each
of which is de�ned identically to its counterpart in the delay-free sparsity-
promoting `2-constrained `0 optimization in [29].
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The next Lemma presents a derivation which is similar to the result stated in
Lemma 4.3 but with two prominent di�erences. One is that instead of the value
function, a quadratic candidate Lyapunov function de�ned as VP (xj) , ‖xj‖2P
is analyzed. The other di�erence is that the following result gives an upper
bound which goes to zero as states converge to the origin.

Lemma 4.6

Consider Π > 0 and Π∗ satisfying Π > Π∗ and ξ as in (D.19). For an arbitrary
Q > 0, assume that P > 0 solves the Riccati equation (D.11) with r = 0. Then
for any xj = x̂j(k + h; k), j = 1, . . . , s(k) and k ∈ N0, there exist constants
ϕ ∈ [0, 1) and z > 0 in such a way that

VP (x
′

ij) ≤ ϕiVP (xj) + z‖xj‖2ξ , i = 1, 2, . . . , N, (D.20)

where x
′

(f+1)j = Ax
′

fj + Bufj , f = 0, . . . , N − 1, and x
′

0j = xj . Moreover,

uj = [u0j . . . u(N−1)j ]
T is the optimal control packet associated with xj de�ned

in (D.6).

Proof. The recursion related to the prediction of the future states and the
structure of the optimization problem are speci�ed identically across the `2-
constrained `0 PPC analyzed here and the one studied in [29]. Therefore, we
can conclude the claim immediately from [29, Lemma 13].

Now we can use the derived contraction property in (D.20) to show that under
certain tuning conditions, the control signal given based on the `2-constrained
`0 PPC strategy in (D.6) can render the considered system (with bounded
dropouts and �xed �nite delay) asymptotically stable. These conditions are
presented in the following theorem:

Theorem 4.2

For an arbitrary Q > 0, let P > 0 solve the Riccati equation (D.11) with r = 0.
Pick a ξ satisfying 0 ≤ ξ ≤ (1− ϕ)P/z where the constants ϕ ∈ [0, 1) and z > 0

are calculated through (24), (25) and (26) in [29]. Suppose that Π∗ and Π are
set as Π∗ = P −Q and Π = Π∗+ ξ, respectively. Then, the sparsity-promoting
`2-constrained `0 optimization (D.6) solved by using these tuning parameters
(P , Q, and Π) gives a control packet sequence U(x(k)), at each time instant
k ∈ N0, in such a way that x(k)→ 0 as k →∞.

Proof. Let tn denote the time instant when a packet is received at the actuator
successfully for the n+1-th time and qn denote the number of dropouts between
tn and tn+1, n ∈ N0. So qn is de�ned as in (D.14). Consider a speci�c tn and
recall that qn ≤ N − 1. Now it follows from selection logic of the actuator and
Lemma 4.6 that

VP (x(k)) ≤ x(tn)T (ϕP + zξ)x(tn) < VP (x(tn)), (D.21)
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where k ∈ {tn + 1, . . . , tn + qn + 1}. Since tn + qn + 1 = tn+1, for the time step
when n + 2-th packet is received successfully, the following inequality can be
concluded:

VP (x(tn+1)) < VP (x(tn)). (D.22)

It follows from (D.22) that due to the positivity of VP (.), x(tn)→ 0 as n→∞.
Then based on (D.21), we can conclude that the states converge to the origin
as time goes to in�nity, i.e. x(k) → 0 as k → ∞. It means that the system is
asymptotically stable, and therefore, the proof is complete.

5 Numerical Example

We consider the model of an inverted pendulum on a cart taken from [34] as
the plant model in the NCS of Fig. D.1. The state matrix A and input vector
B associated with this state-space model are speci�ed as follows:

A =


1.000 0.0498 0.0028 0.0001

0.000 0.9913 0.1116 0.0028

0.000 −0.0005 1.0327 0.0508

0.000 −0.0189 1.3062 1.0327

 , B =


0.0098

0.3908

0.0212

0.8485

 . (D.23)

