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Abbreviations: 

EV; extracellular vesicle 

CD36, cluster of differentiation 36 

FATP4; fatty-acid transport protein 4  

LCFA; long-chain fatty acid  

MV; microvesicle 

SkMV; skeletal muscle-derived microvesicle  

SR-B2, scavenger receptor B2 

Context: Microvesicles (MVs) are a class of membrane particles shed by any cell in the body 
in physiological and pathological conditions. They are considered to be key players in 
intercellular communication, and with a molecular content reflecting the composition of the 
cell of origin, they have recently emerged as a promising source of biomarkers in a number of 
diseases. 
Objective: The effects of acute exercise on the plasma concentration of skeletal muscle-
derived microvesicles (SkMVs) carrying metabolically important membrane proteins were 
examined.  
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Methods and Results: Thirteen obese male patients with type 2 diabetes mellitus (T2DM) and 
14 obese healthy male controls exercised on a cycle ergometer for 60 min. Muscle biopsies 
and blood samples obtained before exercise, immediately after exercise, and 3-h into 
recovery were collected for the analysis of long-chain fatty acid (LCFA) transport proteins 
CD36 (SR-B2) and FATP4 mRNA content in muscle, and for flow cytometric studies on 
circulating SkMVs carrying either LCFA transport protein. Besides establishing a novel flow 
cytometric approach for the detection of circulating SkMVs and subpopulations carrying 
either CD36 or FATP4, and thereby adding proof to their existence, we demonstrated for the 
first time an overall exercise-induced change of SkMVs carrying these LCFA transport 
proteins. A positive correlation between exercise-induced changes in skeletal muscle CD36 
mRNA expression and concentrations of SkMVs carrying CD36 was found in T2DM only.  
Conclusions: This approach could add important real-time information about the abundance 
of LCFA transport proteins present on activated muscle cells in subjects with impaired 
glucose metabolism. 

Effect of acute exercise on levels of muscle-derived microvesicles carrying long-chain fatty acid 
transport proteins was investigated. Increased levels were observed in T2DM and obese individuals.  

Introduction 

Carbohydrate and fat are dominant substrates for skeletal muscle metabolism and during 
exercise there is a complex interaction between skeletal muscle fat and carbohydrate 
metabolism (1,2). A major source of fat is long-chain fatty acids (LCFAs) from adipose 
tissue (3). Cellular LCFA uptake most likely takes place either by passive diffusion through 
the lipid bilayer, or is facilitated by membrane-associated proteins, or by a combination of 
both. In muscle, transport of LCFAs is mediated by several transport proteins, including the 
widely expressed transmembrane glycoprotein, cluster of differentiation 36 (CD36), a 
scavenger receptor class B protein (SR-B2), plasma membrane-associated fatty-acid binding 
protein (FABPpm), and fatty-acid transport proteins 1 and 4 (FATP1 and FATP4) (4-7). 
Transport protein-mediated LCFA uptake is a key step in cellular fatty acid utilization, and 
impaired regulation of this process may lead to intracellular triacylglycerol accumulation and 
cellular insulin resistance (IR) (8). In obesity, accumulation of intra-myocellular triglyceride 
(IMTG) is positively associated with IR. However, it seems unlikely that IMTG cause IR 
directly, but rather protects cells from IR by preventing the accumulation of lipotoxic 
intermediates such as diacylglycerol (DAG) and ceramide (9,10), each of which thought to 
engage serine kinases that disrupt the insulin signaling cascade, thereby causing IR (11).  

In rat skeletal muscle, CD36 and FATP4 are the most effective LCFA transport proteins 
in vivo (12). The acute effects of a single bout of moderate exercise on skeletal muscle CD36 
and FATP4 mRNA levels were previously described in rodents (13,14) and humans (5). 
However, studies of LCFA transport protein content and function have been hampered by the 
limited amount of skeletal muscle tissue obtained by percutaneous muscle biopsies in 
humans. Thus, most LCFA transport protein studies during acute exercise on humans are on 
either giant vesicles or crude membrane extracts of total homogenates (15,16).  

