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Abstract: Brain–computer interfaces (BCIs), operated in a cue‐based (offline) or self‐paced (online) 

mode, can be used for inducing cortical plasticity for stroke rehabilitation by the pairing of 

movement‐related brain activity with peripheral electrical stimulation. The aim of this study was to 

compare the difference in cortical plasticity induced by the two BCI modes. Fifteen healthy 

participants participated in two experimental sessions: cue‐based BCI and self‐paced BCI. In both 

sessions, imagined dorsiflexions were extracted from continuous electroencephalogram (EEG) and 

paired 50 times with the electrical stimulation of the common peroneal nerve. Before, immediately 

after, and 30 minutes after each intervention, the cortical excitability was measured through the 

motor‐evoked potentials (MEPs) of tibialis anterior elicited through transcranial magnetic 

stimulation. Linear mixed regression models showed that the MEP amplitudes increased 

significantly (p < 0.05) from pre‐ to post‐ and 30‐minutes post‐intervention in terms of both the 

absolute and relative units, regardless of the intervention type. Compared to pre‐interventions, the 

absolute MEP size increased by 79% in post‐ and 68% in 30‐minutes post‐intervention in the self‐

paced mode (with a true positive rate of ~75%), and by 37% in post‐ and 55% in 30‐minutes post‐

intervention in the cue‐based mode. The two modes were significantly different (p = 0.03) at post‐

intervention (relative units) but were similar at both post timepoints (absolute units). These findings 

suggest that immediate changes in cortical excitability may have implications for stroke 

rehabilitation, where it could be used as a priming protocol in conjunction with another 

intervention; however, the findings need to be validated in studies involving stroke patients. 

Keywords: movement‐related cortical potentials; EEG; brain–computer interface; neural plasticity; 

cortical excitability 
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1. Introduction 

A brain–computer interface (BCI) is a device that can decode a user’s intention from voluntary 

produced brain activity [1]. The decoded activity is then used to control an external device; e.g., 

speller devices, wheel‐chairs, and robotic arms as aids for disabled users, and the control of electrical 

stimulators and exoskeletons for stroke rehabilitation. It has been established over the past years that 

BCIs can be used for stroke rehabilitation by strengthening the brain–muscle pathways that were 

weakened by the stroke, and a likely mechanism for this motor recovery is neural plasticity [2,3]. It 

is likely that BCI‐induced neural plasticity happens through Hebbian‐associated and long‐term 

potentiation‐like mechanisms where motor cortical activity (movement planning and execution) is 

temporally correlated with relevant somatosensory feedback [4]. The exact timing between motor 

cortical activity and afferent inflow for inducing neural plasticity is not known, but it has been 

speculated that the two events must be paired with an accuracy of less than 200–300 ms [3], which 

was validated by Mrachacz‐Kersting et al. [4]. The motor cortical activity can be elicited by either 

executing or imagining a movement [5–7]. Moreover, stroke patients can also attempt to perform 

movements which will elicit motor cortical activity [8,9]. Motor cortical activity is manifested in the 

electroencephalogram (EEG) as a movement‐related cortical potential (MRCP) or as sensorimotor 

rhythms, comprising event‐related desynchronization and event‐related synchronization [10,11]. To 

fulfil the strict requirement of temporally correlated somatosensory feedback, the intention to move 

must be detected before the movement is executed [4]. It is possible to predict the movement by 

extracting MRCPs or event‐related desynchronization on a single‐trial basis since they reflect pre‐

movement activity; this is seen as an increase in negativity for the MRCP, and a power decrease in 

the alpha/mu and beta band. It has been shown in offline simulation studies that these phenomena 

can be reliably detected with latencies that allow sufficient time to trigger an external device that can 

provide relevant somatosensory feedback (e.g., through electrical stimulation or an orthotic device) 

and for the somatosensory feedback to reach the cortical level [6,7]. In online studies, movement 

intentions have been detected between −500 and +400 ms with respect to the movement onset [12,13], 

which may not be optimal for inducing plasticity according to the findings in [4], but the findings in 

[14,15] support the idea that movement intentions can be detected with latencies that allow the 

induction of plasticity. It has been established that both self‐paced and offline cue‐based BCI 

protocols are efficient for inducing neural plasticity in healthy participants and stroke patients by 

using exoskeletons and the electrical stimulation of relevant nerves and muscles [4,14–18], improving 

motor function [17,19–21]. The next step in this line of research is to optimize the use of this protocol 

for rehabilitation in clinical practice. Before BCI technology can be implemented into rehabilitation 

clinical practice, a number of technical, usability and efficacy issues must be addressed (see [22] for a 

recent review about the design requirements of BCIs from rehabilitation professionals). Some of these 

issues include the technical expertise and time required to set up systems, the robustness and 

calibration of the decoding algorithms, as well as how effectively BCI systems fit with current clinical 

practice philosophies and workflows, how effectively BCI systems promote the patient’s continued 

engagement in rehabilitation, and whether BCI systems improve outcomes of importance for people 

with stroke [23,24]. 