It is straightforward to verify that the pair (A,B) is reachable. We simulate
the feedback loop of Fig. D.1 where the plant is modelled based on (D.23) for
both unconstrained `1-`2 PPC and `2-constrained `0 PPC. To do so, we set the
horizon length as N = 10. Furthermore, we set the process l(k) in such a way
that the number of consecutive packet dropouts is distributed uniformly over
[0, 1, .., N −1]. In both cases, the weighting matrix Q is chosen as Q = I. Each
element of the initial states x0 is drawn from the standard normal distribution
and is independent from other elements. The performance of the PPC strategies
proposed through (D.4) and (D.6) is examined over three di�erent values of
channel delay, h ∈ {0, 10, 20}. For the unconstrained `1-`2 PPC, we select the
parameters ν and r as ν = 15 and r = 2. We solve the corresponding sparsity-
promoting optimization problem in (D.4) by using FISTA. For the case of `2-
constrained `0 PPC, we calculate Π and ξ according to the procedure suggested
in Theorem 4.2. For instance, we set ξ as ξ = (1− ϕ)P/2z so that it is smaller
than (1− ϕ)P/z.

Utilizing the above parameters, we simulate the NCS of Fig. D.1. Fig-
ures D.3 and D.4 demonstrate the results which are average over 200 number
of 300-sample-long simulations. The `2-norm of the states x(k) in the case
of unconstrained `1-`2 PPC is illustrated by Fig. D.3 (top). The curves in
Fig. D.3 (top) show the boundedness of ‖x(k)‖2 over the considered time inter-
val. This implies that the controller designed based on the `1-`2 PPC strategy
renders the system practically stable. Secondly, in Fig. D.3 (top), the values of
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Fig. D.3: Average `2 norm of the state x(k) in the unconstrained `1-`2 PPC (top) and
`2-constrained `0 PPC (bottom)
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Fig. D.4: Average `0 norm of the control packet Uh(x(k)) in the unconstrained `1-`2 PPC
(top) and `2-constrained `0 PPC (bottom)
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curves associated with higher channel delays are larger while they all converge
to the same value as time proceeds. This is in accordance with the observa-
tion pointed out in Remark 4.1. For the `2-constrained `0 PPC setting, the
asymptotic stability of the resulted system is veri�ed according to the curves
in Fig. D.3 (bottom) which demonstrate the `2-norm of ‖x(k)‖2. As depicted
in Fig. D.3, the stability in each case holds regardless of the channel delay
value. However, it can be observed that increasing the channel delay degrades
the performance of the system in both cases. The `0-norm of the selected con-
trol packet Up(x) is demonstrated by Fig. D.4. The curves in Fig. D.4 show
that for a �xed channel time delay, unconstrained `1-`2 PPC generates sparser
control commands than `2-constrained `0 PPC. This is of course caused by
our choice of ν. According to (D.3), making the parameter ν smaller will re-
duce the sparsity of the obtained control vector. Clearly, enlarging ν will give
solutions with more zero elements to the sparsity-promoting unconstrained `1-
`2 problem. However, such improved sparsity comes with the cost of control
performance degradation.

6 Conclusions

In this paper, PPC over digital communication channels subject to time de-
lays and data packet dropouts has been studied. In the considered NCS, the
communication channel is located in the actuation path between the controller
and a discrete-time LTI plant. We have analyzed the stability of the overall
closed-loop system under two di�erent sparsity-promoting control policies; un-
constrained `1-`2 PPC and `2-constrained `0 PPC. We have shown that under
certain conditions, the unconstrained `1-`2 PPC will bring practical stability
to the system. Moreover, we have derived conditions guaranteeing asymptotic
stability in the case of utilizing `2-constrained `0 PPC. For both cases, we have
shown that the number of packets generated by the controller at each time in-
stant is bounded from above by a �xed value which becomes larger as channel
time delay grows. We have demonstrated, through simulation, that in each
case of unconstrained `1-`2 PPC or `2-constrained `0 PPC, the optimization
problem giving the stabilizing control inputs has sparse solution. Moreover,
the simulation results show that increasing the channel-induced delay worsens
the system performance, though such an increase in the value of the delay has
no e�ect on system stability.