It is well known that skeletal muscle produces myokines during physical activity (17,18) 
and that these signaling molecules cover a whole range of auto-, para- and endocrine effects 
(19,20), suggesting a molecular link between muscle function and whole body physiology. 
Moreover, the finding that microRNAs (miRNAs) are secreted in a similar manner into the 
bloodstream during muscle-contraction (21), suggests an extensive cross-talk between muscle 
and other tissues. In the past decade, extracellular vesicles (EVs) have been recognized as 
potent vehicles of intercellular communication due to their capacity to transfer proteins, lipids 
and nucleic acids, as reviewed in (22). EVs are released from the surface of various cell types 
and based on their biogenesis or release pathways, they are often divided into exosomes (40 
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to 120 nm), microvesicles (MVs) (100 to 1000 nm) and apoptotic bodies (50 nm to 2 µm) 
(23,24). The recent findings that exosomes carrying miRNAs are shed from muscle tissue 
after a bout of acute exercise (25,26) underlines the extraordinary role of skeletal muscle as a 
secretory organ important for intercellular metabolic communication. To what extent MVs 
are released from skeletal muscle in the resting state, and whether the release of MVs are 
augmented in response to acute exercise remains to be established.  

Inspired by the growing body of data implicating an exercise-induced release of vesicles 
we hypothesize that skeletal muscle-derived MVs (SkMVs) carrying important molecular 
information are released during exercise and affected by mRNA transcription levels and by 
the presence of T2DM. Thus, more specific our aims were to establish the presence of 
circulating SkMVs, and to investigate the release of SkMVs during a single bout of exercise. 
MVs are surrounded by plasma membrane from their parental cell, and thus LCFA transport 
protein content in SkMVs during acute exercise may reflect adaptations in vivo. On this 
background, we aimed to determine concentrations of SkMVs carrying CD36 and FATP4. 
Skeletal muscle IR in type 2 diabetes mellitus (T2DM) is characterized by impaired insulin 
signaling, increased intramyocellular fat content and mitochondrial defects, as reviewed in 
(27). Both LCFA uptake and plasma membrane LCFA transport protein content have been 
shown to be higher in skeletal muscle with IR (28) and adaptable to exercise (29,30). Thus, 
we additionally sought to investigate whether T2DM affected the release of SkMVs 
expressing LCFA transport proteins in the resting state or in response to acute exercise. Our 
third aim was to study the potential of SkMVs as a surrogate to tissue biopsy-based 
biomarkers by investigating whether exercise-induced changes in muscle transcription levels 
of CD36 and FATP4 mRNA are reflected in SkMVs carrying these transport proteins. 

Materials and Methods 

Study subjects 
In the present study, we investigated skeletal muscle biopsies and blood samples obtained 
before, immediately after, and 3 h after an acute bout of endurance exercise. The study 
population, including medication details, eligibility criteria, clinical and metabolic 
characteristics have been described previously by Pedersen et al. (31,32). In brief, thirteen 
obese male patients with T2DM and 14 obese healthy male control individuals, matched for 
age, BMI and physical activity levels, participated in the study (Table 1). Informed consent 
was obtained from all participants before participation. The study was approved by The 
Regional Scientific Ethical Committees for Southern Denmark and was performed in 
accordance with the Helsinki Declaration. 

Study design 
One week before exercise day, all participants underwent exercise tests to determine maximal 
aerobic capacity (VO2max) as previously reported (31-33). On the exercise day, participants 
were required to exercise on an ergometer (Monoark Ergomedic 839 E, Vansbro, Sweden) 
for 60 min at power outputs that corresponded to approximately 70% VO2max, which is 
considered to be a moderate to high intensity exercise training. Muscle biopsies and fasting 
venous blood samples were obtained 20 min before exercise (pre-exercise), immediately after 
60 min of exercise (post-exercise) and after a post-exercise recovery period of 180 min 
(recovery) (Fig. 1). All medications were withdrawn one week prior to the study day, and 
participants were instructed to abstain from exercise 48 h before the exercise test.  