One key factor which may influence both system usability and efficacy is the BCI mode. 

Currently, BCI systems can be operated using either self‐paced (online) or cue‐based (online or 

offline) modes (also referred to as asynchronous and synchronous). In contrast, cue‐based systems 

are only active during pre‐determined periods defined by the presentation of a cue to the user. 

Besides the online implementation, it can also be implemented as an offline/associative BCI [4]. In 

self‐paced systems, the BCI is always active and is required to accurately detect a defined change in 

brain activity from continuous data. Self‐paced systems offer advantages that could be appealing in 

the rehabilitation context. Firstly, the user has control of the system which may promote engagement 

with BCI rehabilitation, and secondly, the BCI could be embedded in usual rehabilitation activities 

or activities of daily living, which may strengthen its fit with clinical practice and extend the reach of 

BCI rehabilitation beyond defined sessions. However, the disadvantage of self‐paced BCI systems is 

that the performance of the system can be affected by the need to be always active, resulting in a 
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trade‐off between having a high true positive rate and a low number of false positive detections per 

minute.  

Both cue‐based and self‐paced systems have been shown to induce neural plasticity. The 

induction of plasticity has been in the range of a 35%–175% increase in corticospinal excitability for 

the offline cue‐based BCI [4,16,17], while increases of 50%–100% have been reported with an online 

self‐paced system [14,15]. However, these results come from disparate research using different 

feedback modalities, electrical stimulation or exoskeletons and participants, stroke patients and 

healthy participants. It is unclear whether decrements in system performance inherent in online 

systems influence the neurophysiological or clinical effects of BCI or whether this disadvantage is 

outweighed by other advantages. The disadvantage of the current offline cue‐based system [17] is 

that it is calibrated in a training session from which the trigger timing of the external device is fixed 

with respect to a cue. If the users change their motor strategy during the testing session, the timing 

between the movement intention and somatosensory feedback may be mismatched; e.g., they will 

still receive electrical stimulation even though they did not imagine or attempt to perform a 

movement. 

Therefore, the aim of this study was to compare the effect of self‐paced and cue‐based motor 

output modes on neural plasticity during a MRCP‐driven BCI. 

2. Methods 

2.1. Participants 

Seven women and eight men participated in the study (25 ± 4 years old). The participants gave 

written informed consent, which conformed to the Declaration of Helsinki, and the study was 

approved by the Northern B Regional Ethics Committee of New Zealand (14/NTB/113). All 

participants were screened for contraindications to transcranial magnetic stimulation (TMS) [25]. 

2.2. Measurements and Stimulation 

2.2.1. EEG 

Continuous EEG was recorded using a 64‐channel amplifier (TMSi) with a sampling frequency 

of 2048 Hz. The channels F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 were used for the BCI operation. 

Electrooculography was recorded from FP1. All channels were referenced to the left mastoid (M1). 

The impedance of the electrodes was below 10 kΩ. The participants were instructed to minimize 

activity in facial muscles and eye movements.  

2.2.2. Motor‐Evoked Potentials 

Motor‐evoked potentials were elicited in the right tibialis anterior (TA) using a transcranial 

magnetic stimulator (Magstim 200, Magstim Company, Dyfed, UK) and a figure‐of‐eight double cone 

coil with a posterior–anterior current direction. Single‐pulse TMS was applied. MEPs were recorded 

using electromyography (EMG) with (Ag/AgCl Neuroline 720, Ambu, Denmark) electrodes placed 

on the belly of the muscle. The EMG was sampled at 4000 Hz, amplified, and band‐pass filtered from 

20–1000 Hz (using a custom‐made EMG amplifier). The peak–peak amplitude of the MEP was 

extracted and used in the analysis (see Figure 1A, B).  

