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and butane for hydrogen production 
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Abstract 

Thermodynamic analyses of cracking, partial oxidation (POX), steam reforming (SR) and oxidative 

steam reforming (OSR) of butane and propane (for comparison) were performed using the Gibbs free 

energy minimization method under the reaction conditions of T = 250‒1000°C, steam-to-carbon ratio 

(S/C) of 0.5‒5 and O2/HC (hydrocarbon) ratio of 0‒2.4. The simulations for the cracking and POX 

processes showed that olefins and acetylene can be easily generated through the cracking reactions and 

can be removed by adding an appropriate amount of oxygen. For SR and OSR of propane and butane, 

predicted carbon formation only occurred at low S/C ratios (< 2) with the maximum level of carbon 

formation at 550‒650°C. For the thermal-neutral conditions, the TN temperatures decrease with the 

increase of the S/C ratio (except for O/C = 0.6) and the decrease of the O/C ratio. The simulated results 

for SR or OSR of propane and butane are very close under the investigated conditions.  
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1．Introduction 

Hydrogen or hydrogen-rich gas can be produced by reforming (e.g., steam reforming, oxidative steam 

forming and dry reforming) and partial oxidation of hydrocarbons or alcohols, e.g., methane, methanol, 

ethanol, liquefied petroleum gas (LPG), gasoline and diesel [1]. For the distributed production of 

hydrogen (e.g., on-site steam reformers for refueling stations, portable or domestic uses), LPG is a 

practical candidate because it takes advantage of a wide distribution network as well as convenient 

transportation and storage [2]. Propane (C3H8) and butane (C4H10) are the main components in LPG. 

The volume percentages of propane and butane in LPG vary depending on various standards and 

climates in different countries, e.g., 92.5% ‒ 100% propane for LPG produced in Canada and 65% ‒ 90% 

butane for LPG produced in Korea [3].  

Experimental studies of the catalytic steam reforming (SR) and partial oxidation (POX) of propane, 

butane and LPG are available in the literature (propane [4-8], butane [9-11] and LPG [12-17]), focusing 

on the development of novel catalysts with high stability and activity. Since the steam reforming is an 

endothermic reaction whereas the partial oxidation is an exothermic reaction, the combination of the 

two processes known as autothermal reforming (ATR) or oxidative steam reforming (OSR) is usually 

applied to achieve different goals such as thermal neutrality, control of product composition and 

suppression of coke formation. Under the SR conditions, coke formation is the main issue both for the 

nickel and noble metal-based catalysts and can result in the deactivation of the catalysts. Furthermore, 

steam reforming of the heavier propane and butane is more prone to carbon formation than steam 

methane reforming (SMR) [18]. Under the OSR conditions, the oxygen in the system can depress coke 

formation by enhancing the gasification of carbon residues relative to the results obtained in SR 

conditions [7].  

The operating conditions used in the experimental studies are T = 270‒1000°C, S/C = 0.06‒7, O2/HC 

(hydrocarbon) = 0‒2.3 and conducted at around the atmospheric pressure. The operating conditions 

such as the pressure, temperature, steam-to-carbon ratio (S/C), oxygen-to-hydrocarbon ratio (O2/HC) 

play important roles in the performance of the catalyst, product composition and energy efficiency of 

the system [19‒21]. Thermodynamic analysis can provide useful and rapid guidance of the proper or 

optimal zone for these operating conditions, e.g., operating in coke-free zone. Many studies of the 

thermodynamic analysis of the reforming process of hydrocarbons and alcohols can be found, e.g., 
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methane [22‒24], natural gas [25], propane [20‒21], LPG [26], methanol [27] and butanol [28]. Zeng et 

al. [20] conducted the thermodynamics analysis on the reaction conditions of OSR of propane using the 

Gibbs free energy minimization method. The temperature of 700°C, H2O/C3H8 ratio above 7 and 

O2/C3H8 ratio above 1.3 were proposed in order to obtain a high hydrogen yield, low carbon monoxide 

yield and avoid coke formation. Wang et al. [21] investigated the reaction conditions of dry reforming 

(DR) and SR of propane. The temperature range of 925‒975 K and H2O/C3H8 ratios of 12‒18 were 

suggested to be favorable conditions for propane steam reforming. Silva et al. [26] compared the 

thermodynamic analysis results with the experimental data for SR and OSR of LPG with the propane to 

butane ratio of 1:1. The temperature of 973 K and the H2O/C3H8 ratio of 7 were found to be the most 

suitable reaction conditions for both SR and OSR of LPG. However, there is still a lack of relevant 

thermodynamic analysis regarding the SR and OSR of the heavier component butane, which is the 

main component of LPG in some countries. 

In the present study, the thermodynamic analyses of SR and OSR of butane were performed using the 

Gibbs free energy minimization method. The influences of the reaction conditions such as the 

temperature, S/C ratio and O2/HC ratio were investigated and can provide guidance for the operation 

and design of an LPG steam reformer as well as reformers for heavier fuels (e.g., gasoline and diesel) 

the decomposition of which could result in the formation of the propane and butane intermediates. SR 

and OSR of propane were also considered in some results for comparison. 