MV analysis 
Blood samples were collected at pre-exercise, post-exercise, and recovery and platelet-poor 
plasma (PPP) was prepared by centrifugation (2100 x g, 10 min., 8°C), immediately frozen, 
and stored at – 80° C until analysis. For each analysis, 50 �L of freshly thawed PPP was 
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transferred to a TruCountTM tube (BD Biosciences, New Jersey, USA) containing a known 
number of fluorescent beads used for calculating MV concentrations. Subsequently, SkMVs 
were labeled by adding 5 �L fluorescein isothiocyanate- (FITC-) conjugated Lactadherin (83 
�g mL−1, Haematologic Technologies Inc., Vermont, USA) characterized by a 
phosphatidylserine- (PS-) bonding motif, followed by 5 �L Phycoerythrin- (PE-) conjugated 
anti-human muscle-specific sarcolemmal beta-Sarcoglycan (480.0 �g mL−1 IgG2A, � 
(dilution: 1:5; Abcam, Cambridge, UK), and either 8 �L Allophycocyanin- (APC-) 
conjugated anti-human FATP4 (10.0 �g mL−1 IgG2B (clone #342142, R&D Systems Europe 
Ltd., Abington, UK)) or 15 �L APC-conjugated anti-human CD36 (6.25 �g mL−1 IgM, � 
(clone CB38, BD Pharmingen, New Jersey, USA)). After 30 min. of incubation (4°C, in the 
dark), 250 �L 0.22-�m filtered PBS was added to each labeled sample. MVs were analyzed 
by flow cytometry using a BD FACSAriaTM III High Speed Cell Sorter equipped with BD 
FACSDivaTM software (v. 6.1.3) and three air-cooled lasers (488 nm, 633 nm and 407 nm). 
Using fluorescence threshold triggering (in the blue part of spectrum) to discriminate 
fluorescently labeled vesicles from non-fluorescent noise, as described in recent studies 
(34,35), we were able to detect fluorescent 100-nm silica beads on the basis of both 
fluorescence and scatter properties (FSC-H/SSC-H). A size-defined MV region (100-1000 
nm) was established in a FSC-H/SSC-H setting (log scale) using a blend of fluorescent 100-
nm and 1000-nm silica beads (Kisker Biotech GmbH & Co. KG, Germany). Logarithmic 
amplification was used for all channels and isotype ab controls added to Lactadherin-FITC-
stained plasma samples were used as negative controls. Results were analyzed using 
FlowJoTM (v. 10, Tree Star, Inc., Oregon, USA) software.  

RNA isolation and cDNA synthesis 
Skeletal muscle biopsies were obtained from the vastus lateralis muscle at pre-exercise, post-
exercise and recovery as described in (32). Total RNA was extracted from skeletal muscle 
biopsy using the TRIzol protocol (Applied Biosystems/Life Technologies, Foster City, CA, 
USA) according to the manufacturer’s instructions and as described previously (36). Total 
RNA was treated with DNaseI (Amplification Grade, Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions and then reverse transcribed to cDNA using 
High Capacity cDNA Reverse Transcription kit (Applied Biosystems/Life Technologies, 
Foster City, CA, USA). 

Quantitative real time PCR 
Quantitative real-time PCR (qRT-PCR) was performed on a Mx3005P® QPCR System 
instrument (Stratagene/Agilent, CA, USA) using the following pre-designed TaqMan® Gene 
Expression Assays (Applied Biosystems/Life Technologies, Foster City, CA, USA): CD36 
(Hs00169627_m1), FATP4 (SLC27A4) (Hs00192700_m1), PPIA (Hs04194521_s1), and 
B2M (Hs00984230_m1). All samples were run in triplicates. The mRNA levels of CD36 and 
FATP4 were normalized to the geometric mean of PPIA and B2M. Data were analyzed using 
qBase+ software (Biogazelle, Zwijnaarde, Belgium) (37,38). 