2.2.3. Transcranial Magnetic Stimulation 

The TA hotspot was identified by altering the coil position until the site eliciting the largest MEP 

was identified. This location was marked and recorded so the coil could be placed in the same location 

throughout the experiment. The resting motor threshold (RMT) was then determined. The RMT was 

defined as the lowest stimulator output where 5 out of 10 MEPs exceeded 50 µV. In the recordings, 

15 stimuli were delivered at 120% RMT; each stimulus was separated by 5–7 s. All the trials were 

visually inspected, and the trials which had EMG activity in the pre stimulus part were rejected. 
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2.2.4. Peripheral Nerve Stimulation 

Single pulse electrical stimulation was applied to the deep branch of the right common peroneal 

nerve. The surface stimulation electrodes were placed with the cathode proximal and the anode 

distal. The electrodes were placed in such a way that there was only activity in the TA and not in any 

synergistic or antagonistic muscles; this was checked by palpation. The nerve was stimulated at the 

motor threshold, which was defined as the lowest amount of current that would elicit a palpable 

response in the tibialis anterior tendon. The pulse width was 1 ms, and a Digitimer Stimulator DS7AH 

was used to deliver the stimulus. 

2.3. Experimental Setup 

The experiment consisted of two experimental BCI training sessions: 1) cue‐based and 2) self‐

paced. The order of the BCI training sessions was randomized, and the two sessions were separated 

by at least 24 hours. At the beginning of the sessions, the participants were asked to imagine 50 

dorsiflexions of the right ankle joint while EEG was recorded. The participants were cued when to 

initiate the movement imagination; this cue was also used in the calibration of the cue‐based system. 

The BCI systems are described below. The initial EEG recordings were followed by a pre‐

measurement using TMS, which was repeated immediately after the BCI training session and 30 

minutes later. In the BCI training sessions, 50 peripheral electrical stimuli were paired with the 

movement intention. 

 

Figure 1. (A) Experimental setup for transcranial magnetic stimulation(TMS) measurements. (B) 

Extraction of the peak–peak amplitude of a motor‐evoked potential (MEP). (C) Visual cue that was 

presented to the participants and an example of an averaged movement‐related cortical potential 

(MRCP) from the 50 movements prior to the cue‐based brain–computer interface (BCI) training. Note 

that in this example the peak negativity occurs prior to the task onset, and it is this latency of peak 

negativity with respect to the task onset that is considered to be stable throughout the cue‐based BCI 

training. (D) The participants receive electrical stimulation when they imagine a movement. There is 

no visual cue provided in the self‐paced BCI training. 
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2.4. Brain–Computer Interface Systems 

The data were acquired from the amplifier and processed using code developed in MATLAB 

2015b (The MathWorks, Inc., Natick, MA, USA.). The continuous EEG recordings were band‐pass 

filtered between 0.5 and 10 Hz with a zero‐phase 2nd‐order Butterworth filter. The filtered data was 

down‐sampled to 32 Hz to reduce the computation time of the rest of the steps. A surrogate channel 

was obtained by using an optimized spatial filter [6]. Afterwards, the data were epoched with respect 

to the cue (cue‐based BCI) or EMG onset (self‐paced BCI). In the online self‐paced BCI training, the 

abovementioned pre‐processing was applied on 2‐second data segments. New data were imported 

every 200 ms. The complete procedures are summarized below, and greater detail can be found in 

[4] for the cue‐based system and in [14] for the self‐paced system. 

2.4.1. Cue‐Based BCI (Offline) 

The processed EEG was divided into epochs based on the visual cues that were provided to the 

participants (see Figure 1C). The epochs were averaged, and the peak of maximum negativity was 

identified. The latency between the peak of maximum negativity and the visual cue to initiate the 

imagined movement was calculated. In the BCI training session, the electrical stimulation was 

delivered with the following timing: “visual cue—latency—50 ms” [4]. Fifty milliseconds are 

subtracted due to the conduction time of the afferent stimulus and central processing delays in the 

brain [4,26]. 

2.4.2. Self‐Paced BCI (Online) 

The EEG from the 50 movements that were recorded during the calibration phase was used to 

individualize the self‐paced BCI system as described in Niazi et al. [14]. The subjects were asked to 

leave a gap of few seconds between the movements. The EEG was pre‐processed as described above, 

and movement intentions were detected using a matched‐filter approach [6]. The calibration data 

were used to build a detection template of the initial negative phase of the MRCP and to determine 

the threshold for movement detection. The threshold was determined from a receiver operating 

characteristics curve to obtain a trade‐off between the number of false positive detections and the 

true positive rate (TPR). The system was disabled for 5 seconds after the system detected a movement 

intention to ensure at least a 5‐second rest period between pairings. Moreover, the detector was 

disabled if the eye (EOG) activity in FP1 exceeded 125 µV. 

