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Multipath Propagation in Radio Channels

A radio channel is measured by transmitting a known signal x(t) and recording
another signal y(t) at the receiver. The signal propagates via multiple paths:

The received signal is a
superposition of the multipath
components

y(t) =
∑
k

αkx(t − τk),

For simplicity, we ignore
additive noise.

I The number of paths, delays T = {τk}, and gains {αk} are unobserved.

I The delay and gain pairs form a marked point process {(τk , αk)}.
I The signal y(t) is a shot noise driven by {(τk , αk)}.



Multipath Models

I Multipath propagation induces delay dispersion, signal fading etc. which
should be accounted for in radio system.

I Radio channel models are used in system design, analysis and simulation.

I Defining a stochastic multipath model (in the simplest setting shown
before) amounts to defining a marked point process.

I Numerous such multipath models have been proposed, with delays
generated from various point processes and gain distributions.

I Example: Turin’s model [Turin et al., 1972], {(τk , αk)} is a marked
Poisson point process fully specified by an intensity function λ(τ) or path
arrival rate, and a mark density, or conditional gain distribution p(α|τ).

I Since Turin, many other models for various scenarios have been studied in
the literature.

I Here we consider a stochastic model for in-room radio channels.



Rectangular room channel

Transmit and receive antennas located
in a rectangular room of volume V :
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The gain of the transmit antenna in
direction Ω ∈ S2 is denoted GT (Ω) ≥ 0.

Let beam supports, OT is the support
of the transmit antenna gain function
and define the beam coverage fraction
as

ωT =
1

4π

∫
OT

dΩ

This is the fraction of the sphere which
the antenna radiates power.

For the receiver, we define GR(Ω) and
ωR similarly.



Mirror sources for a rectangular room

y

x

7
6

Receiver

5
4

3

Transmitter

20

1

z

2

3

1 12 3 04 5

Mirror source k corresponds to a path
k with

I propagation delay τk given by the
propagation distance,

I gain αk

|αk |2 = g |k| · GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2

where g is the wall reflection gain,
|k| is the reflection order for
source k, lc is carrier wavelength
and c is speed of light.

Iteratively “mirroring” the transmitter
position in boundaries, gives an infinte
set of mirror source positions in 3D.
2D cut of mirror source process:

T

R

c=

The pattern continues similarly in the
direction perpendicular to the drawing
plane.



Mirror Source Positions as Spatial Point Process

Randomize mirror source process: uniformly distributed transmit antenna
locations and directions are uniformly distributed on the sphere.

Then mirror source positions form a spatial (here 3D) homogeneous point
process M with constant intensity %(r) = 1/V . The antennas filter/thin out,
some mirror sources. The remaining set of ’visible’ is

V =

{
r ∈M :

r − rT
‖r − rT‖

∈ OT ,
r − rR
‖r − rR‖

∈ OR

}
with intensity function (transmitter acts as a thinning)

%v(r) = 1

(
r − rR
‖r − rR‖

∈ OR

)
ωT

V
, r ∈ R3.

Mapping points in V onto the delay axis gives the delay process:

T = {‖r − rR‖/c : r ∈ V}

with arrival rate which is easy to compute

λ(τ) =
4πc3τ 2

V
ωTωR1(τ > 0).

Higher moment intensities are intractable.



Poisson Approximation of Mirror Source Process

The point processes M,V, and T give only access to the first moments.

We approximate the point process M and V as spatial Poisson processes as

M≈MPPP ∼ PPP(R3, %m) and V ≈ VPPP ∼ PPP(R3, %v).

Mapping the process VPPP to the delay axis yields a Poisson point process with
intensity function λ(t)

T ≈ TPPP = {‖r − rR‖/c : r ∈ VPPP} ∼ PPP(R, λ).

By construction, this Poisson approximation of the mirror source process has
the correct intensity function, but higher moments are disregarded .



Realizations of the Point Processes

T

R

I For readability, only sources at the
same height as the transmitter are
shown projected to the horizontal
plane.

I Gray area: beam coverage of
receiver (R).

I Transmitter (T) has a hemisphere
antenna pointing at the receiver.

• Mirror source positions (M).

◦ The visible mirror sources (V).

? Poisson approximation (VPPP).



Power delay spectrum — Variance of Mark Density

For zero-mean and conditionally uncorrelated gains {αk}, the second moment
of the received signal reads

E[|y(t)|2] =

∫ ∞
−∞

P(τ − t)|x(t)|2dt,

with a power-delay spectrum P(τ) that factorizes as

P(τ) = σ2
α(τ)× λ(τ),

where σ2
α(τ) is the variance of p(α|τ).