Statistics 
Statistical evaluation was performed using STATA 11.2 (StataCorp LP, Texas, USA). All 
data were tested for normality. Normally distributed data were described using mean and 
standard deviation (SD), and non-parametric data were described using median and 
interquartile range (IQR). Parametric data were compared using a Student’s t-test (unpaired, 
2 tails) test and non-parametric data using a Mann–Whitney U test or Wilcoxon test as 
appropriate. The linear dependence between two groups of data was assessed by Spearman´s 
rank correlation coefficient. P ≤ 0.05 was considered statistically significant. 

Results 
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Identification of SkMVs and SkMVs expressing LCFA transport proteins by flow cytometry. 
Circulating SkMVs were identified as lactadherin binding phosphatidylserine-positive 
particles expressing muscle-specific beta-Sarcoglycan, a 43 kDa dystrophin-associated 
glycoprotein and integral component of the dystrophin-glycoprotein complex. The contour 
plot in Fig. 2a shows the presence of PS+ SkMVs < 1 µm in diameter. The contour plot in 
Fig. 2b represents the negative control (plasma vesicles labelled with Lactadherin-FITC and a 
PE-conjugated beta-Sarcoglycan-matched isotype control). 

By the initial finding of circulating SkMVs, we aimed to identify SkMVs carrying CD36 
and FATP4. The contour plots in Fig. 3 (a-d) show the presence of (a) CD36+ and (c) 
FATP4+ SkMVs when compared to the respective matched isotype controls shown in (b) and 
(d).  

Acute exercise increases the release of SkMVs expressing LCFA transport proteins. 
To investigate the influence of a single bout of exercise on circulating SkMVs expressing 
LCFA transport proteins, we compared their concentrations in plasma collected during 
exercise and recovery. Pre- and post-exercise levels of total SkMVs (median-values) were 
13% (p=0.065) and 27% (p=0.047) higher, respectively, in T2DM patients, compared to 
obese controls, but comparable at recovery. Levels of SkMVs carrying any of the two LCFA 
transport proteins were comparable at all three time points, when comparing T2DM patients 
with obese controls (Table 2). 

Total SkMVs were unaffected by exercise in both study groups except at recovery, where 
SkMV levels were slightly reduced in patients with T2DM (p=0.033), when compared to 
post-exercise levels (Table 2). Interestingly, post-exercise levels of CD36+ SkMVs increased 
by 52% (p=0.019) in T2DM patients, and by 55% (p=0.016) in obese controls (Table 2 and 
Fig. 4a), and FATP4+ SkMVs increased by 53% (p=0.007) in T2DM patients, but were 
unchanged in obese controls (Table 2 and Fig. 4b). The recovery period had no effect on 
SkMVs carrying any of the two LCFA transport proteins, when compared to post- or pre-
exercise levels. 

Muscle mRNA transcripts correlate with changes in levels of CD36+, but not FATP4+ SkMVs. 
Skeletal muscle CD36 and FATP4 mRNA expression levels were comparable at all three 
time points, when comparing the two study groups. At recovery, CD36 mRNA expression 
was reduced by 25% in T2DM patients (p=0.047), when compared to the post-exercise state, 
otherwise post-exercise and recovery had no effect on LCFA gene expression (Fig. 5). Our 
next aim was to examine to what extent the variation of the number of circulating SkMVs 
carrying LCFA transport proteins is determined by variation of the corresponding mRNA in 
muscle. By comparing changes in gene expression and SkMVs carrying LCFA transport 
proteins concentrations, we found correlation between exercise-induced changes of CD36 
expression and concentrations of SkMVs carrying CD36 (Rho=0.65, p=0.032). This 
correlation was only found post-exercise and only in T2DM patients. In contrast, changes in 
FATP4 mRNA expression and concentrations of SkMVs carrying FATP4 were unrelated in 
both study groups following exercise and recovery. 

