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ABSTRACT  

The objective of this study was to construct peristimulus time histogram (PSTH) and peristimulus frequencygram 

(PSF) using single motor unit recordings to further characterize the previously documented immediate sensorimotor 

effects of spinal manipulation. Single pulse transcranial magnetic stimulation (TMS) via a double cone coil over the 

tibialis anterior (TA) motor area during weak isometric dorsiflexion of the foot was used on two different days in 

random order; pre/post spinal manipulation (in eighteen subjects) and pre/post a control (in twelve subjects) 

condition. TA electromyography (EMG) was recorded with surface and intramuscular fine wire electrodes. Three 

subjects also received sham double cone coil TMS pre and post a spinal manipulation intervention. From the 

averaged surface EMG data cortical silent periods (CSP) were constructed and analysed. Twenty-one single motor 

units were identified for the spinal manipulation intervention and twelve single motor units were identified for the 

control intervention. Following spinal manipulations there was a shortening of the silent period and an increase in the 

single unit I-wave amplitude. No changes were observed following the control condition. The results provide 

evidence that spinal manipulation reduces the TMS-induced cortical silent period and increases low threshold 

motoneurone excitability in the lower limb muscle.   These finding may have important clinical implications as 

they provide support that spinal manipulation can be used to strengthen muscles. This could be followed 

up on populations that have reduced muscle strength, such as stroke victims.  

 

Key words: Chiropractic, Spinal manipulation; Sensorimotor Integration; Transcranial Magnetic Stimulation; 

Motor Cortex; Single motor unit; Cortical silent period. 
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INTRODUCTION 

Spinal manipulation has been reported to help individuals suffering from neck pain [Bronfort et al., 2012, 

2004], back pain [Bronfort et al., 2004; Kuczynski et al., 2012], and headaches [Gross et al., 2010]. Spinal 

manipulation has also been shown to improve other aspects of nervous system function, such as improved 

elbow joint position sense and altered feedforward activation of core abdominal muscles [Haavik and 

Murphy, 2011; Marshall and Murphy, 2006]. Several studies have found evidence that suggest spinal 

dysfunction may lead to altered afferent input to the CNS from deep paraspinal muscle afferents [Bolton 

and Holland, 1998, 1996; Murphy et al., 1995; Zhu et al., 2000, 1993]. This has led to the hypothesis that 

such altered afferent input may lead to maladaptive central neural plastic changes in somatosensory 

processing and motor control of not only spinal muscles but also of limb muscles [Haavik-Taylor and 

Murphy, 2007a]. This altered afferent input from dysfunctional spinal segments is thought to alter the 

brain’s inner body schema because it has been shown that even a history of mild recurrent neck 

dysfunction alters cerebellar-M1 processing for an upper limb muscle [Daligadu et al., 2013], and spinal 

manipulation has been shown to reverse this back to what is seen in healthy populations [Daligadu et al., 

2013]. These findings support the theory that spinal manipulation, aimed at improving the movement 

patters of dysfunctional segments thus altering the afferent input from them to the CNS, should be able to 

reverse this effect [Haavik-Taylor and Murphy, 2007a].  

Several studies have shown altered central processing following spinal manipulation by recording 

somatosensory evoked potentials (SEP) [Haavik-Taylor and Murphy, 2007a, 2007b]. The changes were 

only observed at the level of the cortex, with altered N20 and N30 SEP peak amplitudes [Haavik-Taylor 

and Murphy, 2007a, 2007b]. The N20 SEP peak is known to be generated in the primary somatosensory 

cortex (S1), while the N30 SEP peak is thought to reflect sensorimotor integration [Rossi et al., 2003], in a 

more complex cortical and subcortical loop linking the basal ganglia, thalamus, pre-motor areas, and 

primary motor cortex [Kanovsky et al., 2003; Mauguiere et al., 1983; Rossini et al., 1989, 1987; Waberski 

et al., 1999].  
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Two studies have shown changes in upper limb motor control following cervical manipulation by finding a 

significant shortening of the transcranial magnetic stimulation (TMS)-induced cortical silent period (CSP) 

[Haavik-Taylor and Murphy, 2007b; Taylor and Murphy, 2008]. Both studies have shown a shortening of 

the CSP with no changes in MEP amplitude [Haavik-Taylor and Murphy, 2007b; Taylor and Murphy, 

2008]. However, Türker and colleagues have utilized a different method by constructing peristimulus 

frequencygram (PSF) [Türker and Cheng, 1994; Türker and Powers, 2005] from single motor unit 

recordings to further characterize these CSP responses evoked by TMS [Todd et al., 2012]. They found 

that using a combination of probability and frequency-based analysis techniques to characterize the TMS-

induced CSP observed following both subthreshold and suprathreshold TMS during a weak contraction 

resulted in longer silent periods than previously reported in the literature. Their study highlights the 

importance of using both probability and frequency-based analysis to accurately determine the duration of 

inhibitory events in peripheral recordings. Due to this evidence, the aim of the current study was to re-

investigate the previous changes in CSP observed following spinal manipulation in lower limb using single 

motor unit data and a combination of surface EMG (SEMG), peristimulus time histogram (PSTH) and PSF 

analyses on tibialis anterior (TA).  

METHODS 

Subjects  

In total nineteen subjects participated in one or more experimental sessions. They were sixteen males and 

three females aged 23 to 39 (mean age 29.4 ± 5.7 years). Subjects were randomly allocated to either the 

spinal manipulation or control intervention. Experimental measures were then recorded before and after 

either the spinal manipulation intervention (n = 18) or the control intervention (n = 12). The two 

experimental days for each subject were at least one week apart. To be included, subjects could not have a 

history of neurological disease, or any known contraindications to either spinal manipulation or magnetic 

stimulation (described in more detail below). The subjects were furthermore required to have a history of 
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reoccurring spinal pain or stiffness (e.g. present during the performance of certain tasks such as work or 

study). However, at the time of the experiment all subjects were required to be pain free. This was done in 

order to assess the potential effects of spinal manipulation delivered to dysfunctional joints alone without 

the presence of acute pain, as the presence of pain is known to alter corticomotor measures [Cheong et al., 

2003; Eisenberg et al., 2005; Kofler et al., 2001]. Koç University Human Ethical Committee approved the 

study in accordance with the Declaration of Helsinki. Written informed consent was obtained prior to 

participation. 