2. Methodology 

The method of Gibbs free energy minimization is commonly used for the prediction of the 

thermodynamic equilibrium composition for a complex reactive system with an initial feed 

composition, certain phases and temperature and pressure conditions [29]. The process of (oxidative) 

steam reforming of hydrocarbons includes both the gas phase and the probable solid phase from coke 

formation. By assuming that the solid phase is a pure solid carbon (graphite) and using the Lagrange 

multiplier method, the Gibbs free energy minimization for the system can be expressed by the 

equations considering each species in the gas phase and the total system [22]: 

∆𝐺𝐺𝑓𝑓𝑓𝑓
°𝑔𝑔 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑦𝑦𝑖𝑖𝜑𝜑�𝑖𝑖𝑃𝑃
𝑝𝑝° + �𝑎𝑎𝑖𝑖𝑖𝑖𝜆𝜆𝑘𝑘

𝑘𝑘

= 0                                                                                                                  (1) 
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�𝑛𝑛𝑖𝑖 �∆𝐺𝐺𝑓𝑓𝑓𝑓
°𝑔𝑔 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑦𝑦𝑖𝑖𝜑𝜑�𝑖𝑖𝑃𝑃
𝑝𝑝° + �𝑎𝑎𝑖𝑖𝑖𝑖𝜆𝜆𝑘𝑘

𝑘𝑘

� + 𝑛𝑛𝑐𝑐∆𝐺𝐺𝑓𝑓𝑓𝑓(𝑠𝑠)
°

𝑁𝑁

𝑖𝑖=1

= 0                                                                          (2) 

with the following constraint: 

�𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖
𝑖𝑖

= 𝐴𝐴𝑘𝑘                                                                                                                                                          (3) 

where ∆G°g
fi is the standard Gibbs free energy of formation of gaseous species i, yi is the mole fraction 

of species i, 𝜑𝜑�𝑖𝑖 is the fugacity coefficient of species i, P and P° are the system pressure and standard 

state pressure (1 atm), respectively, aik is the number of the atoms of the kth element present in each 

molecule of gaseous species i, λk is the Lagrange multiplier, and Ak is the total atomic mass of the kth 

element in the feed. ni and nc are the mole number of species i and the solid carbon in the system, 

respectively, while ∆G°
fc(s) is the standard Gibbs free energy of formation of the solid carbon which is 

assumed to be zero.  

The thermodynamic analysis using the Gibbs free energy minimization method was performed using 

the Aspen Plus V9 (RGibbs reactor) software. The Peng-Robinson model was used as the equation of 

state. A flow rate of 1 mol/s was set for propane or butane (hereafter referred to n-butane) in the feed. It 

should be noted that the branched isomer iso-butane was not considered in the feed due to the close 

Gibbs free energy values of n-butane and iso-butane. The conditions for SR and OSR of butane and 

propane were considered to be as follows: T = 250‒1000°C, S/C = 0.5‒5 and O2/HC = 0‒2.4. The main 

products for SR of butane are H2, H2O, CH4, CO, CO2 and graphite carbon (O2 was included in the 

products for OSR); other possible products such as C2H2, C2H4, C2H6, C3H6, C4H6, and C4H8 were also 

considered. It should be taken into account that other types of solid carbon can also be generated in the 

SR or OSR processes. Diaz Alvarado and Gracia [30] analyzed three different carbon representations 

(graphite, nanotubes and amorphous carbon) for SR of ethanol, and indicated that carbon nanotubes 

were more favorable at above 400℃. Giehr et al. [24] also presented three carbon products (fullerene 

C60, graphite and amorphous carbon) for the thermodynamic analysis of dry and steam reforming of 

methane, and mentioned that graphite was the most stable product among the three investigated carbon 

types. The present study is limited to the graphite carbon due to its properties are available in the 

database of Aspen Plus. 
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The conversion of reactant, selectivity and yield of the product are expressed by the following [6]: 

𝐶𝐶𝑖𝑖 =
𝑛𝑛𝑖𝑖,0 − 𝑛𝑛𝑖𝑖,𝑒𝑒

𝑛𝑛𝑖𝑖,0
                                                                                                                                                         (4) 

𝑆𝑆𝐶𝐶𝐶𝐶 =
y𝐶𝐶𝐶𝐶,𝑒𝑒

y𝐶𝐶𝐶𝐶,𝑒𝑒 + y𝐶𝐶𝐶𝐶2,𝑒𝑒 + y𝐶𝐶𝐶𝐶4,𝑒𝑒 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒
× 100%,     𝑆𝑆𝐶𝐶𝐶𝐶2      =

y𝐶𝐶𝐶𝐶2,𝑒𝑒

y𝐶𝐶𝐶𝐶,𝑒𝑒 + y𝐶𝐶𝐶𝐶2,𝑒𝑒 + y𝐶𝐶𝐶𝐶4,𝑒𝑒 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒
 × 100%, 

𝑆𝑆𝐶𝐶𝐶𝐶4 =
y𝐶𝐶𝐶𝐶4,𝑒𝑒

y𝐶𝐶𝐶𝐶,𝑒𝑒 + y𝐶𝐶𝐶𝐶2,𝑒𝑒 + y𝐶𝐶𝐶𝐶4,𝑒𝑒 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒
× 100% ,  𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

y𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑒𝑒

y𝐶𝐶𝐶𝐶,𝑒𝑒 + y𝐶𝐶𝐶𝐶2,𝑒𝑒 + y𝐶𝐶𝐶𝐶4,𝑒𝑒 + 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒 
× 100% 

(5) 

𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖 = 𝐶𝐶𝑖𝑖 ∙ S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                                                                                                            (6) 

where Ci is the conversion for the key reactant i (i.e., butane or propane), ni,0 is the initial mole number 

for species i, ni,e and yi,e are the mole number and mole fraction (wet basis) for species i under the 

thermodynamic equilibrium state calculated by the Gibbs free energy minimization method 

respectively, and Si and Ycarbon, i represent the selectivity for species i and yield of carbon from butane 

or propane reforming, respectively.  