Discussion 

To the best of our knowledge, this is the first study to directly measure circulating SkMVs 
and subpopulations of SkMVs carrying metabolically important membrane proteins released 
into the circulation during exercise. Previous studies have demonstrated the presence of small 
skeletal muscle-derived EVs or exosomes released in vitro from immortalized murine C2C12 
myoblast lines (39,40) and in vivo into the human bloodstream (25,26,41). In the present 
study we established a flow cytometric method for measuring SkMVs and the subpopulation 
of SkMVs expressing LCFA transport proteins.  
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The validity and reproducibility of the current used methodology has previously been 
described (42). Because of their small size, EVs are below the detection range of most 
conventional flow cytometers (43). However, by using fluorescence threshold triggering 
instead of scatter on a dedicated high-sensitivity flow cytometer enabled us to increase the 
detection sensitivity. Moreover, by labeling cellular vesicles directly in plasma we 
demonstrate a simple, sensitive and low-cost method to directly measure and phenotyping 
plasma vesicles with no additional isolation steps prior to vesicle quantification. There were 
several novel observations: (a) post-exercise levels of CD36+ SkMVs were increased in both 
study groups, whereas only patients with T2DM showed increased post-exercise levels of 
FATP4+ SkMVs, and (b) a positive correlation between exercise-induced changes in skeletal 
muscle CD36 mRNA expression and concentrations of CD36+ SkMVs was observed in 
T2DM patients, but not in obese controls. Contraction of skeletal muscle fibers increases the 
levels of circulating exosome/nano-sized vesicles (25,26,39), and a very recent study by 
Whitham and coworkers demonstrated an exercise-induced increase in several classes of 
proteins associated with small vesicles and exosomes using nano-ultra-high-performance 
liquid chromatography (UHPLC) tandem mass spectrometry (41). It was thus somewhat 
unexpected that we did not find elevated post-exercise levels of SkMVs. However, MVs and 
exosomes are generated and released by different mechanisms and stimuli, and thus cannot 
readily be compared. Furthermore, studies of exosomes like (25,26,41) have several 
drawbacks. One is the purification methods, which introduce loss of material as well as co-
precipitation of other non-exosome contaminants (44,45). Another is that studies are 
performed on the bulk of exosomes and thus increased exosomes cannot directly be ascribed 
to release by skeletal muscle. The method introduced in the present paper allow 
quantification of MV directly in plasma without prior purification steps, and further, by 
measuring MVs derived from skeletal muscle, we obtain results which can be directly related 
to exercise effect on skeletal muscle fibers. As another novel finding, we demonstrate for the 
first time an overall exercise-induced increase of SkMVs expressing important LCFA 
transport proteins. Increased LCFA oxidation during exercise is facilitated by a rapid and 
sustained upregulation of LCFA uptake by predominantly CD36 and FATP4 (7,14,46), and 
even short-term exercise increases LCFA uptake in both isolated muscle preparations and 
exercising study subjects (47). Thus, since total SkMV levels were unchanged, the increased 
levels of SkMVs expressing LCFA transport proteins indicate that these vesicles could mirror 
real-time expression levels on parental skeletal muscle cells, increased translocation from 
intracellular pools to the sarcolemma, or both.   

Both insulin stimulation and exercise increase LCFA uptake in muscles via translocation 
of LCFA transport proteins to the plasma membrane (13,48-51), and the finding that 
especially CD36 migrates to the membrane without an increase in total protein content of 
CD36 in obese rats (52) emphasizes the importance of measuring LCFA transport proteins 
directly in the muscle plasma membrane and not simply in whole muscle homogenate. Thus, 
herein, we introduce a methodological approach based on highly sensitive flow cytometry 
which enable us to detect and quantitate LCFA transport protein-positive SkMVs shed from 
activated skeletal muscle cells. Providing important real-time information about the 
abundance of LCFA transport proteins present on activated muscle cells could potentially add 
new insight into skeletal muscle physiology.  