Transcranial magnetic stimulation (TMS)  

A MagStim 200 (MagStim, Dyfed UK) magnetic stimulators and a double cone coil was used to deliver 

single pulse magnetic stimuli over the motor cortical area optimal for eliciting MEPs from the TA. This 

optimal site was then marked on the scalp to ensure identical placement of the coil throughout the 

experiment. Resting and active motor threshold were determined. Resting motor threshold (RTh) was 

defined as the minimal stimulus intensity at which five out of ten consecutive stimuli evoked a MEP with 

amplitude of at least 50 μV in the TA muscle at rest. The active motor threshold (ATh) was defined as the 

minimal stimulus intensity at which five out of ten consecutive stimuli evoked a MEP with an amplitude of 

at least 100μV in TA muscle while holding a weak isometric background contraction (about 10% 

maximum voluntary contraction, MVC). 

Electromyographic recording  

Surface EMG activity was recorded from the left TA muscle. Two surface electrodes (2cm apart) were 

placed over TA. The ground electrode was placed on the lateral malleoli at the distal end of the fibula.  

EMG signals were collected from 7 mm diameter Hydrospot Ag/AgCl electrodes (Physiometrix Inc., 

USA), fixed with tape following standard skin preparation to reduce electrode impedance to less than 5 

k. EMG signals were amplified by a custom-built EMG amplifier, and were recorded from a CED Power 

1401 mk 2 data acquisition board and band-pass filtered at 20 Hz – 1 kHz, sampled at a rate of 2 KHz by a 

Spike2 data acquisition system (CED, UK) and stored on disk for off-line analysis.  
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For the intramuscular recordings, Teflon insulated silver fine wire bipolar electrodes were inserted into the 

muscle using a 25-gauge needle that was immediately withdrawn leaving the fish-hooked wires in the 

muscle. EMG signals recorded from wire electrodes were amplified (x 1000), filtered (100–5000 Hz 

bandwidth) and sampled (10 kHz) for later analysis using the data acquisition system (details are given 

above). Single motor unit potentials were identified from the fine wire recordings with the use of Spike2 

algorithms. Several hundred responses to the magnetic stimuli were recorded to enable CUSUMs to be 

calculated from the PSF to pinpoint the subtle changes in discharge rate that are not visible to the eye 

(details of the technique are published in [Todd et al., 2012]).  

Motor evoked potentials (MEPs) and cortical silent period (CSP) duration 

MEP latency was established using suprathreshold stimulus intensity and determining the time for the first 

significant deflection away from the stimulus time. The MEPs and CSPs of the SEMG and units were 

recorded while the subject contracted the muscle to regularly discharge an identifiable unit in the 

intramuscular electrodes.  The magnetic stimulus was set to an intensity that generated a discharge of the 

unit at the MEP latency 3 times out of 10 single TMS stimuli.  This makes the strength of the excitatory 

post synaptic potential (EPSP) about 3mV according to the estimation worked out by [Miles et al., 1989].  

This stimulus intensity was kept the same pre vs post either intervention.  

Interventions 

Spinal Manipulation 

The entire spine and sacroiliac joints were assessed for segmental dysfunction (also known as vertebral 

subluxation by the chiropractic profession) and adjusted where deemed necessary by a registered 

chiropractor with at least ten years clinical experience. The clinical indicators that were used to assess the 

function of the spine prior to and after each spinal manipulation intervention included assessing for 

tenderness to palpation of the relevant joints, manually palpating for restricted intersegmental range of 

motion, assessing for palpable asymmetric intervertebral muscle tension, and any abnormal or blocked 

joint play and end-feel of the joints. For this study a segment was defined as dysfunctional if at least three 
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of these indicators were present at the same segmental level. All of these biomechanical characteristics are 

known clinical indicators of spinal dysfunction [Cooperstein et al., 2013, 2010; Fryer et al., 2004; 

Hestbaek and Leboeuf-Yde, 2000; Hubka and Phelan, 1994; Jull et al., 1988]. All the spinal manipulations 

carried out in this study were high-velocity, low-amplitude thrusts to the spine or pelvic joints and took 

about 15 minutes to perform. This is a standard manipulation technique used by chiropractors. The 

mechanical properties of this type of CNS perturbation have been investigated; and although the actual 

force applied to the subject's spine depends on the therapist, the patient, and the spinal location of the 

manipulation, the general shape of the force-time history of spinal manipulations is very consistent [BW et 

al., 1990] and the duration of the thrust is always less than 200 milliseconds (for review see [Herzog, 

1996]). The high-velocity type of manipulation was chosen specifically because previous research [Herzog 

et al., 1995] has shown that reflex EMG activation observed after manipulations only occurred after high-

velocity, low-amplitude manipulations (as compared with lower-velocity mobilizations). This 

manipulation technique has also been previously used in studies that have investigated neurophysiological 

effects of spinal manipulation, as discussed in the Introduction (for review see [Haavik and Murphy, 

2012]). The subjects received manipulations only to joints that were deemed to be dysfunctional as 

described above. Each subject received on average 3-5 manipulations, and most were manipulated in all 

three regions of the spine (cervical, thoracic and lumbar/pelvic regions). 