During the period in which the detector was disabled, the participants extended their right index 

finger for ~2 seconds after their imagined movement if it was a true positive detection. They extended 

their left index finger if it was a false negative. Movement of the index fingers was used to 

avoid/reduce movement artefact from the jaw muscles during the speech. 

The performance of the system was evaluated using the TPR, number of false positive detections 

per minute (FPs/min), and the number of false negatives per minute (FNs/min). These were not 

calculated for the cue‐based system since it relied on the participants being able to consistently time 

the motor imagination to the visual cue [4]. 

2.5. Statistics 

The following were investigated: 1) whether the pre‐ to post‐ and 30‐minute post‐treatment 

effects of the self‐paced and cue‐based BCI systems induced cortical excitability changes, and 2) the 

difference in these effects across the two systems. 

For all of the MEP analyses, the peak–peak amplitude was extracted from each MEP and 

averaged across the 15 repetitions. The analyses were performed in absolute units (peak–peak 

amplitude: mV) and in relative units (%). The relative change in MEP amplitudes was calculated as 

(post − pre)/pre‐ × 100. 

Linear mixed regression models were used for the analyses, and they were performed in R  

version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria). The advantages of the linear 

mixed regression models over the traditional analysis of variance (ANOVA) approach have been 
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studied in multiple related research areas [27–29]. In this case, the linear mixed regression approach 

had advantages over ANOVA as it allowed us to model the data with a Gamma distribution to 

evaluate differences in millivolts instead of evaluating differences in log‐millivolts because the data 

was not normally distributed, adjust for baseline differences to estimate the pre‐ to post‐effect sizes, 

and account for correlated repeated measures. In addition to these benefits, the linear mixed models 

used here may allow the evaluation and inclusion of other covariates in a larger randomised 

controlled trial based on this study. The evaluation and inclusion of covariates was done in a similar 

study which was published earlier using the same brain–computer interface [30]. The lme4 package 

version 1.1‐21 was used to fit all the models [31]. The model for the absolute units was 

������ ~ 1 + ������ + ������� + ���� + �������: ����

+ (1│�������: �������) 
(1) 

MEP amplitudes were estimated across the two sessions (self‐paced, cue‐based) at the time 

points of post‐and 30‐minutes post‐intervention with respect to the pre‐MEP amplitudes. A similar 

model has been suggested previously [32], but two changes have been made: 1) the subjects across 

the sessions were the same and we assumed that they responded differently to the two 

interventions—therefore, the subject‐ and session‐wise random intercept (1│�������: �������) were 

used to estimate the between‐subject variance in each session separately (this also fits the repeated 

measures study design); and 2) Gamma distribution was used to model the data as well as the log‐

link function. The selection of the model structure was based on Akaike information criterion 

corrected for small samples. This was done to avoid under‐fitting and over‐fitting. Other candidate 

model structures which were considered were ones with a Gamma distribution and identity link and 

with only a subject‐wise random intercept (1|Subject). 

The same model was used as in Equation 1 for relative units, but the Gaussian distribution and 

identity‐link modelled the data as percentage changes instead. The model is given below.  

���% ~ 1 + ������ + ������� + ���� + �������: ����

+ (1│�������: �������) 
(2) 

Significance was assumed when p < 0.05. Using the emmeans package version 1.3.3 [33], pre‐ to 

post‐effect sizes with standard errors were obtained from models 1 and 2 as marginal means at MEPpre 

= 0, and their pair‐wise contrasts were investigated using Tukey’s HSD(honestly significant 

difference) method [34]. 

3. Results 

3.1. MEP Size 

The MEP amplitudes for all subjects are plotted in Figure 2 and relative changes in raw MEP 

amplitudes are shown in Figure 3. The trends of each participant suggest that the MEP amplitude 

increases more from pre‐ to post‐intervention for the self‐paced BCI training. Mean intensity values 

for RMT and peripheral nerve stimulation across subjects are given in Figure 4.  
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Figure 2. Peak–peak raw MEP amplitudes for the subjects. 

 

Figure 3. Percentage changes in MEP peak–peak amplitudes calculated for each subject. Error bars 

show mean ± 95% confidence interval (CI). 
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Figure 4. (A) Peripheral nerve stimulation (PNS) intensity in mA and (B) TMS machine resting motor 

threshold (RMT) output in % for each subject. Error bars show mean ± SD. 