The differences in the conversion and selectivity values between SR or OSR of propane and butane are 

given by the following: 

∆𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐶𝐶𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , ∆𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑋𝑋𝑖𝑖 =
𝑆𝑆𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑆𝑆𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
× 100%        (7) 

where Xi is a relative value based on the selectivity values obtained by SR or OSR of butane, and is 

used to evaluate the relative difference between the selectivity values given by SR or OSR of butane 

and propane. 

3 Results and discussions 

3.1 Reactions in SR and OSR of butane 

The possible reactions in SR and OSR of butane are listed in Table 1 and include the steam reforming, 

cracking and oxidation of alkanes and olefins in the system, the water gas shift reaction and the carbon 

formation reactions. It is obvious that the reacting system including butane or LPG is more complex 

than the steam (or oxidative steam) reforming of methane. For example, olefins can be generated 
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through catalytic or thermal cracking of the heavier alkanes, and reaction 22 may occur easily and lead 

to pyrolytic carbon deposition on the surface of the catalyst [18]. It should be noted that the complete 

steam reforming of the hydrocarbons to carbon dioxide (except butane) and other more complex 

reactions could occur for this reacting system (e.g., through radical reactions) are not listed in Table 1.  

Table 1. Possible reactions in SR and OSR of butane 

No. Reactions ∆H298 (kJ/mol) 

 Steam reforming (SR) reactions  

1 CH4 +   H2O↔CO + 3H2 206 

2 C2H4+ 2H2O↔2CO+4H2 210 

3 C2H6+ 2H2O↔2CO+5H2 347 

4 C3H6+ 3H2O↔3CO+6H2 374 

5 C3H8+ 3H2O↔3CO+7H2 499 

6 C4H6+ 4H2O↔4CO+7H2 4161 

7 C4H8+ 4H2O↔4CO+8H2 5262 

8 C4H10+4H2O↔4CO+9H2 651 

9 C4H10+8H2O↔4CO2+13H2 487 

 Water gas shift (WGS) reaction  

10 CO   +  H2O ↔CO2 + H2 ‒41 

 Cracking and carbon formation reactions  

11 C4H10  ↔ C4H8 +H2 125 

12 C4H8    ↔ C4H6 +H2 110 

13 C4H10  ↔ C3H6 + CH4 72 

14 C4H10  ↔ C2H6 + C2H4 95 

15 C3H8    ↔ C3H6 + H2  125 

16 C3H8    ↔ C2H4 + CH4 29 

17 C2H6    ↔ C2H4 + H2 136 

18 C2H4    ↔ CH4   + C(graphite) ‒127 

19 CH4      ↔ 2H2    + C(graphite) 75 

20 2CO     ↔ CO2   + C(graphite) ‒172 

21 H2 + CO   ↔ H2O   + C(graphite) ‒131 

22 mCnH2n → (CnH2n)m → coke  
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 Oxidation reactions  

23 CnHm+0.5nO2 → nCO+0.5mH2   

24 CnHm+(n+0.5m)O2 → nCO2+0.5mH2O   

25 CO + 0.5O2  → CO2  ‒229 

26 C + 0.5O2 → CO ‒111 

27 H2+0.5O2 → H2O ‒242 

1. C4H6 in this reaction represents 1,3-butadiene. 

2. C4H8 in this reaction represents 1-butene. 

3.1.1 Thermodynamic equilibrium constant 

The thermodynamic equilibrium constant (K) is widely used for the evaluation of the extent of a 

reaction under different reaction conditions. The K values for the main reactions in Table 1 were 

calculated according to the following [22]: 

∆𝐺𝐺𝑟𝑟° = �𝛾𝛾𝑖𝑖∆𝐺𝐺𝑓𝑓𝑓𝑓
°𝑔𝑔

𝑖𝑖

                                                                                                                                                    (8) 

𝐾𝐾 = 𝑒𝑒𝑒𝑒𝑒𝑒 (∆𝐺𝐺𝑟𝑟°/𝑅𝑅𝑅𝑅)                                                                                                                                                 (9) 

where γi is the stoichiometric coefficient of species i in the reaction, ∆𝐺𝐺𝑟𝑟° and ∆𝐺𝐺𝑓𝑓𝑓𝑓
°𝑔𝑔 are the Gibbs free 

energy change of the reaction and the Gibbs free energy of formation for each species at various 

temperatures, respectively. The data for ∆𝐺𝐺𝑓𝑓𝑓𝑓
°𝑔𝑔 was provided by the Aspen Properties V9 software.  

Since K is given by the reaction quotient of the products and reactants in the reaction, a high value of K  

≫ 1 indicates that the reaction occurs in the forward direction, whereas the reverse reaction occurs 

when K ≪ 1. Fig. 1 shows the natural logarithm values of the thermodynamic equilibrium constant 

(LnK) for the main reactions plotted versus different temperatures. For the steam reforming reactions 1, 

5 and 8 (shown in Table 1), the LnK values obviously increase with the increase of the temperature, 

which means that these endothermic reactions are favorable at high temperatures, e.g., the increased 

conversion of hydrocarbons with temperature can be found in [6]. The LnK value of the water gas shift 

reaction 10 decreases with the increase of temperature and is close to zero at high temperatures (e.g., ‒

0.5 > LnK > 0.5 at T > 700℃), indicating that this exothermic reaction is favorable at low temperatures 

and that the equilibrium can be easily influenced by the composition of the reactants and products in 
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the reacting system at high temperatures. This result is similar to the results of the analysis for the 

reverse water gas shift reaction reported in [22].  

 
Fig. 1. Equilibrium constants for reactions in SR of butane as a function of temperature at 1 atm. 