Control intervention  

The control intervention consisted of passive and active movements of the subject’s head, spine and body 

that was carried out by the same chiropractor who pre-checked the subjects for vertebral subluxations and 

who performs the spinal manipulations in the experimental intervention session. This control intervention 

involved the subjects being moved into the manipulation setup positions where the chiropractor would 

normally apply a thrust to the spine to achieve the manipulations. However, the experimenter was 

particularly careful not to put pressure on any individual spinal segments. Loading a joint, as is done prior 

to spinal manipulation has been shown to alter paraspinal proprioceptive firing in anesthetised cats [Pickar 
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and Wheeler, 2001], and was therefore carefully avoided by ending the movement prior to end-range-of-

motion when passively moving the subjects.  No spinal manipulation was performed during any control 

intervention. This control intervention was not intended to act as a sham manipulation but to act as a 

physiological control for possible changes occurring due to the cutaneous, muscular or vestibular input that 

occur with the type of passive and active movements involved in preparing a subject/patient for a 

manipulation. It also acted as a control for the effects of the stimulation necessary to collect the dependent 

measures of the study, and acted as a control for the time required to carry out the manipulation 

intervention. 

Experimental protocol  

Subjects were first given written and verbal information, and signed informed consent was obtained. The 

subject’s spine was then checked by a registered chiropractor to determine if and where the spines would 

be manipulated as described above. If the subject was judged to have segmental dysfunction, the relevant 

information (including detailed medical history) was then obtained. Subjects were screened for 

contraindications for manipulation, such as recent history of trauma, known conditions such as 

inflammatory or infectious arthropathies and bone malignancies. Finally, subjects were screened for 

contraindications for magnetic stimulation, such as a history of epilepsy, pregnancy, or metal implants in 

the head. 

Experimental measures were then recorded before and after either the control intervention (n = 13) or the 

spinal manipulation intervention (n = 17). The two experimental days for each subject were at least one 

week apart and the order was randomised.  Both interventions took about 15 minutes to perform, as 

described above. Subjects began the first experiment with maximal voluntary dorsiflexions of the foot. 

Three brief (2–3 s) isometric contractions were performed and each contraction was separated by greater 

than 1 min of rest to avoid fatigue. Active motor threshold was then measured during weak foot 

dorsiflexion (~10% MVC) and rest threshold was measured during no contraction. Stimuli were delivered 

at a frequency of 0.25–0.33 Hz and initially at a clearly suprathreshold level. The stimulus intensity was 
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then reduced in small increments until the intensity was at motor threshold. Subjects maintained the weak 

contraction to activate a clearly distinguishable motor unit at a regular rate (details are given above and 

published elsewhere: [Todd et al., 2012]). Visual and auditory feedback of single motor unit discharge was 

provided. Subjects then rested for several minutes and repeated the sustained weak foot dorsiflexion until 

up to a few hundred TMS stimuli was delivered so that we can induce reliable PSTHs and PSFs.   

Three subjects repeated the protocol on a different day with sham TMS. Sham TMS was applied by 

holding the coil perpendicular to the skull so the magnetic stimuli would be applied into the air in front of 

the subject. The subject would therefore felt the coil over the head and hear the same sounds, but does not 

receive any stimulation [Loo et al., 2000]. Sham stimulation was applied to determine if other factors, such 

as the auditory click that accompanies discharge of the Magstim capacitor, contribute to suppression of 

voluntary EMG observed after real threshold stimulation.  

Data analysis  

For brief maximal contractions, root mean square (RMS) SEMG was measured over a 1 s interval. Pre-

stimulus voluntary RMS SEMG was normalized to the average obtained during brief maximal efforts. For 

the sustained weak contraction during the activity of the motor unit, SEMG analysis involved extraction of 

a defined time period from around the stimuli (± 250 ms) averaging the signals and normalizing the data to 

the MVC of the muscle. Cumulative sum (CUSUM) [Ellaway, 1978] was calculated from the averaged 

SEMG to illustrate the timing of the response in the SEMG. 

Analysis of SEMG included the peak-to-peak amplitude and latency (onset) of MEPs measured from the 

unrectified SEMG. The duration of the CSP following TMS was measured by a cursor from the stimulus 

onset to the end of the significant downturn in the rectified SEMG CUSUM [Brinkworth and Türker, 

2003].  

Analysis of the electrical activity recorded with intramuscular fine wire electrodes involved identification 

of single motor unit potentials followed by construction of PSTH and PSF. While PSTH is a simple 
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histogram indicating the timing of spikes against the stimulus, PSF is made up of superimposition of the 

instantaneous discharge rates of a selected unit around the time of the stimulus and indicates the changes in 

the membrane potential of the motoneurone  [Türker and Cheng, 1994; Türker and Powers, 2005]. To 

build PSF and PSTH, electrical activity from the intramuscular fine wire electrodes was displayed and the 

shape of one large individual motor unit action potential (spike) was defined as a template in the Spike2 

program. During the experiment and during off-line analysis, any spike whose shape matched this pre-

established template generated acceptance pulses in the program. The acceptance pulses from the 

discriminated units were then used to construct PSTHs and PSFs around the time of stimulation. PSTH and 

PSF CUSUMs were then constructed from data normalised to the average prestimulus values. PSTH and 

PSF responses were compared with SEMG responses. CUSUMs for the PSTH graphs were also obtained 

to make any subtle but significant changes in bin counts detectable. Similarly, CUSUMs for the PSF were 

calculated to pinpoint the subtle changes in discharge rate that were not visible to the eye (details of the 

technique are published in [Todd et al., 2012]).   