Future research will focus on disturbed plants with model uncertainties,
random channel delays, �nding tighter upper bound on ‖x(k)‖2 in stability
analysis of unconstrained `1-`2 PPC, and analyzing the e�ect of quantization.
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1. Introduction

Abstract

This paper develops approaches to the hands-o� control problem subject to per-

formance constraints for discrete-time linear systems. The approaches mini-

mize the l1-norm of the control input to acquire the hands-o� property, while

satisfying the performance constraints that are given in terms of the quadratic

cost of states and inputs with respect to the optimal solution to the �nite-horizon

linear quadratic regulator problem. We consider three kinds of the input and

state matrices for the system; 1) known, 2) uncertain but contained in a known

discrete set, and 3) uncertain but contained in a known polytopic uncertainty

set. For the �rst two cases, we show that each problem is formulated as an l1
optimization that is expressed as a second-order cone programming. We also

show that the last case leads to a second-order cone programming after relax-

ations. A numerical example is included to illustrate the validity of the proposed

approach.

keywords

Robust control, Uncertainty, Linear optimal control, Convex programming,
Discrete-time systems

1 Introduction

Control e�ort minimization is a fundamental requirement in practical control
systems for saving fuel/electricity consumption and reducing noise and vibra-
tion [1, 2]. For such problems, sparse control which takes input value mostly
zero is e�ective. Thus, a novel design method called maximum hands-o� con-

trol that produces a control input with the minimum support per unit of time
has been proposed [3].

The maximum hands-o� control problem is initially formulated as an L0

optimal control for continuous-time systems to bring an arbitrary state to the
origin. Although the L0 minimization problem is di�cult to solve due to the
non-convexity and the non-smoothness of the problem, it is proved that the
set of L0 optimal solutions is equivalent to that of L1 optimal solutions under
a uniqueness assumption called normality [3]. This property is important in
view of computation; L1 optimal control problem can be formulated as a con-
vex optimization problem, which is easily solved by numerical methods [4]. For
discrete-time systems, the equivalence between l0 and l1 sparsity-promoting
problems is also investigated in [5]. Here, we note that even though the equiv-
alence does not hold always, we may still obtain a hands-o� control that has
a short support per unit of time by minimizing l1-norm because it was shown
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that the l1-norm is the convex envelope of the l0-norm [6] and l1-minimization
is known to lead to sparse solutions.

Robustness against uncertainty is a critical requirement in a lot of practical
real-world control systems. Thus, robust control has been one of the most
appealing approaches in the realm of control theory over 30 years. One of
the most well-known approaches in robust control is H∞ control, in which the
uncertain system is modeled as a set of systems. It �nds a control that achieves
a control objective for all possible systems in the set; see [7] for example.

In this paper, we consider the hands-o� control problem that minimizes the
l1 norm of the control input subject to uncertainties with performance con-
straint. The considered uncertainty takes the form of polytopic uncertainty,
which is modeled by the convex hull of multiple possible systems [8, 9]. On the
other hand, the considered performance constraint is obtained by relaxing the
optimal cost of the �nite-horizon linear quadratic regulator (LQR) problem.
For such problem, the robust control design is formulated in terms of linear
matrix inequalities (LMIs) [10], which represents a convex optimization prob-
lem and can be solved numerically by optimization softwares such as YALMIP
in MATLAB [11�13].

The main contribution of this paper is twofold. (i) the inclusion of a design
parameter that allows us to specify the degree of possible cost relaxation under
which the input sparsity is sought for, (ii) the consideration of uncertainties in
the system model. This is achieved by adopting a relaxed constraint for the
terminal state, instead of forcing the terminal state to be zero as in [3].

The remainder of this paper is organized as follows: Section 2 provides
the notation and an overview of linear quadratic regulator problem, followed
by a presentation of the basic problem formulation for the nominal system
in Section 3. Section 4 is the main part of this paper, which considers the
hands-o� control for uncertain systems. Following to some remarks in Section
5, Section 6 presents a numerical example. Finally, Section 7 concludes the
paper.

2 Mathematical Preliminaries

2.1 Notation

The set of real numbers is denoted by R. The set of vectors with length n is
denoted by Rn, and the set of matrices of size n×m is denoted by Rn×m. The
vector of ones whose length is n is denoted by 1n. The identity matrix of size
n is denoted by In. The subscript n is dropped when the size is clear. For
matrices M and N , M ⊗N indicates the Kronecker product.
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2.2 A review of linear-quadratic regulator problem

This subsection provides a brief overview on the �nite-horizon LQR prob-
lem [14], based on which this paper proposes approaches to hands-o� control
problems.