The LnK values of the endothermic cracking reactions of butane 11, 13 and 14 increase with the 

increase in the temperature. Especially for reaction 13, the positive value of LnK indicates that the 

cracking reaction of the heavy butane is prone to occur at temperatures as low as 250℃. For the carbon 

formation reactions, the LnK value for reaction 18 (cracking of ethylene) has a high value (LnK = 11.2‒

27.3) in the investigated temperature range, indicating that carbon formation from cracking of olefins is 

also favorable in addition to the carbon deposition via the polymerization reaction 22. The endothermic 

reaction 19 (decomposition of methane) is the main carbon formation reaction for the SMR process 

which tends to generate carbon at high temperatures (e.g., LnK = 0.38 at T=700℃). Reaction 20 (the 

Boudouard reaction) and reaction 21 (hydrogenation of carbon monoxide) are exothermic reactions that 

are favored at low temperature conditions and are limited by high temperature conditions (e.g., LnK is 

below zero at T > 750℃ for reaction 19 and T > 700℃ for reaction 21). The exothermic oxidation 
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reactions 23‒27 occur more easily in the entire temperature range and have high LnK values (LnK > 16, 

not shown in Fig. 1). 

3.1.2 Cracking and partial oxidation of butane 

During the catalytic SR process of butane in a reformer, butane cracking occurs simultaneously on the 

catalyst (catalytic cracking) and in the gas phase (thermal cracking), which may result in olefins such 

as ethylene, propylene and acetylene. Since the rate of carbon formation from olefins (through 

reactions 18 and 22) is much higher than that from alkanes [18], the olefin level in the gas phase of an 

LPG reformer becomes a critical issue for the carbon formation problem. Therefore, the possible olefin 

level from the cracking of butane was investigated in this study assuming that no solid carbon was 

generated in the system.  

Fig. 2(a) shows the equilibrium mole flow rates of the products from butane (1 mol/s) cracking at 

different temperatures (250‒1000℃). At low temperatures, cracking occurs with a high conversion of 

butane, and the amounts of other heavy alkanes (i.e., C3H8 and C2H6) are found to be small. The main 

products are methane and the heavy olefins, i.e., 1,3-butadiene and propylene. With the increase of the 

temperature, further cracking of the heavy alkanes and olefins occurs, resulting in increasing amounts 

of the light olefin ethylene and acetylene as well as hydrogen. According to the results, at the typical 

reforming temperature range of 600‒900℃, C2‒C4 olefins and a small amount of acetylene could exist 

in the gas phase through the cracking process. Propane cracking was also investigated with similar 

results shown in Fig. 2(b), and the trends observed at high temperatures (T > 700℃) are consistent with 

the experimental results for propane steam reforming without catalyst reported in [6], where the olefins 

(C2H4 and C3H6) and acetylene were detected in the gas phase. 
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      (a)                                                                                      (b) 

Fig. 2. Mole flow rates of the products for the cracking of (a) butane (1 mol/s) and (b) propane (1 mol/s) as a 

function of temperature at 1 atm. 

For the OSR process of butane, reactions related to the POX of butane (reaction 23‒24) are much faster 

than the steam reforming reactions (reactions 1‒9) [31], which could influence the local gas 

composition (especially the olefin level) and catalyst performance in a reformer with the OSR process. 

Therefore, an investigation of POX of butane is necessary for the further study of the OSR process of 

butane. Fig. 3 illustrates the equilibrium mole flow rates of the products from POX of butane (1 mol/s) 

at different temperatures (250‒1000℃) and O2/C4H10 ratios (O2/C4H10 = 0.4‒1.2, corresponding O/C = 

0.2‒0.6) in the feed. A complete conversion of oxygen is observed under all the conditions. When a 

small amount of oxygen (O2/C4H10 = 0.4) was added in the feed as shown in Fig. 3(a), the trends of the 

compounds are similar to those of the butane cracking (shown in Fig. 2(a)); however, a fraction of the 

olefins (C2H4, C3H6 and C4H6) and acetylene in the gas phase were oxidized and generated CO and H2. 

The mole flow rates of CO and H2 are significantly promoted by adding O2 and increasing temperature, 

similar trends can be found in the experimental study for the partial oxidation of propane with O2/C3H8 

= 1.88 by Silberova and Venvik [4]. When O2/C4H10 = 0.8 (shown in Fig. 3(b)), the olefins and 

acetylene in the system were further oxidized and small amounts of C2H2 and C2H4 are found only at 

high temperatures (e.g., T > 700℃); this is similar to the experimental result obtained for the 

homogenous partial oxidation of LPG (O/C = 0.44) as reported by Laosiripojana et al. [14], where 
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C2H4 was also obviously detected in the gas phase at high temperatures (700‒900℃). By increasing the 

O2/C4H10 ratio to 1.2 as shown in Fig. 3(c), the total level of olefins and acetylene is much lower, e.g., 

3‒322 ppm with T < 800℃, O2/C4H10 = 1.2. In additions, the conditions with higher O2/C4H10 ratios 

(1.6‒2.4) can be found Fig 1S in Appendix A, where only trace amount of olefins were generated in the 

system. 

 
(a)                                                                                          (b) 

 

(c) 

Fig. 3. Mole flow rates of the products of POX of butane (1 mol/s) as a function of temperature and O2/C4H10 

ratio at 1 atm (a) O2/C4H10 = 0.4; (b) O2/C4H10 = 0.8; (c) O2/C4H10 = 1.2. 
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3.2 Steam reforming of butane 

The equilibrium conversion of the reactants, selectivity and yield of the products for SR of butane (1 

mol/s) at different temperatures (250‒1000℃) and S/C ratios (0.5‒5) are shown in Fig. 4. For 

comparison, the analysis was also performed for propane steam reforming (PSR). The trends from 

butane steam reforming (BSR) are close to those from PSR both in the present study and in the 

literature. [21]. Butane was completely converted to CO, CO2, CH4 and H2 under all of the investigated 

conditions, whereas no olefins and acetylene were found in the product. Solid graphitic carbon was 

considered in the system. 