In line with our previous studies [Brinkworth and Türker, 2003; Türker et al., 1997], we only considered 

significant changes in the post-stimulus period that occurred before the minimum reaction time to the 

stimulus.  Minimum reaction time to the TMS stimulation sound on TA EMG was found to be 281±24 ms 

in the current study.  Any post-stimulus changes that occur within this timeframe (i.e. less than 250 ms) are 

therefore considered not to be contaminated by conscious effort. Any apparent post-stimulus deflection 

was then considered as a genuine response to the stimulus only if they were larger than the prestimulus 

error box [Brinkworth and Türker, 2003; Türker et al., 1997] and occurred before the reaction time to the 

stimulus. If such deflections were going up, they are classified as ‘excitation’ and if they were going down, 

as ‘inhibition’. Onset of inhibition or excitation was taken as the first apparent deflection that was larger 

than the error box. The endpoint of inhibition or excitation was the point where the significant deflection 

ceased and the CUSUM became flat again.  
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For statistical analysis, two-way ANOVA with factors time (pre and post) and intervention (Spinal 

manipulation and Control) was applied separately for each of the measured parameters. Statistical 

significance was assumed if P<0.05. 

RESULTS 

In total 85 individual units from across all 19 subjects were identified.  To ensure quality and clarity of the 

PSTH and PSF records, we set the minimum number of stimuli to be 75, after which we were left with 64 

individual units. To investigate changes post intervention, we only accepted units that were identical pre 

and post intervention using the macro EMG of the unit’s reflection on the SEMG, as previously described 

[Schmied and Türker, 2001]. Thirty-seven units fit the 75 stimuli criteria for the spinal manipulation 

intervention. Twenty-one of these were identical pre and post spinal manipulation. Twenty-four units fit 

the 75 stimuli criteria for the control intervention analysis. Twelve of them were identical pre and post the 

control intervention.  Three units were utilized for the sham TMS manipulation intervention. Only one unit 

was identical pre and post manipulation with the sham TMS stimulation. No changes in active or rest 

threshold were found after either intervention. 

SEMG CUSUM 

CSP was measured according to previously published methods (i.e. measured from stimulus onset to 

reoccurrence of SEMG) [Haavik-Taylor and Murphy, 2007b; Taylor and Murphy, 2008] in the current 

study, we found a significant interaction effect for intervention and  time   ( F(1,28)=10.66,p = 0.003). Post 

hoc analysis revealed significant (p =0.002) decrease of 19.42 ms in duration of inhibition after spinal 

manipulation only (See Table 1). No change in CSP duration was observed following the control 

intervention. Fig 1 illustrates the SEMG results of a subject before and after spinal manipulation.  This is 

an average of 88 stimuli and shows clearly that no change in the MEP amplitude occurs following the 

manipulation.  Table 1 illustrates the CSP results analysed from averaged SEMG data from all subjects, as 

well as measures from the single motor units (SMUs) that were identical pre and post spinal manipulation 
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and control intervention. All methods of analysis for CSP duration resulted in a significant reduction 

following spinal manipulation with no change following the control intervention.    

Single motor unit results 

Prestimulus time histogram (PSTH) 

We have used the timing of the stimulus and the acceptance pulses of single motor units as the source to 

obtain PSTH records. PSTHs and the CUSUMs built upon the PSTHs have shown the following findings: 

The latency for the MEP was found to be similar to the one found using the SEMG records. The MEPs of 

single units displayed several peaks separated by a few milliseconds reminiscent to the I-waves described 

earlier by many investigators (for review see [Awiszus and Feistner, 1994, 1993; Lazzaro and Ziemann, 

2013]). The number and the size of these waves changed following the manipulation, which is summarized 

in Table 2. Twelve identical SMUs were identified, and while average onset latency for the first I-wave 

was similar for both pre and post manipulation, the amplitude increased post manipulation by 90% on 

average. Of the eight identical SMUs that were identified that had a second I-wave, again the onset 

latencies were similar, and again the amplitudes increased post-manipulation by 180% on average. These 

average increases were not significant due to large variability. Examples are shown in Fig 2 and 3 (pre and 

post spinal manipulation) and Fig 4 (pre and post control) where the number of I-waves were visually 

identified. The PSTHs of the I-waves are illustrated in an expanded time scale in Fig 5 and 6. 

For the CSP duration significant interaction effect for intervention and time (F (1,31) =5.863, p = 0.022). 

was found for intervention and time when measured using the onset and end points identified from the 

SMU PSTH CUSUM analysis. Post hoc analysis showed that the CSP duration on average decreased 

significantly(p=0.001) by 25.3ms after the manipulation, again in congruence with previous published 

findings [Haavik-Taylor and Murphy, 2007b; Taylor and Murphy, 2008]. Following the control 

intervention there was no significant change on the number of I-waves, on the amplitude of the MEPs, or 

on the CSP duration. In Fig 2 (Panel b) and Fig 3 (Panel b) there is a clear shortening of the CSP in the 

PSTH CUSUM post manipulation.  
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Peristimulus Frequencygram (PSF) 

Using instantaneous discharge rates of single motor units the latency of the MEP was the same as the 

PSTH records (see Table 3). The MEP was made up of several temporally separated excitatory post 

synaptic potentials as indicated by genuine increases of the discharge rates underlying the PSTH peaks 

(See Fig 2, 3 and 4). In some units, although the PSTH indicated CSPs as the lower number of action 

potential occurrences, the PSF failed to indicate any significant discharge rate reduction underlying those 

periods, hence suggesting that they may be false periods of inhibitions. For example, Fig 3 - first column - 

panel B, there is what appears to be an inhibition in the PSTH CUSUM. However, there is no change to 

the PSF CUSUM in panel D indicating that the discharge rate did not decrease, hence no genuine 

inhibition during CSP.  

Following spinal manipulation, in the SMUs that displayed true excitation in the PSF CUSUM (n=12), we 

observed a significant increase (p = 0.01) in I-wave amplitude for the first I-wave peak. The second I-wave 

also increased, however, this increase was not significant. Individual examples of these increases can be 

observed in Fig 2 and 3, panel d. In two subjects (four identical pairs of SMUs pre-vs post manipulation) it 

was noted that there was a true excitation in the PSF CUSUM prior to the spinal manipulations, yet after 

the intervention these identical units were no longer showing any excitation with the magnetic stimulation. 