Consider a discrete-time linear system

x[t+ 1] = Ax[t] +Bu[t], x[0] = x0, (E.1)

where A ∈ Rnx×nx and B ∈ Rnx×nu form a controllable pair, x[t] ∈ Rnx
represents the system state, and u[t] ∈ Rnu represents the control input.

The objective of the �nite-horizon LQR problem is to �nd a sequence of
control inputs that minimizes the following quadratic cost function:

J(u) = xT [Tf ]Qfx[Tf ] +

Tf−1∑
t=0

xT [t]Qx[t] + uT [t]Ru[t],

Q = QT > 0, Qf = QTf > 0, R = RT > 0,

where Tf is the time horizon. Generally, Q and Qf are required to be positive
semide�nite. However, we restrict our attention to positive de�nite weight
matrices for convenience. For such a problem, it is well-known that the optimal
control input is [15]

u∗[t] = −F [t]x[t], t = 0, 1, · · · , Tf − 1,

F [t] =
(
BTP [t+ 1]B +R

)−1
BTP [t+ 1]A,

(E.2)

where P [t] is the solution to

P [t] = ATP [t+ 1]A+Q

−ATP [t+ 1]B
(
BTP [t+ 1]B +R

)−1
BTP [t+ 1]A,

P [Tf ] = Qf .

Moreover, the corresponding optimal cost is given by

JLQR := J(u∗[t]). (E.3)

2.3 Some matrix inequalities

To treat polytopic uncertainties e�ciently in Section 4, the following relaxations
will be used:
Lemma 2.1 ( [16])

Let Mi = MT
i > 0 and λi ≥ 0 for i = 1, 2, · · · , p satisfy

∑p
i=1 λi = 1. Then(

p∑
i=1

λiNi

)T( p∑
i=1

λiMi

)−1( p∑
i=1

λiNi

)
≤

p∑
i=1

λiN
T
i M

−1
i Ni

The equality holds if and only if NT
1 M

−1
1 = · · · = NT

p M
−1
p .
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It should be emphasized that Ni is not required to be symmetric or square. In
addition, according to the original reference, the results of Lemma 2.1 holds
under the assumption that λi > 0. However, we can trivially include the case
with λi = 0.

Corollary 2.1

Let Mi = MT
i > 0 and λi ≥ 0 for i = 1, 2, · · · , p satisfy

∑p
i=1 λi = 1. Then(

p∑
i=1

λiMi

)−1

≤
p∑
i=1

λiM
−1
i .

The equality holds if and only if M1 = M2 = · · · = Mp.

Proof. Let Ni = I for all i in Lemma 2.1.

Corollary 2.2

Let L = LT > 0 and λi ≥ 0 for i = 1, 2, · · · , p satisfy
∑p
i=1 λi = 1. Then(

p∑
i=1

λiNi

)T
L

(
p∑
i=1

λiNi

)
≤

p∑
i=1

λiN
T
i LNi.

The equality holds if and only if N1 = N2 = · · · = Np.

Proof. Let Mi = L−1 for all i in Lemma 2.1.

3 Hands-o� Control Problem for Known System

Using the results in Section 2.2, this section proposes the hands-o� control
problem for the system (E.1) with a known controllable pair of A and B.
More speci�cally, the problem is set up so as to minimize the l1-norm of the
control input while satisfying the control performance condition that speci�es
the degree of relaxation compared with the optimal cost of the LQR problem
in (E.3).

Problem 3.1

(Hands-o� Control Problem with Performance Constraint cf. [3]):
For the linear system

x[t+ 1] = Ax[t] +Bu[t], x[0] = x0, t = 0, 1, · · · , Tf − 1,

with the controllable pair of (A,B), �nd a sequence of control inputs u[t] that
minimizes the l1-norm of the control input

Tf−1∑
t=0

nu∑
i=1

|ui[t]|, (E.4)
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where | · | denotes the element-wise absolute value, subject to

J(u) :=xT [Tf ]Qfx[Tf ]+

Tf−1∑
t=0

xT [t]Qx[t]+uT [t]Ru[t]≤J∗, (E.5)

where

J∗ := γJLQR, γ ≥ 1. (E.6)

In (E.6), JLQR is de�ned as in (E.3) and speci�es the control performance
condition.