3.2.1 Conversion of H2O  

Different from the cracking process, steam was added for BSR as a soft oxidant and a source of 

hydrogen. Steam can also decrease or eliminate the carbon formation on the catalyst surface. A typical 

S/C ratio for SR of methane is approximately 2.5‒3 for industrial-scale hydrogen production [32]. For 

SR of the heavier propane and butane, a higher S/C ratio could be required because they are more 

prone to carbon formation than methane [18]. However, a higher S/C ratio can increase the mass flow 

of steam and relevant investment (e.g., size of reformer) and decrease the conversion of the steam; for 

example, as shown in Fig. 4(a), for BSR the H2O conversion decreases with increasing S/C ratio, which 

is obvious at high temperatures (e.g., T > 600℃). The H2O conversion for S/C = 1 is close to unity at 

high temperatures because this ratio fulfils the stoichiometry requirements of the SR reactions 

(reactions 1‒9 for generation of CO and H2. At low temperatures, the conversions for S/C = 1 and 2 are 

close, because the WGS reaction (reaction 10) favors low temperature and CO can be further converted 

to CO2 by H2O. Maximum H2O conversions can be achieved at approximately 600‒750 ℃ for S/C = 

2‒5, and the conversions decrease slightly at higher temperatures. Under the conditions of T > 600℃ 

and S/C = 2‒5, the H2O conversions are between 30% and 63%. Compared to BSR, the obtained H2O 

conversions for PSR (not shown in Fig. 4) are slightly lower with the value differences of ∆𝐶𝐶𝐻𝐻2𝑂𝑂 < 2% 

for all investigated S/C ratios.  

3.2.2 H2 yield 

The H2 yield in this study was presented as the moles of H2 produced per mole of butane in the feed, 

with the obtained results shown in Fig. 4(b). The trend is very similar to that for the propane steam 

reforming in [21], where H2 yield increased with the increase of the temperature at low and moderate 

temperatures and S/C ≥ 2, and then slightly decreased due to the exothermic WGS reaction (reaction 10) 
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being unfavorable at high temperatures, so that maximum H2 yields were found at T > 600‒750℃. 

Under the conditions of T > 600℃ and S/C = 2‒5, the moles of H2 produced per mole of butane are 

between 7.2 and 11.6 mole. Compared to the PSR results, the H2 amount produced via BSR is 20.9‒

23.0% higher, because there are two more hydrogen atoms in butane molecule and more water 

molecules are involved in the SR process for the same S/C ratios. 
 

 

(a)                                                                                          (b) 

 

(c)                                                                                          (d) 
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(e)                                                                                          (f) 

Fig. 4. Equilibrium conversion of the reactants, selectivities and yield of the products for butane steam reforming 

as a function of temperature and S/C ratio at 1 atm. 

3.2.3 Selectivities of CO, CO2 and CH4 

Fig. 4(c) ‒ (e) show the selectivity of CO, CO2 and CH4 in the products as a function of temperature 

and S/C ratio. Removal of CO in the product of BSR is usually necessary for fuel cell applications by 

subsequent WGS reactors. Therefore, the CO content in the product may influence the load and cost of 

the downstream WGS processes (e.g., the amount of catalyst required for WGS reactors). The CO 

selectivity increased with increasing temperature and decreased with increasing S/C ratio. The former 

trend is mainly ascribed to the promotion of the endothermic reforming process (reaction 1‒9) and 

reverse WGS reaction (reaction 10) at higher temperatures, whereas for the latter trend the higher S/C 

ratios convert more CO to CO2 by the WGS reaction (reaction 10) and result in lower levels of CO 

selectivity. The CO2 selectivity (shown in Fig. 4(d)) was influenced by these two processes (reaction 1‒

10). With the increase of the temperature, maximum CO2 selectivities at 550‒600℃ can be found due 

to both the increase of CO and the suppression of the WGS reaction at high temperatures.  

The methane in the products originates mainly from the cracking reactions of the heavy components 

(e.g., reaction 13, 16 and 18) as well as the methanation reactions (e.g., reverse reaction of reaction 1). 

As shown in Fig. 4(e), the produced methane was further converted with the increase of temperature 

through reaction 1 and 18. A low level of methane content in the product can be achieved at high 
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temperatures, e.g., CH4 selectivity is less than 2% under the conditions of T > 650℃, S/C = 5, T > 

700℃, S/C = 3 and 4, T > 750℃, S/C =2, and T > 950℃, S/C =1. Proper conditions aiming at limited 

CH4 selectivity and lower CO selectivity can be chosen according to Fig. 4, e.g., the conditions of T = 

650‒750℃, S/C = 3 result in 41.8%‒56.0% of CO, 43.5%‒51.8% of CO2 and 0.5‒6.4% of CH4 in the 

product. 

Compared to the results of PSR, a lower CO2 selectivity and higher CH4 selectivity were found for 

BSR. However, the differences in the selectivity values between the results from PSR and those from 

BSR are very close (∆𝑆𝑆𝐶𝐶𝐶𝐶 < 0.2%, ∆𝑆𝑆𝐶𝐶𝐶𝐶2 < 2.0% and ∆𝑆𝑆𝐶𝐶𝐻𝐻4  < 3.8%). Due to the higher number of 

carbon atoms in butane, greater amounts of products were generated from each mole of butane than 

from propane, e.g., 𝑋𝑋𝐶𝐶𝐶𝐶 = 23.8‒30.6%, 𝑋𝑋𝐶𝐶𝑂𝑂2 = 25.3‒32.6% and 𝑋𝑋𝐶𝐶𝐻𝐻4 = 19.4‒23.3% under the 

investigated conditions. 