In subjects showing genuine inhibition in the PSF (7 SMUs pre/post SM and 5 SMUs pre/post control) the 

CSP was measured from beginning point taken from PSTH and end point from PSF, as recommended by 

[Todd et al., 2012]. Two way revealed significant interaction effect for intervention and time (F (1,10) 

=7.35, p = 0.02). Post hoc analysis showed that the CSP decreased significantly post manipulation (p 

=0.02) with an average decrease in duration of 34.7ms. 

Background SMU firing rate 

Analysing the background discharge rates from the identical units pre vs. post intervention (measured pre-

stimulus onset) there were no significant changes in firing rate following the spinal manipulation or control 

interventions. 
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DISCUSSION  

This study has discovered three novel findings:  Firstly, this study demonstrated in human subjects the 

existence of individual I-waves using single motor unit recordings. The I-waves were observed in the 

single unit data as separate entities with significant peaks and are confirmed to be excitatory events as the 

discharge rate underlying them were higher than the background rate. Secondly, chiropractic manipulation 

significantly increased the amplitude of the first I-wave.  Finally, the CSP duration was significantly 

reduced after spinal manipulation in lower limb muscle. 

I-waves 

Transcranial magnetic stimulation can activate the human brain through the intact scalp [Barker et al., 

1985; Merton and Morton, 1980]. A single TMS pulse evokes a series of descending corticospinal volleys 

that are separated from each other by about 1.5ms (for review see [Lazzaro and Ziemann, 2013]). The 

evoked descending corticospinal activity has been directly recorded from epidural electrodes placed over 

the high cervical cord in both animals and human subjects [Lazzaro and Ziemann, 2013]. The earliest wave 

is thought to originate from the direct activation of the axons or the axon hillock of fast-conducting 

pyramidal tract neurones (PTN) and is therefore termed the “D” wave [Lazzaro et al., 1999]. The later 

waves are thought to originate from indirect (i.e. trans-synaptic) activation of PTNs and are therefore 

termed “I” waves [Patton and Amassian, 1954]. The various I-waves tend to be numbered using their 

latency from the time of stimulation. 

In this study, the individual peaks in the PSTH at the MEP latency that are separated by a few 

milliseconds, are clearly observed in all units tested and demonstrated in Fig 2 and 3.  For the purpose of 

this paper these peaks at the latency of the MEP are referred to as I-waves as they match exactly the timing 

of the I-waves recorded directly from the spinal cord. We are not the only researchers referring to these 

PSTH peaks as I-waves as other researchers also suggested that these peaks were indications of the I-

waves [Awiszus and Feistner, 1994].  As the sign of these waves, in the current study, using the PSF 
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results we have proven that these I-waves were genuine excitatory events as the discharge rates underlying 

these peaks were higher than the background firing rates. 

It has been previously shown that TMS with the double cone coil for lower limb stimulation at stimulus 

intensities around motor threshold, preferentially evoked EMG responses that were later than those after 

anodal stimulation, suggesting I-wave activation at these low intensities [Terao et al., 2000]. It was argued 

that stimulation of the leg area was fundamentally the same as stimulation of the hand area, in that, 

magnetic stimuli tended to evoke I-waves, whereas vertex electric stimulation preferentially recruits D-

waves. Our findings supports notion of Terao et al. 2000, as the current results also suggest I-wave 

activation because the time of the MEP onsets are too long to be direct activation of PTNs.  

A single motor unit recording protocol has also been described to study the differential activation of 

corticospinal volleys by various types of transcranial magnetic stimulation (TMS) by  [Terao et al., 2001]. 

Using the protocol in [Terao et al., 2001], the authors were unable to demonstrate selective activation of 

the various I-waves for the leg motor area, as we have demonstrated in the current study.  However, others 

have shown the I-waves in individual motor units similar to our findings [Awiszus and Feistner, 1994]. 

This study differs from the previous studies in that we have shown that each one of these I-wave peaks in 

the PSTH records are genuine excitatory events as the discharge rates underlying these peaks were higher 

than the prestimulus discharge rates.   

Spinal manipulation and increased I-wave excitation 

This study demonstrated that a single session of chiropractic spinal manipulation altered the 

amplitude and the number of the observed I-waves recorded from identical SMUs. This was an unexpected 

but a significant finding as it proves that the waves can be strengthened or may be joined up to make larger 

excitations. This needs to be examined further, as this has significant implications for clinical application 

to a variety of patient populations. The first I-waves increased post manipulation significantly. The 

changes observed in this study are therefore strong evidence that spinal manipulation can result in a 
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significant increase in excitability of some low threshold motor units. This finding is congruent with the 

findings of a separate study utilizing the H-reflex methodology [Niazi et al., 2015], where we found a 

decrease in the H-reflex threshold following spinal manipulation, also suggesting that manipulation 

selectively alters the excitability of low-threshold motor units, in this case for the soleus muscle.     

It is possible that the spinal manipulation intervention also lead to a change in level of intra-

cortical or spinal inhibition for the four SMUs that were excited prior to the spinal manipulation 

intervention yet showed no excitation after the intervention. This suggests a change in the SMU 

recruitment taking place following spinal manipulation, with some SMUs no longer excited after spinal 

manipulation while other SMUs are apparently ‘switched off’. However, it is possible that despite our 

careful efforts to stimulate the exact same spot on the scalp before and after our interventions that post 

manipulation the magnetic stimuli were applied at a slightly different spot or angle and that these particular 

SMUs were no longer activated by the magnetic stimuli.  