Remark 3.1

The parameter γ is used to make a balance between the sparsity of the control
input and the deviation from the optimal cost (E.3). If γ = 1, then there is no
freedom to minimize the norm of the control inputs, and the solution to the
problem coincides with (E.2). As γ becomes larger, the l1-norm of the hands-o�
control inputs may become smaller, but the performance degrades more and
more compared with (E.3).

To solve Problem 3.1, let us �rst simplify the expressions in (E.4)-(E.5) by
de�ning

x̄ :=


x[0]

x[1]
...

x[Tf ]

 , ū :=


u[0]

u[1]
...

u[Tf − 1]

 ,

Â :=


Inx 0 · · · 0

A 0
...

...
. . .

ATf−1 ATf−2 · · · Inx

 ,
Ā :=

[
0nx×nxTf

Â

]
, B̄ := ITf ⊗B, A0 :=

[
A

0(nx−1)Tf×nx

]
,

Q̂ := diag[ITf−1 ⊗Q,Qf ], Q̄ := diag[Q, Q̂], R̄ := ITf ⊗R,

G1 := ĀB̄, G2 :=

[
Inx
ÂA0

]
.

(E.7)

Then, the cost (E.4) can be rewritten as

Tf−1∑
t=0

nu∑
i=1

|ui[t]| = 1TnuTf |ū|. (E.8)
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Also, the vector of the states is expressed as

x̄ = G1ū+G2x0,

and thus J(u) in (E.5) can be expressed as

J(u) = x̄T Q̄x̄+ ūT R̄ū =

[
ū

x0

]T [
GT1 Q̄G1 + R̄ GT1 Q̄G2

GT2 Q̄G1 GT2 Q̄G2

] [
ū

x0

]
.(E.9)

Based upon (E.8)-(E.9), Problem 3.1 can be reformulated as a second-order
cone programming as follows:

min
w
qT0 w

s.t. wTP1w + qT1 w + r1 ≤ 0,

qT2 w ≤ 0, qT3 w ≤ 0,

(E.10)

where

w :=

[
ū

v

]
, q0 :=

[
0nuTf
1nuTf

]
,

P1 :=

[
GT1 Q̄G1 + R̄ 0

0 0

]
, q1 :=

[
2GT1 Q̄G2x0

0

]
,

r1 := xT0 G
T
2 Q̄G2x0 − J∗,

q2 :=

[
InuTf
−InuTf

]
, q3 :=

[
−InuTf
−InuTf

]
.

(E.11)

This second-order cone programming (E.10)-(E.11) can be solved using existing
numerical softwares such as YALMIP on MATLAB [11�13]. Here, the constraint
wTP1w + qT1 w + r1 ≤ 0 corresponds to (E.5) and guarantees the satisfaction
of the performance condition, while the other two constraints, qT2 w ≤ 0 and
qT3 w ≤ 0, determine the bounds on the absolute value of u[t].

Remark 3.2

Unlike the original paper [3], where a continuous-time setup is considered, it is
not necessary to impose the constraint maxi |ui[t]| ≤ 1 in a discrete-time setup.
This is because without such a constraint, a continuous-time setup produces
an optimal control input of a Dirac delta function, while a discrete-time setup
guarantees the boundedness of |ui[t]| as long as (E.8) is bounded.

4 Hands-o� Control Problem for Uncertain Sys-

tems

This section considers the hands-o� control problem for the system (E.1) but
with uncertainties in the state matrix A and input matrix B. As in the previous
section, we impose the control performance condition that speci�es the degree
of relaxation compared with the optimal cost of the LQR problem.
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4.1 Discrete Uncertainties

Let us start with the system (E.1) where the pair (A,B) is uncertain but
contained in a known discrete set, i.e.,

(A,B) ∈ Sd := {(A,B) = (Aj , Bj), j = 1, · · · , n}, (E.12)

where n is the number of scenarios and (Aj , Bj) are controllable pairs for all
j = 1, · · · , n. For such systems, the performance condition is speci�ed using
the following upper bound

J∗d := max
j=1,··· ,n

γjJLQR,j , γj ≥ 1, (E.13)

in place of (E.6), where JLQR,j is the optimal cost (E.3) corresponding to the
scenario (Aj , Bj) in (E.12), and γj speci�es the degree of relaxation for each
scenario. In this way, the existence of the control input satisfying the perfor-
mance condition is guaranteed, and the parameter γ can be used to balance
between the sparsity of the input and the deviation from the optimal cost in
the worst-case scenario.