The effect sizes based on the statistical models from pre‐ to post‐intervention are presented in 

Table 1, and the pair‐wise contrasts across the sessions are given in Table 2. The MEP amplitudes in 

absolute units were modelled using log‐link; thus, the contrasts on the log scale are shown on a 

response scale.  
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Table 1. The effect sizes and standard errors are presented based on the statistical models. H0 = 0 

stands for the null hypothesis; i.e., that the effect size is 0. 

Session Time ������ (mV) Standard Error (mV)  �, �, �� = � 

Self‐paced post‐ 0.25 0.05 z = −7.44, p < 0.001 

Cue‐based post‐ 0.18 0.04 z = −8.53, p < 0.001 

Self‐paced post 30‐ 0.22 0.04 z = −8.05, p < 0.001 

Cue‐based post 30‐ 0.21 0.04 z = −7.95, p < 0.001 

Session Time ���% (%) Standard Error (%)  �[��], �, �� = � 

Self‐paced post‐ 93.26 19.82 t[31.91] = 4.71, p < 0.001 

Cue‐based post‐ 44.66 20.46 t[31.58] = 2.18, p = 0.04 

Self‐paced post30‐ 80.72 19.82 t[31.91] = 4.07, p < 0.001 

Cue‐based post30‐ 62.51 20.46 t[31.58] = 3.05, p < 0.01 

Table 2. The contrasts and standard errors are presented based on the statistical models. H0 = 1 and 

H0 = 0 stand for the null hypotheses; i.e., that contrasts of the effect sizes are 1 and 0, respectively. On 

the ratio scale, 1 implies that the two effect sizes are equal, whereas on the linear scale, 0 implies equal 

effect sizes. 

Time Self-Paced/Cue-Based (Ratio) Standard Error (Ratio) �, �, �� = � 

Post‐intervention 1.34 0.27 z = 1.46, p = 0.15 

30‐minutes post‐intervention 1.06 0.21 z = 0.29, p = 0.77 

Time Self-Paced − Cue-Based (%) Standard Error (%) �[��], �, �� = � 

Post‐intervention 48.59 21.04 t[36.2] = 2.31, p = 0.03 

30‐minutes post‐intervention 18.21 21.04 t[36.2] = 0.87, p = 0.39 

These results revealed that both BCI systems increased (p < 0.05) the MEP amplitudes 

significantly from pre‐ to post‐ and 30‐minutes post‐intervention when using absolute units and 

relative units. However, the effect sizes of the self‐paced system were larger than the cue‐based 

system. In relative units, MEPs were significantly different (p = 0.03) between the two systems post‐

intervention but not at 30‐minutes post‐intervention.  

3.2. BCI Performance 

In the cue‐based intervention, the average time across all subjects for movements relative to the 

cues was 11.73 ± 165 ms. The performance of the self‐paced BCI is summarized in Table 3. On average, 

75% of the movement imaginations were correctly detected at ~1 FP/minute. To reach 50 correct 

stimuli, an average of 67 movements were required. The inter‐movement intervals in the training 

phase of online BCI was 11.48 ± 1.11 seconds. 

Table 3. BCI system performance for self‐paced motor imagination. 

Participant 
True Positive 

Rate (%) 

Number of False Positive 

Detections per Minute 

Duration of the BCI 

Intervention (min) 

Total Number of 

Movements Performed 

1 74 0.8 12 68 

2 79 0.2 14 63 

3 77 1.0 7 65 

4 77 0.4 19 65 

5 72 2.0 15 69 

6 74 0.8 13 68 

7 78 1.0 14 64 

8 81 2.0 11 62 

9 72 0.4 19 69 

10 78 1.7 16 64 

11 72 1.5 11 69 

12 69 1.3 12 72 

13 70 0.3 21 71 

14 74 1.2 9 68 

15 79 2.7 13 63 

Mean ± Std 75 ± 3 1.2 ± 0.7 14 ± 4 67 ± 3 

  



Brain Sci. 2019, 9, 127 10 of 13 

4. Discussion 

The results of this study indicate that a self‐paced MRCP‐driven BCI system led to increased 

corticospinal excitability immediately following the intervention when compared to a cue‐based BCI 

system. However, these system differences were not sustained at 30 minutes. The findings suggest 

that both self‐paced and cue‐based BCI systems are effective at promoting neural plasticity. 