Spinal manipulation and the cortical silent period  

A significant decrease of the CSP in the low-threshold units was observed in the current study. We 

know from our earlier experience that the inhibitory synaptic events as expressed indirectly in the regularly 

active single motor units is highly depend upon the background discharge rate of the unit concerned [Miles 

and Türker, 1987, 1986]. We have named this phenomenon ‘the frequency principle of inhibition’ [Miles 

and Türker, 1986] since the duration of an inhibitory event lasted longer when the motor unit used to study 

the inhibition fired slower even when the stimulus intensity was fixed.  With this knowledge, we expect 

that the prestimulus discharge rate may play an important role in the expression of the inhibitory synaptic 

potentials. In our study however the background discharge rate of the motor units remained the same after 

the SM where the CSP duration was found to be shorter. Therefore, we are confident that the change in the 

CSP must have been genuine. The current results found that even though the discharge rate of the identical 

unit remained stable, the inhibitory period actually became shorter.  We can therefore conclude with 
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confidence that in the low-threshold units, the chiropractic manipulation session induces genuine reduction 

in CSP duration.  

The CSP has been claimed to reflect both spinal and cortical inhibitory components [Brasil‐ Neto 

et al., 1995; Cantello et al., 1992; Chen et al., 1999; Inghilleri et al., 1993; Kukowski and Haug, 1992; 

Roick et al., 1993]. Studies have shown that the first part of the CSP (about 50ms) after TMS is produced 

mainly by spinal mechanisms such as after-hyperpolarization and Renshaw recurrent inhibition of the 

spinal motoneurones [Chen et al., 1999; Inghilleri et al., 1993]. Reciprocal inhibitory effects on the target 

muscle may also contribute, since the magnetic stimulation often causes simultaneous activation of 

antagonists. However, the rest of the CSP (after about 50ms) is produced mainly by cortical inhibition 

[Brasil‐ Neto et al., 1995; Cantello et al., 1992; Chen et al., 1999; Inghilleri et al., 1993; Kukowski and 

Haug, 1992; Roick et al., 1993].  

The exact mechanisms of the cortical inhibition responsible for producing the CSP are however 

more difficult to establish. Most evidence suggests that this inhibition is presynaptic to the cortico-spinal 

neurons, rather than due to a decreased excitability of these cortico-spinal neurons [Cantello et al., 1992; 

Inghilleri et al., 1993; Tergau et al., 1999]. Neuropharmacological modulation in healthy subjects suggests 

that the CSP reflects GABAB-mediated intracortical inhibition [Siebner et al., 1998; Werhahn et al., 1999]. 

Some have argued that it results from activation of inhibitory neurons projecting onto the pyramidal cells 

of the motor cortex [Inghilleri et al., 1993]. However, it may also reflect a withdrawal of excitatory input 

to pyramidal cells, by increased inhibition of such excitatory pathways.  

The results of the current study have confirmed previous findings that the chiropractic 

manipulation does not alter the size of the MEP but reduces the duration of the CSP [Haavik-Taylor and 

Murphy, 2007b; Taylor and Murphy, 2008]. These previous studies showed this to be the case in upper 

limb muscles. The current study demonstrates that this is also the case for a lower limb muscle. However, 

unlike the SEMG, single unit analyses indicated that while in some units the MEP size increased 
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significantly, other units appeared to be ‘switched off’. This may be explained from the fact that the 

SEMG is made up of several units, some of which may increase in their MEPs and some may decrease to 

give an overall average of no change in SEMG data.  We have used low-threshold units and while some 

units increased their MEP amplitudes dramatically, other units that displayed MEPs prior to manipulation 

showed no MEPs after manipulation, hence it is possible that a similar pattern of changes to MEPs occurs 

with larger units as well. Our study certainly indicates that spinal manipulation alters the SMU recruitment 

patterns. As mentioned, this finding of increased low-threshold motor units with spinal manipulation has 

also been observed in a separate study utilizing the H-reflex methodology [Niazi et al., 2015], where we 

found a decrease in the H-reflex threshold following spinal manipulation, also suggesting that 

manipulation selectively alters the excitability of low-threshold motor units in the soleus muscle.  Again, 

these findings have significant implications for clinical application to a variety of patient populations, thus 

it is critical these findings are examined further. 

The CSP has generally been measured from the time of the stimulation to the start of the EMG 

activity after a period of silence.  Our results suggest that this method can be misleading. Similar to what 

Todd et al (2012), we have shown that using the discharge rate-based method provides a different 

depiction of both the excitatory and inhibitory events following cortical stimulation. Since this method has 

been tested directly using known synaptic potentials on regularly discharging motoneurons in rat brain 

slices, it is reliable to indicate the TMS induced changes in the motoneurone membrane.  Using the 

discharge rate based method, Todd et al. 2012 examined the CSP in an upper limb muscle, first dorsal 

interosseous (FDI) and suggested that the CSP duration was underestimated in the previous work which 

used probabilistic methods. We confirm our earlier findings, that to determine the true duration of the CSP 

one needs to use both the probabilistic and frequency analyses simultaneously and that the most accurate 

method would be to use of PSTH CUSUM for CSP onset and the PSF CUSUM for CSP endpoint. 

Classically defined CSP relies upon reduced motor unit activity as observed in the surface EMG 

and/or single motor unit prestimulus time histograms (PSTHs).  However, as we have shown in regularly 



  

CSP changes with spinal manipulation 

 19 

discharging motoneurons in rat brain slices, low level of activity does not always indicate inhibitory input 

to a motoneurone [Türker and Powers, 2005]. Discharge probability of a motoneurone may decrease 

during a falling phase of an excitatory post synaptic potential while the discharge rate of these low number 

of occurrences may actually be higher than the background discharge rate indicating that the excitatory 

effect is still continuing.  In the current study, during the CSP, as indicated by low level of activity in the 

surface EMG and single unit PSTHs, the discharge rate of the underlying units either did not change or 

slightly increased (Fig 2-4). Therefore, we caution the investigators regarding the authenticity of the 

inhibitory events underlying the TMS induced CSP. We found that the significant reduction in the 

discharge rate  was observed only when large numbers of discharges of the units returned after a period of 

low level of activity (classically defined as the end of cortical silent period however it is indicating delayed 

inhibition according to our brain slice experiments).  