3.2.4 Carbon formation 

Low S/C ratios may result in carbon formation on the catalyst through reactions 18‒22. Fig. 4(f) 

presents the equilibrium carbon yields at different temperatures and S/C ratios (0.5‒1.75) for both the 

PSR and BSR processes. BSR shows higher carbon yields than PSR especially at low and moderate 

temperatures (e.g., T < 650℃, S/C = 1), and the results for both of two processes are closer to each 

other with the increase of the temperature (e.g., T > 650℃, S/C = 1). Regarding the amounts of carbon 

formation per mole of hydrocarbon feed, BSR is more prone to carbon formation than PSR, e.g., the 

amount is more than 25.1% higher under all the investigated conditions (shown in Figure 2S in 

Appendix A). Maximum level of carbon formation were found for each S/C ratio at the moderate 

temperature range of 550‒650℃, which is consistent with the simulation results for PSR [75] and the 

coke-promoting temperature range reported in the experimental study [6]. The decrease of carbon 

formation at high temperatures is due to the suppression of the exothermic reactions 18, 20‒21, and the 

decrease of the CH4 content in reaction 19. It should be noted that reaction 22 was not considered in the 

present thermodynamic analysis which could result in pyrolytic carbon encapsulating the catalyst at 

high temperatures (> 650℃) [18].  

For higher S/C ratios, a thermodynamically carbon-free zone was found, e.g., S/C > 1.75 for PSR and 

S/C > 2 for BSR, which can be easily achieved by the typical S/C ratios (2.5‒3) used in industry. For 

the designs using low S/C ratios, higher operating temperatures are required to avoid the carbon-

promoting temperature range mentioned above (e.g., for S/C=1.5, T > 650 is needed). It is important to 
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note that carbon formation could also occur in the thermodynamically carbon-free zone in practical SR 

processes for different reasons, e.g., due to a poor distribution of gases in the local area of the reformer 

and a carbon formation rate that is greater than the rate of the carbon removal by the reactions on the 

catalyst surface. 

3.3 Oxidative steam reforming of butane 

Oxygen or air can be introduced into an SR process with the following aims: 1. Reducing the external 

heat supply of the reformer through the exothermic POX reactions of hydrocarbons (reaction 23‒24); 2. 

Removal or decrease of the carbon deposition on the catalyst surface by carbon oxidation (e.g., reaction 

26) and reduction of olefins in the gas phase as mentioned in section 3.1.2. It should be noted that 

limitations should also be considered for the OSR process, e.g., the additional cost of oxygen or air 

supply system, heat transfer consideration (e.g., hot point) for the reformer design with the fast 

exothermic POX reactions as well as the catalyst stability under oxidative atmosphere (e.g., the 

oxidation and deactivation of nickel-based catalysts [17]).  

The equilibrium conversion of the reactants, selectivities of the products and the hydrogen produced for 

OSR of butane (1 mol/s) at different temperatures (250‒1000℃), O2/HC ratios (0.4‒2.4) and the 

typical S/C ratio of 3 are shown in Fig. 5. Furthermore, the equilibrium yields of carbon at low S/C 

ratios (0.5 and 1.25) are shown in Fig. 6, whereas no carbon formation was found for higher 

investigated S/C ratios (i.e., S/C ≥ 1.75). The result of BSR with the same S/C ratio condition was also 

shown in Fig. 5 and Fig. 6 for comparison. The analysis of propane oxidative steam reforming (POSR) 

was also investigated for comparison (not shown in Figs. 5 and 6). The trends of butane oxidative 

steam reforming (BOSR) were found to be similar to those of POSR both in the present study and in 

the literature [20]. Butane and oxygen were completely converted under all investigated conditions. 

3.3.1 Conversion of H2O  

The OSR process can be viewed as a combination of the POX and SR processes [17]. As mentioned in 

section 3.1.1, the POX reactions (reaction 23‒24) have higher thermodynamic equilibrium constants 

and occur more easily than the SR reactions. Consequently, compared to BSR, the conversion of H2O 

for BOSR decreased when O2 was added in the feed as shown in Fig. 5(a), and the decrease of the H2O 

conversion was almost linear with the increasing O2/HC ratio. This conversion decrease also indicates 

that there will be more unconverted water in the system for BOSR compared to BSR, e.g., at 650℃ and 
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S/C=3, the conversion of water is 48.5% for BSR, and 33.7% (O2/HC=1.2) and 23.1% (O2/HC=2.0) for 

BOSR. Compared to BOSR, the H2O conversion values for POSR are slightly lower with the 

difference of ∆𝐶𝐶𝐻𝐻2𝑂𝑂 < 5% for the investigated S/C (1‒5) and O2/HC ratios (0.4‒2.4).  

 

(a)                                                                                          (b) 

 

(c)                                                                                          (d) 
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      (e) 

Fig. 5. Equilibrium conversion of the reactants, selectivities and yield of the products for BOSR as a function of 

temperature and O2/HC ratio at 1 atm and S/C = 3. 