We measured levels of CD36+ and FATP4+ SkMVs at three selected time points and 
found no difference among our study groups, thus supporting earlier studies showing 
increased but equal plasmalemmal CD36 content in muscle from T2DM and obese 
individuals (53,54). Although similar studies on plasmalemmal FATP4 are missing in the 
literature, we expected comparable levels in obesity and T2DM, as reported for similar LCFA 
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transport proteins, including FABPpm and FATP1 (55). However, further investigations 
should address this issue.  

Although, we did not directly measure sarcolemmal abundance of LCFA transport 
proteins, our observation of increased post-exercise levels of SkMVs carrying CD36 and 
FATP4 suggests an increased sarcolemmal abundance of the two transport proteins. This is in 
agreement with previous reports on increased CD36 and FATP4 translocation to the 
sarcolemma in response to muscle contraction (56,57). However, the finding of increased 
post-exercise levels of FATP4+ SkMVs in T2DM patients, but not obese controls, needs 
further investigation. Potentially, an impaired glucose metabolism combined with lower 
muscle glycogen content in T2DM (58) could drive the demand towards using LCFAs as 
fuel. A higher plasma membrane content of LCFA transport proteins may therefore provide a 
cellular mechanism through which rates of LCFA uptake are increased in skeletal muscle 
with IR (53). Although the biological function of the results presented herein remains 
unclear, and further investigation is needed in this regard, we suggest a link between 
increased concentrations of SkMVs carrying LCFA transport proteins and the higher need for 
LCFAs to support the training-induced increase in skeletal muscle FA oxidation.  

Expression levels of CD36 and FATP4 mRNAs were comparable in our study groups at 
all time points, thus in line with a previous study investigating skeletal muscle mRNA levels 
of LCFA transport proteins in obesity and T2DM (55). A single bout of exercise had no 
significant effect on LCFA gene expression levels, as previously reported by others (59). 
Transcription and translation can be differently regulated and others have observed that the 
mRNA abundance of LCFA transport proteins in adipocytes of obese rodents shows poor 
correlation with LCFA transport protein expression and LCFA transport (52,60-62). 
Moreover, studies on skeletal muscles report that an increase in sarcolemmal CD36 (51,53) is 
accompanied by a decrease in intracellular CD36 and not by an increase in total CD36 
expression (54). Herein we report a positive correlation between changes in skeletal muscle 
CD36 mRNA expression and concentrations of CD36+ SkMVs, but only in patients with 
T2DM. We can only speculate about the lack of correlation between FATP4 mRNA levels 
and protein levels on circulating SkMVs, and why the correlation of CD36 was restricted to 
T2DM, though the dissimilarity could be caused by mechanisms related to muscle IR. CD36 
and FATP4 protein content in skeletal muscle are stimulated by insulin and contraction 
(7,13,63,64), however, CD36 seems to be stimulated in an additive manner, suggesting 
separate insulin- and contraction-sensitive intracellular depots for CD36, but not for FATP4 
(56,60). Thus, although both transcription and translation may be coordinately regulated, we 
cannot rule out the influence of possible intracellular trafficking pathways and/or additional 
protein regulation at the level of protein degradation. Taken together, results must be 
interpreted with care and more studies are still needed to fully understand these findings.  

The current study design is particularly valuable because it permits a sensitive detection 
and quantification of skeletal muscle-derived vesicles carrying LCFA transport proteins. 
Moreover, comparing skeletal muscle mRNA expression with protein abundance on SkMVs 
has not previously been done – especially not in human muscle with IR. Although a lean 
control group could have added additional important information to the study, our primary 
goal was to investigate whether T2DM, but not obesity, affected levels and composition of 
SkMVs. As for weaknesses of our study, a larger number of participants, as well as inclusion 
of women to rule out gender-effects, are needed to draw any conclusions about relationships. 
Moreover, we did not take into account other demographic factors, such as smoking and 
excessive alcohol consumption.  