Clinical relevance 

The changes observed in the I-waves and CSP duration in this study provide evidence that spinal 

manipulation can result in a significant increase in the excitability of the motor pathways to low threshold 

motor units of human tibialis anterior muscle.  These finding may reflect the mechanisms of increases in 

strength shown by other study following spinal manipulation [Christiansen et al., 2018; Niazi et al., 2015]. 

Based on the current study design it is not possible to make any claims regarding segment-specific spinal 

manipulation effects. The current study took a pragmatic approach and allowed the chiropractor to 

manipulate any dysfunctional segments they found (what chiropractors often call vertebral subluxations). 

In this study each of the subjects received manipulations at multiple levels of the spine (see Table 4). 

Future studies may wish to look at the effects of only manipulating dysfunctional segments in one spinal 

area (cervical, thoracic, lumbo/pelvic) vs manipulation in multiple spinal areas. Future studies may also 

want to see if it matters whether the chiropractor adjust the segments they deem to be dysfunctional vs 

random spinal manipulation, or specifically manipulating joints that are not considered dysfunctional. 
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Furthermore, it would be useful if future studies explore whether or not experience and skill level of the 

manual therapist matters with regards to obtaining these types of neuromuscular effects.   
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Tables 

 

Table 1: The characteristics of the cortical silent period (CSP) as measured with three different methods. In the first 

column, the CSP is analysed from rectified averaged SEMG data from the subjects according to the classical method 

of considering the onset of CSP from stimulus onset and the endpoint measured from the end of apparent inhibition 

measured from the SEMG-CUSUM. The middle column calculates the onset and endpoint of the CSP from the SMU 
PSTH-CUSUM as described in [Todd et al., 2012] (n = 21 identical SMUs pre and post spinal manipulation and n = 

12 identical SMUs pre and post control). The final column calculates the onset from the PSTH-CUSUM and endpoint 

of CSP from the PSF-CUSUM in those units with genuine inhibition  (n = 7 identical SMUs pre and post spinal 

manipulation and n = 5 identical SMUs pre and post control)as seen in the PSF-CUSUM as recommended in [Todd 

et al., 2012]. All methods of analysis for CSP resulted in a significant reduction following spinal manipulation with 

no change following the control intervention.    

 

 

 

  
From stimulus onset 

to SEMG-CUSUM end 

From PSTH-

CUSUM onset to 

end 

From PSTH-

CUSUM onset to 

PSF-CUSUM end 

  
Mean SD 

 
Mean SD 

 
Mean SD 

Pre SM onset 0 0 
 

46.9 11.2 
 

46.9 11.2 

 
duration 121.9 43.1 

 
83.7 37.5 

 
133.01 55.6 

          
Post SM onset 0 0 

 
44.7 7.8 

 
44.7 7.8 

 
duration 102.5** 33.7 

 
58.4** 33.8 

 
98.35* 44.1 

          
Pre control onset 0 0 

 
41.6 5.4 

 
41.6 5.4 

 
duration 121.3 37.6 

 
62.6 32.2 

 
131.9 45.1 

          
Post control onset 0 0 

 
42.0 7.2 

 
42.0 7.2 

 
duration 136.6 49.1 

 
60.7 29.1 

 
145.7 43.7 

** p < 0.01 compared to pre-intervention value 

*   p < 0.05 compared to pre-intervention value 
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Table 2: The individual I-wave amplitudes (as a fraction of pre-intervention amplitudes) as measured from the 

prestimulus CUSUM for those motor units were identical post-intervention and showed genuine excitations in the 

PSF. This was found in n = 12 (out of total 21 similar) SMUs for the first I-wave pre/post manipulation, and n = 8 

(out of total 21 similar) SMUs for the second I-wave pre/post spinal manipulation intervention. For the control 

intervention, this was found in n = 10 (out of total 12 similar) SMUs for the first I-wave and n = 7 (out of total 12 

similar) SMUs for the second I-wave. Note the large increases in I-wave excitation following spinal manipulation.  

 

 

 

 

 

 

Peristimulus time histogram (PSTH) 
 

Peristimulus frequencygram (PSF) 

  
I-wave 1 

 
I wave 2 

 
I-wave 1 

 
I wave 2 

  
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Pre SM Onset 31.8 4.6 
 

42.6 4.5 
 

34.0 4.6 
 

42.1 4.1 

 
Ampl 1 0 

 
1 0 

 
1 0  1 0 

             Post SM Onset 31.7 4.2 
 

40.7 4.7 
 

33.2 4.0 
 

39.6 3.2 

 
Ampl 1.9 2.4 

 
2.8 2.8 

 
4.3* 5.5  5.3 8.2 

             Pre Onset 31.7 2.5 
 

37.7 5.5 
 

33.5 4.0 
 

40.9 6.2 

control Ampl 1 0 
 

1 0 
 

1 0  1 0 

             
Post Onset 32.0 2.8 

 
40.0 4.4 

 
33.7 3.6 

 
41.5 5.8 

control Ampl 1.5 1.8 
 

1.5 1.4 
 

1.95 2.4  11.21 25.14 

Pre/post SM identical SMUs; first I wave n=12, second I wave n=8 
      

Pre/post Control identical SMUs; first I wave n=10, second I wave n=7 

* p < 0.05 compared to pre-intervention value       
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Table 3: The characteristics of the MEP amplitudes and latencies from SEMG and PSTH data normalised to 

number of stimuli. From SEMG data the MEP amplitude (in mV) was measured peak to peak from the non-rectified 

SEMG traces, and the latencies (in ms) was measured from averaged SEMG CUSUM data from all subjects pre/post 

spinal manipulation and pre/post control. From the PSTH data the MEP amplitudes (in k.ms) and latencies (in ms) 

were measured from the PSTH-CUSUM from identical units pre/post spinal manipulation and pre/post control. Note 

there were no significant changes in onset time of MEPs using either method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    SEMG   PSTH CUSUM 