The constraint of performance condition (E.5) needs to be satis�ed in any
of the n scenarios, thus the second-order cone programming of this problem re-
places the �rst constraint of (E.10) by n constraints, each of which corresponds
to one of n scenarios. Therefore, the following second-order cone program-
ming provides the solution to the hands-o� control problem subject to discrete
uncertainties.

min
w
qT0 w

s.t. wTP1jw + qT1jw + r1j ≤ 0, j = 1, · · · , n,
qT2 w ≤ 0, qT3 w ≤ 0,

(E.14)

where w, q0, q2 and q3 are de�ned as in (E.11), and

P1j =

[
GT1,jQ̄G1,j + R̄ 0

0 0

]
, q1j =

[
2GT1,jQ̄G2,jx0

0

]
,

r1j = xT0 G
T
2,jQ̄G2,jx0 − J∗d ,

(E.15)

and G1,j and G2,j are de�ned as in (E.7) for the each scenario j of the pair
(Aj , Bj). Thus, we have n quadratic constraints and 4nuxTf linear constraints.
The formulation in (E.14)-(E.15) minimizes the l1-norm of the control input
while guaranteeing the performance condition satisfaction for any of the n
scenarios in (E.12).

Remark 4.1

It is known that the set of these n constraints in (E.14) is equivalent to

wTP1w + qT1 w + r1 ≤ 0, ∀(P1, q1, r1) ∈ Sp,
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where

Sp =

(P1, q1, r1)|(P1, q1, r1) =

n∑
j=1

λj(P1j , q1j , r1j)λj ≥ 0,

n∑
j=1

λj = 1

 .

We will use this equivalence in the following subsection.

4.2 Polytopic Uncertainties

This subsection considers the case where the pair (A,B) contains polytopic
uncertainties, i.e.,

[A B] ∈ Ωp,

Ωp :=

{
[A(λ) B(λ)] =

p∑
i=1

λi[Ai Bi],

p∑
i=1

λi = 1, λi ≥ 0

}
,

(E.16)

where Ai and Bi are constant matrices satisfying the controllability of (Ai, Bi)

for all i, and λis are time-invariant uncertainties.
Unlike the case of discrete uncertainties, systems with polytopic uncertain-

ties have in�nite number of scenarios that replaces (E.5). Thus, to treat poly-
topic uncertainties e�ciently, the constraint (E.5) is relaxed using an upper
bound on the cost function (E.9) that is easy to compute. For this purpose,
�rst notice that from the de�nitions in (E.7), it holds that

GT1 Q̄G1 =B̄T ĀT Q̄ĀB̄ = B̄T ÂT Q̂ÂB̄,

GT2 Q̄G1 =(ÂA0)T Q̂ÂB̄ = AT0 Â
T Q̂ÂB̄,

GT2 Q̄G2 =AT0 Â
T Q̂ÂA0 +Q.

Accordingly, the matrix characterizing J(u) in (E.9) can be expressed as[
GT1 Q̄G1 + R̄ GT1 Q̄G2

GT2 Q̄G1 GT2 Q̄G2

]
=

[
B̄

A0

]T [
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

] [
B̄

A0

]
+

[
R̄

Q

]
.

Next, de�ne

Ã := I −
[

0 0

ITf−1 ⊗A 0

]
, Ãi := I −

[
0 0

ITf−1 ⊗Ai 0

]
,

Âi :=


I 0 · · · 0

Ai 0
...

...
. . .

A
Tf−1
i A

Tf−2
i · · · I

 , A0,i :=

[
Ai

0(nx−1)Tf×nx

]
.

(E.17)
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Then, it follows that

Â = Ã−1 =

(
p∑
i=1

λiÃi

)−1

, Âi = Ã−1
i , A0 =

p∑
i=1

λiA0,i. (E.18)

Moreover, de�ne

B̄i := ITf ⊗Bi. (E.19)

Then, (E.16), (E.17) and (E.19) yield[
B̄ 0

0 A0

]
=

p∑
i=1

λi

[
B̄i 0

0 A0i

]
. (E.20)

On the other hand, from Corollary 2.1 and (E.18), it holds that

ÂT Q̂Â = Ã−T Q̂Ã−1 =

 p∑
i=1

p∑
j=1

λiλjÃ
T
i Q̂
−1Ãj

−1

≤
p∑
i=1

p∑
j=1

λiλj

(
ÃTi Q̂

−1Ãj

)−1

=

p∑
i=1

p∑
j=1

λiλjÂ
T
j Q̂Âi.