Choosing p(α|τ) is a circular complex Gaussian with variance σ2
α(τ) according

to (a good) approximation of the mirror source theory [Pedersen, 2018]

σ2
α(τ) =

e−τ/T

(4πcτ/lc)2
· 1

ωTωR
gives P(τ) =

e−τ/T

4πV /l2
c c
,

where the decay rate T is called the reverberation time. Antenna dependencies
cancel in the power delay spectrum (but affects other channel characteristics).



Simulation Setup

We compare three models with identical power delay spectra:

MS: Mirror source model with uniformly distributed antenna
positions and orientations.

Proposed: Proposed inhomogeneous Poisson approximation with complex
Gaussian gains.

Constant Rate: Poisson model with constant arrival rate %0 = ωTωR · 150/τmax

and complex Gaussian gains.

Simulation settings:

Room dim., Lx × Ly × Lz 5× 5× 3m3

Reflection gain, g 0.6
Center Frequency 60GHz
Bandwidth, B 2GHz
Transmitted signal, s(t) Hamming pulse
Antennas Isotropic or hemisphere.



Realizations of Channel Responses and Arrival Counts

Example realizations of the received signal and corresponding arrival counts.

(a) Isotropic Antennas
ωT = ωR = 1
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(b) Hemisphere Antennas
ωT = ωR = 0.5

-20

0

20
Received Signal

Mirror Source Model

-20

-10

0

10

20
Proposed Model

0 0.5 1
Delay [s] #10-7

-20

-10

0

10

20

P
ow

er
[d

B
] Turin Model, Const Rate

10-8

Delay [s]

100

101

102

103

A
rr

iv
al

C
ou

n
t

Arrival Count

The constant rate model clearly does not capture the diffusion process.



Simulated Second Moment Of Received Signal

Recieved power delay spectra simulated using 104 Monte Carlo Runs.

(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5
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As they should by construction, all three models match the theory.



Kurtosis-Delay Profile

The kurtosis delay profile is the excess kurtosis of the received signal y(t).

The Poisson assumption permits derivation of all cumulants and higher
moments of the received signal [Pedersen, 2019].

(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Ants. ωT = ωR = 0.5
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I Antennas directivity affects the kurtosis (inversely proportional to ωTωR).

I The proposed model fits (with some discrepancy) the decay in
kurtosis-delay profile of the mirror source model.

I The constant rate models does not replicate the behaviour.



Distributions of Instantaneous Mean Delay and RMS Delay Spread

The (standardized) first and second temporal moments of the received signal
(Mean delay and RMS delay spread) are an important summary statistics.

(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5

The proposed model follow the trends of the mirror source model on mean and
rms delay. The constant rate model does not capture the antenna effects.



Order Statistics

The nth order statistic τ[n] is the delay of the nth arrival are obtained by sorting
the delays:

τ[1] ≤ τ[2] ≤ τ[3] ≤ . . . (1)

The order statistics for the proposed model are generalized gamma distributed.

(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5

The proposed model closely matches the order statistics of the mirror source
model.



Conclusion

I For the inroom scenario, the positions of mirror sources is described by 3D
point proces (homogenous, but not Poisson).

I The path arrival rate is quadratic:

λ(τ) =
4πc3τ 2

V
ωTωR1(τ > 0)

I Compared to the constant rate model, the proposed model captures better
several other characteristics of the mirror source model, including:

I gradual diffusion of the received signal
I mean delay and rms delay spread
I kurtosis delay profile
I order statistics of path delays.

I Thus, to accurately model entities important for design of radio systems,
the model should account for the arrival rate.

I The quadratic model is conservative – in real where clutter is present, the
rate may be higher. This, motivates a more general model

λ(τ) = aτ b1(τ > 0).

The two parameters a, b should be estimated from observations of y(t).



Beyond: Other Topics With Point Processes within Telecommunications

Result of a 5 min brainstorm of where point processes and related inference
techniques are/could be considered in telecommunications:

I Spatial radio channel modelling (directional models, point cloud models)

I Spatio-temporal traffic models (when and where does traffic occur)

I Spatio-temporal modeling of user behaviour (movement)

I Modeling of user behaviour (movement)

I Spatio-temporal interference modeling

I Design of communication protocols (packet collision modeling)

I Spatial models for quality of service QoS (e.g. spatio-temporal models for
dropped calls)
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