As another possible weakness, we used venous blood instead of blood from a femoral 
artery, which is in closer proximity to the vesicle releasing tissue. Thus, we cannot rule out 
that released vesicles are taken up by resident cells or in the liver, as recently demonstrated 
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by Whitham el at. (41). Although a direct comparison of protein abundance in muscle 
membrane and SkMVs would have been beneficial, our method is a step towards a simpler 
approach to investigating membrane protein abundance in vivo and could be complementary 
to other methodologies as well. Finally, FATP4 is expressed predominantly in skeletal 
muscle tissue (4,5,63,65), whereas beta-Sarcoglycan and CD36 is expressed in skeletal, 
cardiac, and smooth muscle (66-69). Thus, there is a possibility of contributions from other 
muscle tissue besides skeletal muscle.  

Whether or not the release of vesicles is part of tissue crosstalk and/or simple an 
evolutionary conserved process in which tissues can share resources during the high energy 
demands of physical exertion, as suggested by Whitman et al.,(41) needs to be addressed in 
future studies. However, previous studies show that skeletal myocyte cultures release and 
take up EVs (70,71). Both uptake and release of EVs are energy-dependent processes. Thus, 
it seems very unlikely that horizontal transfer of vesicle cargo is a random process. Although 
protein transfer may not be as critical as transfer of regulatory RNAs it may still be beneficial 
for recipient cells to receive fully functional proteins. When it comes to quantitating protein 
abundance on skeletal muscle membranes we do not believe that the method presented herein 
is a better or more precise measure, compared to subcellular fractionation or other plasma 
membrane isolations methods. However, we demonstrate a simple, effective and time-saving 
method that hold potential to noninvasively give information on protein abundance on 
specific tissue. 

In summary, the novel data presented herein not only demonstrate the presence of 
circulating SkMVs, but also add proof to the existence of SkMVs carrying transport proteins 
important in LCFA uptake, of which we observed an increase during exercise.  

Furthermore, this study is the first to report on CD36 and FATP4 expression levels in 
skeletal muscle with IR during acute exercise and recovery, and to suggest a possible link 
between skeletal muscle mRNA levels and protein content on circulating SkMVs. 

The results presented herein provide no physiologic or mechanistic insight to exercise-
induced secretion of vesicles nor the impact of healthy versus insulin resistant state. Thus, 
more clarifying studies are still needed. Nevertheless, the ability to gain important real-time 
information about the abundance of LCFA transport proteins present on activated muscle 
cells by studies of circulating SkMVs could potentially add new insight into skeletal muscle 
physiology.  
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Fig. 1. (legend). Schematic representation of the study protocol. Skeletal muscle biopsies and 
fasting venous blood samples were obtained 20 min before exercise, immediately after 60 
min of cycle ergometry at ∼70% VO2max, and after a recovery period of 180 min. 

Fig. 2. (legend). Contour plot of circulating SkMVs. (a) SkMVs detected using fluorescence 
threshold triggering were labelled with FITC-conjugated Lactadherin and PE-conjugated 
anti-human muscle-specific beta-Sarcoglycan. (b) As a negative control, plasma samples 
were stained with FITC-conjugated Lactadherin and a PE-conjugated beta-Sarcoglycan-
matched isotype control. 

Fig. 3. (legend). Contour plots of SkMVs expressing LCFA transport proteins. (a) SkMVs 
expressing CD36 were labelled with an APC-conjugated anti-human CD36 antibody and 
compared with (b) a matched isotype control. Similarly, (c) SkMVs expressing FATP4 were 
labelled with an APC-conjugated anti-human FATP4 antibody and compared with (d) a 
matched isotype control. 