3.3.2 H2 yield 

Compared to the SR reactions, the POX reactions (reaction 23‒24) produce less hydrogen because O2 

is not a source of hydrogen. As shown in Fig. 5(b), for the BOSR process, the H2 yields decreased with 

the rising O2/HC ratio, which is more obvious at moderate and high temperatures. For instance, at 650℃ 

and S/C=3, the amount of H2 produced is 10.3 mol/mol butane for BSR, 8.8 mol/mol butane (O2/HC = 

1.2) and 7.7 mol/mol butane (O2/HC = 2.0) for BOSR.  

Although the increasing O2/HC ratio results in a lower H2 yield according to the thermodynamic 

predictions, experimental results showed that the addition of a low level of O2 can result in a positive 

effect on the H2 yield [13][16]. Laosiripojana and Assabumrungrat [13] studied the autothermal 

reforming of LPG over a CeO2 catalyst at 900℃ and found that the H2 selectivity increased with 

increasing O/C molar ratio when O/C is less than 0.6. Silva et al. [16] conducted the OSR of LPG over 

La1-xCexNiO3 and La1-xSrxNiO3 catalysts, and higher H2 production was obtained at 873 K and O2/LPG 

= 0.25 than under the SR conditions. The positive effects of O2 in the above studies can be ascribed to 

the promotion of the removal of the carbon formed on the surface of the catalyst. For the OSR of 

propane, the H2 produced from BOSR is 20.4‒23.4% higher than that from POSR, which is similar to 

the results for the SR process (see section 3.2.2). 
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3.3.3 Selectivities of CO, CO2 and CH4 

Figs. 5(c)‒(e) demonstrate the selectivities of CO, CO2 and CH4 in the products as a function of 

temperature and O2/HC ratio at S/C = 3. The CO selectivity decreased with increasing O2/HC ratio as 

shown in Fig. 5(c), because in the presence of more the oxidant (O2) in the system, more CO will be 

oxidized and converted to CO2 through the WGS reaction (reaction 10) or reaction 25 (for the 

conditions with high O2/HC ratios). Therefore, the CO2 selectivity increased with the increasing O2/HC 

ratio (see Fig. 5(d)). For example, at the typical temperature of 650℃, S/C=3 and O2/HC = 1.2, the 

equilibrium selectivities of CO and CO2 are 34.1% and 63.4%, respectively, whereas those for the SR 

condition are 41.8% and 51.8%, respectively. However, an experimental study showed that the CO 

molar fraction in the OSR condition can also be higher than that in the SR condition, because more CO 

may form through the oxidation of the coke deposition on the surface of catalyst [16]. 

Methane selectivity decreased with the increase of the O2/HC ratio (see Fig. 5(e)), which could be 

ascribed to the lower content of CO and H2 and a higher H2O level in the system that can promote the 

conversion of CH4 through the reforming reaction (reaction 1). In additions, a higher fraction of O2 (for 

the conditions with high O2/HC ratios) and CO2 in the system can also oxidize CH4 by reaction 23‒24 

and the dry reforming reaction (CO2+CH4↔2CO+2H2). Compared with BSR, lower level of CH4 

selectivity can be obtained by BOSR, e.g., the CH4 selectivity is less than 2% under the condition of T > 

650℃, O2/HC >1.2, whereas higher temperature range of T > 700℃ is needed for BSR to achieve the 

same CH4 selectivity。 

Compared to the results of POSR with the same O2/C ratios (C represents moles of carbon atom in the 

feed), the differences in the selectivity values between the POSR and BOSR results are still quite small 

(∆𝑆𝑆𝐶𝐶𝐶𝐶 < 1.0%, ∆𝑆𝑆𝐶𝐶𝐶𝐶2 < 2.0% and ∆𝑆𝑆𝐶𝐶𝐶𝐶4< 3.8%), similar to the results for the SR condition. The number 

of moles of the products generated from each mole of butane are higher than those from each mole of 

propane (𝑋𝑋𝐶𝐶𝐶𝐶 = 22.6‒29.4%, 𝑋𝑋𝐶𝐶𝑂𝑂2 = 25.5‒31.1% and 𝑋𝑋𝐶𝐶𝐻𝐻4 = 14.6‒23.1%) under the investigated 

conditions (T = 250‒1000℃, O/C = 0.2‒1.2 and S/C = 1‒5). 

3.3.4 Carbon formation 

Fig. 6 shows the equilibrium carbon yields of OSR of butane (1 mol/s) at different temperatures, S/C 

ratios (0.5 and 1.25) and O2/HC ratios. The carbon yield decreased with the increasing S/C ratios and 

O2/HC ratios. Compared to the SR condition, the carbon-free zones were further enlarged with the 

increasing O2/HC ratios. Especially, at the low S/C ratios of 0.5 shown in Fig. 6(a), carbon formation 
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was always observed at the investigated temperatures under the SR conditions, whereas under the OSR 

condition, carbon-free zone can be achieved by using appropriate O2/HC ratios, e.g., O2/HC > 1.2 for 

S/C = 0.5. The carbon-free zones were also enlarged with a higher S/C ratio as shown in Fig. 6(b), 

which is similar to the trend under the SR condition. In addition, the carbon yields of BOSR with other 

S/C ratios can be found in Fig 3S in Appendix A. 

Regardless of the oxidation of the formed carbon by reaction 26, the olefins (could form by the 

cracking reactions mentioned in section 3.1.2) in the system can also be oxidized and decreased to 

lower level by O2 as mentioned for the POX process (in section 3.1.2); for example, an experimental 

study of the autothermal reforming of LPG [13] showed that there was no ethylene detected in the 

products under the conditions of O/C ≥ 0.6, S/C = 1.45 and 900℃. Consequently, the carbon formation 

through reaction 18 and reaction 22 can also be lower or removed by using a proper O2/HC ratio.  