(E.21)

From (E.21), it follows that[
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

]
≤

p∑
i=1

p∑
j=1

λiλj

[
ÂTj Q̂Âi ÂTj Q̂Âi
ÂTj Q̂Âi ÂTj Q̂Âi

]
. (E.22)

Due to the fact that 1T1 andM = MT are both positive semide�nite, (1T1)⊗M
is positive semide�nite. Hence, based on Corollary 2.2 together with (E.20) and
(E.22), we can deduce[

B̄ 0

0 A0

]T [
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

] [
B̄ 0

0 A0

]
≤

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλk

[
B̄Tk Â

T
j Q̂ÂiB̄k B̄Tk Â

T
j Q̂ÂiA0,k

AT0,kÂ
T
j Q̂ÂiB̄k AT0,kÂ

T
j Q̂ÂiA0,k

]
.

Thus, an upper bound on the cost function J(ū) is obtained as a function
of the control input:

J(ū) ≤
p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū),
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where

Jijk(ū) =ūT
(
B̄Tk Â

T
j Q̂ÂiB̄k + R̄

)
ū

+ 2xT0

(
AT0,kÂ

T
j Q̂ÂiB̄k

)
ū

+ xT0

(
AT0,kÂ

T
j Q̂ÂiA0,k +Q

)
x0.

So the constraint (E.5) is relaxed as
p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗p .

Here, it is assumed that J∗p , which characterizes the trade-o� between the
sparsity of control input and systems' performance, is given. The selection of
the performance parameter J∗p is discussed in Section 5.

The corresponding second-order cone programming formulation of (E.10)
replaces P1, q1 and r1 by

P1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkP1ijk, q1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkq1ijk,

r1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkr1ijk,

(E.23)

where

P1ijk =

[
B̄Tk Â

T
j Q̂ÂiB̄k + R̄ 0

0 0

]
,

q1ijk =

[
2B̄Tk Â

T
i Q̂ÂjA0,kx0

0

]
,

r1ijk = xT0

(
AT0,kÂ

T
j Q̂ÂiA0,k +Q

)
x0 − J∗p .

Using (E.23) with Remark 4.1, the second-order cone programming formulation
for the hands-o� control for polytopic uncertainties is

min
w
qT0 w

s.t. wTP1ijkw + qT1ijkw + r1ijk ≤ 0, i, j, k = 1, · · · , p,
qT2 w ≤ 0, qT3 w ≤ 0,

(E.24)

where w, q0, q2 and q3 are de�ned as in (E.11). This optimization problem has
p3 quadratic constraints and 4nuxTf linear constraints.

Remark 4.2

It is straightforward to show that the number of quadratic constraints in (E.24)
can be reduced from p3 to p2(p + 1)/2 by using the symmetry of i and j in
P1ijk, q1ijk and r1ijk.
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5 Discussions

This section brie�y discusses the computational cost and some concerns regard-
ing the performance condition of the proposed approach.

5.1 Computational Cost

As we have seen, the computational cost of (E.24) increases quadratically with
respect to the number of vertices of polytopic uncertainty. However, this com-
putational cost of (E.24) can be reduced by further relaxing the constraints.
An approach is to �nd a pair (P̄1, q̄1, r̄1) such that ∀w,

wT P̄1w + q̄T1 w + r̄1 ≤ 0

⇒wTP1ijkw + qT1ijkw + r1ijk ≤ 0, ∀i, j, k = 1, · · · , p.

If such a pair is found, then the number of quadratic constraints is reduced
from p3 to one. To �nd such (P̄1, q̄1, r̄1), an inner Dikin ellipsoid, an inner
Löwner John ellipsoid [17], or other inner approximations for the intersection
of ellipsoids (P1ijk, q1ijk, r1ijk) [10] can be used.