Fig. 4. (legend). Impact of a single bout of exercise on circulating SkMV levels in plasma. 
Results are presented in scatter dot plots (logarithmic scale, median with interquartile range). 
Plasma levels of (a) CD36+ SkMVs, and (b) FATP4+ SkMVs, during exercise and recovery 
in T2DM patients and obese controls. *p<0.05. 

Fig. 5. (legend). Expression of CD36 and FATP4 mRNAs in skeletal muscle biopsies 
obtained at pre-exercise, post-exercise and recovery: (a) total skeletal muscle CD36 mRNA, 
(b) total skeletal muscle FATP4 mRNA. mRNA levels were measured by RT-qPCR and 
values presented as bar charts with individual data points (means ± SEM). a.u., arbitrary 
units. *p<0.05. 

Table 1. Characteristics of participants.  

Characteristics  Controls T2DM 
n 14 13 
Age (years) 55±2 55±2 
BMI (kg/m2) 29.0 ± 0.9 29.7±1.0 
Fasting plasma glucose (mmol/l) 5.6±0.1 10.0±0.7***  
HbA1c (mmol/mol) 37±4.0 53 ± 7.9*** 
HbA1c (%) 5.5±0.1 7.0±0.2***  
Plasma cholesterol (mmol/l) 5.7±0.3 4.4 ± 0.4*  
Plasma LDL-cholesterol (mmol/l) 3.8±0.3 2.0±0.2**  
Plasma HDL- cholesterol (mmol/l) 1.3±0.1 1.2 ± 0.1 
Plasma triacylglycerol (mmol/l) 1.5±0.2 3.2 ± 1.5 
VO2max (l/min) 3.50 ± 0.17 3.22±0.23 
Wmax (W) 236±12 196±20 
Diabetes duration (years) - 3.5 ± 1.2 

Data are means ± SEM  
*p<0.05, **p<0.001 and ***p<0.0001 (Controls vs. T2DM) 
Wmax, maximal workload capacity 

Table 2. Circulating SkMVs at baseline, after an exercise bout and during recovery. 

 Total SkMVs CD36+  SkMVs FATP4+ SkMVs 
Controls (n=14)    

Pre-exercise 1156 (773-1207)  34.5 (22-64)  103.5 (20-530)  
Post-exercise 994 (737-1551)  53.5 (30-101)*  63 (18-351)  

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
T

H
E

 J
O

U
R

N
A

L 
O

F
 C

LI
N

IC
A

L 
E

N
D

O
C

R
IN

O
LO

G
Y

 &
 M

E
T

A
B

O
LI

S
M

JC
EM

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/jc.2018-02547/5421619 by Aalborg U
niversity Library user on 03 April 2019



ADVANCE A
RTIC

LE

The Journal of Clinical Endocrinology & Metabolism; Copyright 2019  DOI: 10.1210/jc.2018-02547 
 

 15 

Recovery 1058.5 (846-2153) 60.5 (34-347) 108 (33-1242) 
T2DM (n=13)    

Pre-exercise 1309 (1011-2548)  42 (37-462)  49 (15-788)  
Post-exercise 1259 (1013-8180)‡  64 (38-2631)*  75 (22-1654)*  

Recovery 1184 (1032-6691)#  56 (33-1442)  51 (35-1015)  

Concentration of SkMVs, SkMVs expressing CD36 and SkMVs expressing FATP4 were measured in diabetic 
patients and obese controls. Values (SkMVs �L−1 plasma) are shown as the median (interquartile range). 
SkMVs, skeletal muscle-derived microvesicles; CD36, fatty acid translocase/scavenger receptor CD36; FATP4, 
Fatty acid transport protein 4. *p<0.05, compared to pre-exercise; #p<0.05, compared to post-exercise, ‡p<0.05, 
T2DM compared to obese controls. 
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