The carbon yields for the OSR of propane and butane with the same O2/C ratios are close (Ycarbon, butane 

‒ Ycarbon, propane < 5%) especially at high temperatures, which is similar to the trends for the SR 

conditions (see Fig. 4(f)). For the moles of carbon formation per mole of hydrocarbon feed, the carbon 

formation per mole of butane is more than 24.5% higher than the corresponding values for POSR under 

the same investigated conditions.  

 

(a)                                                                                          (b) 

Fig. 6. Equilibrium carbon yield for BOSR as a function of temperature and O2/HC ratio at 1 atm and different 

S/C ratios: (a) S/C = 0.5; (b) S/C = 1.25. 
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3.3.5 Thermo-neutral conditions 

For an oxidative steam reforming process, thermo-neutral (TN) conditions can be achieved with proper 

O2/HC ratio in the feed, where the total reaction enthalpy of the endothermic SR reactions, the 

exothermic POX and WGS reactions and other reactions in the system approach zero, and no external 

heat supply is needed. This operation is also called the autothermal reforming (ATR). Fig. 7 illustrates 

the TN temperatures for ATR of propane and butane at different O/C (oxygen atom in H2O was not 

included in this molar ratio) and S/C ratios in the feed. The TN temperature increases with the 

increasing O/C ratios (0.1‒0.6). TN conditions cannot be achieved when the O/C ratio is higher than 

0.7 for both the ATR of propane and butane, which is close to the O/C ratio (approximately 0.72) 

predicted by Daniel and Dushyant [33] for ATR of different hydrocarbon fuels. However, an O/C ratio 

higher than 0.7 can be used for a practical system (e.g., O/C = 0.74‒1.33 in [5]), where other heat 

requirements (e.g., heat loss to environment) in the reforming system are needed to be covered from the 

exothermic POX reactions.  

Due to the promotion of the endothermic SR reactions by higher S/C ratios, the TN temperatures 

decrease with the increase of the S/C ratio for most conditions in Fig. 7. The trend is different for the 

conditions of O/C = 0.6 for ATR of butane where the exothermic WGS reaction may have larger 

influence while the high extent of the SR reactions has been achieved. The TN temperature differences 

between the ATR of butane and propane are within 8.6℃ for most conditions (except O/C = 0.6). The 

TN temperatures are below 750℃ under all investigated conditions. Carbon formation could occur for 

some of the TN conditions with lower S/C ratios, e.g., S/C = 0.5 which is not in the carbon-free zone 

mentioned in section 3.3.4.  
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Fig. 7. Thermo-neutral temperatures for ATR of propane and butane as a function of O/C and S/C ratio. 

4．Conclusions 

The thermodynamic analyses of cracking, POX, SR and OSR of butane and propane (for comparison) 

were performed using the Gibbs free energy minimization method under the conditions of T = 250‒

1000°C, S/C = 0.5‒5 and O2/HC = 0‒2.4. The simulations for the cracking of butane and propane 

showed that olefins (C2‒C4) and acetylene (at high temperatures) can be easily generated and could 

also exist in an LPG steam reformer and increase the risk of carbon formation on the catalysts. The 

results from POX of butane demonstrated that most of the olefins and acetylene in the system can be 

oxidized and removed by adding an appropriate amount of oxygen, e.g., the level of olefins and 

acetylene is lower than 2% when O2/HC ≥ 1.2. 

For the SR process, maximum values of H2O conversion and H2 yield were found at 600‒750℃ for 

S/C = 2‒5, and the values decreased slightly at higher temperatures, whereas monotonic trends were 

found with S/C = 1. Low CH4 selectivity can be achieved only at high temperatures. The CO selectivity 

obviously increased with the increasing temperature at moderate and high temperatures (T > 500℃) 

which may influence the CO content in the products and downstream WGS reactors. Predicted carbon 

formation only occurred at low S/C ratios for BSR (S/C ≤ 2) and PSR (S/C ≤ 1.75), while the 

maximum level of carbon formation was found at 550‒650℃.  
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Similar trends with temperature and S/C ratio were found for the OSR process, the results (except 

carbon formation) were almost linearly influenced by the O2/HC ratio values. The addition of oxygen 

decreased the H2O conversion, H2 yield, selectivity of CO and CH4 and increased the CO2 selectivity. 

Especially, the carbon formation can be further removed compared to the SR conditions which results 

in larger carbon-free zones at low S/C ratios. For ATR operation of butane and propane, the TN 

temperatures decrease with the increase of the S/C ratio (except for O/C = 0.6) and the decrease of the 

O/C ratio. The TN temperatures are below 750℃ under all investigated conditions. The simulated 

results (conversion, selectivity) for SR or OSR of propane and butane are very close (∆Ci or ∆Si < 5%) 

under the investigated conditions; one mole of butane produces approximately 15%‒33% higher moles 

of products (H2, CO, CO2, CH4 and carbon) than propane.  
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Appendix A 

 
    (a)                                                                                       (b) 

 
    (c)                                                       

Figure 1S . Mole flow rates of the products of POX of butane (1 mol/s) as a function of temperature and 
O2/C4H10 ratio at 1 atm (a) O2/C4H10 = 1.6; (b) O2/C4H10 = 2.0; (c) O2/C4H10 = 2.4. 
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Figure 2S. Equilibrium carbon formation (in mole numbers) for BSR and PSR as a function of temperature and 
different S/C ratios. 
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(a)                                                                                          (b) 

 

      (c) 
Figure 3S. Equilibrium carbon yield for BOSR as a function of temperature and O2/HC ratio at 1 atm and 

different S/C ratios: (a) S/C = 0.75; (b) S/C = 1.00; (c) S/C = 1.5. 
 

 