5.2 Performance Condition

As in the case with discrete uncertainties, it is possible to choose the perfor-
mance condition J∗p using the exact upper bound on

∑
i λiJi(ū) by solving a

minimax constrained problem. However, Section 4.2 proposes to relax the con-
straint in Problem 3.1 by using the upper bound of quadratic cost instead of
the quadratic cost itself. Thus, there is no reason to use the exact upper bound
on
∑
i λiJi(ū).

One option is to choose J∗p su�ciently large. For example, we may com-
pare the performance with the nominal by using JLQR corresponding to the
nominal system (e.g., A =

∑p
i=1Ai/p and B =

∑p
i=1Bi/p) and then setting

J∗p = γJLQR with a relatively large γ. Note that such J∗p may lead to infeasible
programming, if selected γ is not su�ciently large. In this case, increase the
value of γ.

One other method for choosing J∗p is setting it in such a way that the
existence of a feasible control input is guaranteed. For example, if both A and
B are subject to polytopic uncertainty as in (E.16), then we may compute ū
that minimizes Jijk(ū) for each i, j, and k and let

J∗p = γmax
i,j,k

Jijk(ūapprox), γ ≥ 1

where ūapprox = arg maxi,j,k J
∗
ijk(ū). Then it is guaranteed that there exists a
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control input ū = ūapprox that satis�es
p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗p .

Alternatively, we could evaluate how much control e�ort is needed to im-
prove the performance compared with the worst case of uncertainties without
control inputs by setting J∗p as follows:

J∗p = ηJ(0), η ≤ 1, J(0) = max
A

xT0 G
T
2 Q̄G2x0.

6 Numerical Example

In this section, we apply the results obtained in Section 4.2. to a discrete-
time linear system subject to polytopic uncertainties. The example is taken
from [18], which considers the model of a continuous stirred tank reactor for
an exothermic, irreversible reaction. The polytope representing uncertainties
of the considered plant is characterized by 4 vertices as follows:

A1 =

[
0.8227 −0.00168

6.1233 0.9367

]
, A2 =

[
0.9654 −0.00182

−0.6759 0.9433

]
,

A3 =

[
0.8895 −0.00294

0.9447 0.9968

]
, A4 =

[
0.8930 −0.00062

2.7738 0.8864

]
,

B1 =
[
−0.000092 0.1014

]T
, B2 =

[
−0.000097 0.1016

]T
,

B3 =
[
−0.000157 0.1045

]T
, B4 =

[
−0.000034 0.0986

]T
,

where each pair (Ai, Bi) is controllable. The initial state of the plant is a
2-dimensional random vector whose elements are selected from a uniform dis-
tribution over (0, 1). The horizon length Tf is set to 50. Weighting matrices
are selected as Q = I, Qf = I, and R = 1. We set the constant γ in (E.13) to
1.5. For the true system, we set λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, and λ4 = 0.4.

The optimization is set up based on (E.23) and (E.24) and solved using
YALMIP with solver option of fmincon on MATLAB [11�13]. The optimal control
input is illustrated in Fig. E.1. In this �gure, we also plot the standard �nite-
horizon LQR control as in (E.2). Compared with the standard LQR control,
the hands-o� control is su�ciently sparse.

Moreover, we apply the obtained control input to the considered plant in
order to assess the behavior of state trajectories. The state trajectories gen-
erated by the standard LQR control and the hands-o� control are shown in
Fig. E.2. According to this �gure, the proposed hands-o� control, which is
much sparser than the LQR control, leads to a comparable performance with
the LQR control. One can obtain di�erent sparsity and robustness properties
by manipulating γ and weighting matrices.
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Fig. E.1: Control input u[t]: hands-o� control (real line) and standard LQR (dotted line)
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Fig. E.2: State x[t] = (x1[t], x2[t]): hands-o� control (real line) and standard LQR (dotted
line)
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7 Conclusions

This paper has proposed approaches to constrained hands-o� control problem
for discrete-time linear systems for three di�erent scenarios. Such a problem
has been formulated as minimization of the l1-norm of the control input that
satis�es given performance conditions. It has been shown that this optimization
problem is simpli�ed to second-order cone programing. Moreover, it has been
illustrated through a numerical example that the proposed approach gives a
sparse control input while the system performance is fairly close to the standard
�nite-horizon LQR performance as desired.
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