    Mean  SD   Mean SD 

Pre SM onset 33.6 3.8 

 

30.1 5.2 

 

ampl  2.3 4.1 

 

0.4 0.4 

       Post SM onset  33.7 3.4 

 

30.5 5.4 

 

ampl 2.2 4.1 

 

0.4 0.3 

       Pre control onset 31.8 2.1 

 

31.1 3.2 

 

ampl 1.3 1.9 

 

0.4 0.2 

       Post control onset 32.3 2.1 

 

30.6 4.2 

  ampl 1.1 1.6   0.6 0.5 
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Table 4: Spinal manipulation sites for each subject 

Sub ID Spinal Manipulations 

1 Right SI, T9, T4, C7, C2 

2 Left SI, T12, T1, C1 

3 Left SI, T10, T8, T4, C3, left Occiput 

4 right SI, T4, C4, C1 

5 Left SI, L3, T7, C3, C1 

6 Left SI, L1, T10, C4, left occiput 

7 left SI, T10, T5, T1, left occiput, C2 

8 Left SI, T10, T6, T4, C1, C3 

9 Left SI, T4, C2, C1 

10 left SI, T6, C2 

11 left SI, T9, T4, L3, right occiput, C2 

12 L & R SI, L2, T11, T7, C4 

13 L & R SI, T6, T3, C1 

14 left SI, T7, C2,  

15 Right SI, T6, C7, C2 

16 Left SI, T6, Left occiput, C2 

17 left SI, T10, T6, C1, C4 

18 Left occiput, C2, T6, T1,  
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Figures 
Fig 1: a) Raw trace of average SEMG from one subject pre and post spinal manipulation showing almost 

identical MEPs. b) SMU MEP showing a reduction in CSP with the help of a dashed vertical line. Time ‘0 

s’ is where the stimulation occurs. 

Fig 2: Surface EMG and single motor unit data from one subject during threshold transcranial magnetic 

stimulation delivered during weak ankle dorsiflexion pre and post spinal manipulation (the left column is 
pre and the right column is post). Several hundred stimuli were delivered (n = 184 (pre) and n=130 

(post)). (a) The macro EMG of the unit, showing that it is the same unit both pre and post spinal 

manipulation. (b) Cumulative sum of peristimulus time histogram (PSTH CUSUM), dashed horizontal 

lines represent error bars. (c) Peristimulus time histogram (PSTH). (d) Cumulative sum of peristimulus 
time frequencygram (PSF CUSUM), dashed horizontal lines represent error bars. (e) Peristimulus time 

frequencygram (PSF). The vertical line represents the timing of TMS. Note that the PSTH of the unit 

indicates several peaks separated by few milliseconds. In the PSTH CUSUM these separate peaks make 
separate steps.  PSF and its CUSUM indicate further that these PSTH peaks are actually excitatory events 

as the discharge rate underlying them higher than the prestimulus discharge rate.  PSF also indicates that 

the lower number of spikes during the CSP can actually have a higher discharge rate than the prestimulus 

values.  Furthermore, as illustrated in this figure, the end of the CSP cannot be the timing of the 
reoccurrence of spikes as it was classically accepted since the discharge rate of these spikes is actually 

lower than the prestimulus rate indicating that the inhibitory effect is still continuing [Türker and Powers, 

2005].   

Fig 3: Surface EMG and single motor unit data from one subject during threshold transcranial magnetic 

stimulation delivered during weak ankle dorsiflexion pre and post spinal manipulation (the left column is 
pre and the right column is post). Several hundred stimuli were delivered (n = 136 (pre) and n=199 

(post)). (a) The macro EMG of the unit, showing it is the same unit both pre and post spinal manipulation. 

(b) Cumulative sum of peristimulus time histogram (PSTH CUSUM), dashed horizontal lines represent 

error bars. (c) Peristimulus time histogram (PSTH). (d) Cumulative sum of peristimulus time 
frequencygram (PSF CUSUM), dashed horizontal lines represent error bars. (e) Peristimulus time 

frequencygram (PSF). The vertical line represents the timing of TMS. Note in B that the down going phase 

(CSP) is shorter after the manipulation.  Also note that during the CSP indicated in panel B, the discharge 
rate (d and e) does not change indicating that there is no genuine fall in discharge rate during the CSP, 

hence no genuine inhibition present.  

Fig 4: Surface EMG and single motor unit data from one subject during threshold transcranial magnetic 

stimulation delivered during weak ankle dorsiflexion pre (slightly noisy recording) and post the control 

intervention (the left column is pre and the right column is post). Several hundred stimuli were delivered (n 

= 210 (pre) and n=131 (post)). (a) The macro EMG of the unit, showing that it is the same unit both pre 
and post spinal manipulation. (b) Cumulative sum of peristimulus time histogram (PSTH CUSUM), dashed 

horizontal lines represent error bars. (c) Peristimulus time histogram (PSTH). (d) Cumulative sum of 

peristimulus time frequencygram (PSF CUSUM), dashed horizontal lines represent error bars. (e) 
Peristimulus time frequencygram (PSF). The vertical line represents the timing of TMS. Note that the 

discharge rate of the motor unit does not decrease during the CSP as determined using the SEMG and 

PSTH.  Also note that a genuine reduction in the discharge rate actually occurs when the ‘motor units 
resume their activity’ which was classically accepted as the end of CSP duration.  
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Fig 5: PSTHs for the five identical SMUs pre and post manipulation showing the latency of I-waves in the 

abscissae. Note the increase in all identical units post manipulation 

Fig 6: PSTHs for one identical SMUs pre and post control showing the latency of I-waves in the 

abscissae.  
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Fig 2: 
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Fig 6: 
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