The BCI performance of the self‐paced system was similar to those reported previously [13,14], 

demonstrating that MRCPs can be detected without any prior training in naïve BCI users [35]; 

however, the performance of the system could be optimized so that it would be possible to obtain 

more correct pairings in a shorter duration of time, making the training more effective. An 

improvement of the system performance can potentially be obtained by using more robust decoding 

algorithms or by using movement execution instead of motor imagination [8], which would be the 

scenario in the clinic, where patients will be asked to attempt to execute the movement instead of 

imagining it. It is also possible to obtain greater motor cortical activation when a movement is 

executed instead of being imagined, which is reflected in a larger amplitude of the MRCP when 

comparing motor execution with motor imagination [7]. Moreover, an online cue‐based BCI could be 

considered, which would solve the potential issue of incongruent pairings between motor cortical 

activity and afferent feedback from the electrical stimulation; this would also reduce the number of 

false positives. These speculations must be tested in studies involving stroke patients and in real 

world scenarios outside the controlled settings in the laboratory. For the cue‐based system, it was 

possible for naïve users to operate this as well without any prior training. The advantage of the cue‐

based approach in this study is that the amount of technical optimization of the system is less than 

that of the self‐paced system, which is likely to be more appealing in a clinical setting [23]. Moreover, 

the cue‐based intervention was slightly shorter since only 50 stimuli were delivered, corresponding 

to a TPR of 100 % and 0 false positive detections per minute. 

This research indicates that the trade‐offs associated with increased system error in self‐paced 

BCI systems are outweighed by enhanced neurophysiological benefits when the user determines the 

pace of motor imagination. However, it is not clear what drives this difference. When using cue‐based 

systems it has been noted that there is a standard deviation of 200–300 ms of the onset of the imagined 

movement with respect to the cue within a single session [4,18], so the users cannot always time the 

imagined movement perfectly with respect to the cue. This could especially be problematic in‐patient 

populations where cognitive and perceptual deficits may impair the ability to attend to the task and 

predict the timing of the cue. In cue‐based systems, failure to attend to the cue accurately can lead to 

dissociation of the temporal correlation between the afferent stimulus and the motor cortical activity. 

This issue is potentially suppressed by self‐paced systems where the user is not required to respond 

to an external cue and controls the pace. It is likely that the number of accurate pairings of afferent 

stimulation and motor cortical activity is higher in the self‐paced mode; this may account for the 

differences seen in the current study. It would be interesting to investigate this hypothesis, but 

identifying the peak of maximal negativity precisely is difficult on a single‐trial level due to the low 

signal‐to‐noise ratio. 

This study validates previous findings that cue‐based and self‐paced EEG‐triggered electrical 

stimulation can increase the motor cortical excitability [4,14,15,17,18], and in a very recent study, the 

two systems were compared with similar results [36]. It was not tested if imagination alone and 

stimulation alone would change the motor cortical excitability, but it has been shown previously that 

a similar number of imaginary movements and stimuli do not change the motor cortical excitability 

[4,14]. It is important to note that there were substantial inter‐individual differences in effect, which 

can be seen in Figure 2. Several factors can contribute to this inter‐subject variability, such as aerobic 

exercise level, attention and time of the day for details (see [37] for a review). The high inter‐subject 

variability is also reflected in the stimulation thresholds which are presented in Figure 4. The 

variability in Figure 4 is also attributed to anatomical differences since the depth of the common 

peroneal nerve and the representation of foot may differ amongst the participants. The larger increase 

for the self‐paced intervention could be that the subject had to pay attention to trigger the stimulation 

contrary to the cue‐based intervention where the subject would receive electrical stimulation 
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independent of the brain state; however, this is a speculation, and there was no difference between 

the interventions after 30 minutes. It was only in the cue‐based BCI training that visual feedback was 

provided. It was not investigated whether the participants felt it was easier to perform motor 

imagination when visual feedback was presented. The results do not suggest a difference, at least in 

terms of the induction of plasticity. However, it is likely that some stroke patients may benefit from 

a visual cuem while others, potentially those with cognitive impairments, will be distracted by the 

visual feedback. This hypothesis has not been tested. The factors outlined in [37] are expected to 

explain some of the differences that are observed between the changes in excitability in this study 

compared to previous studies [4,14,15,18] when using TMS to evoke MEPs, which also leads to large 

standard errors. Another factor that could affect the induction of plasticity is the ability to imagine 

movements and in response trigger electrical stimulation, which is a skill that can potentially be 

improved with training [1]. All the subjects responded positively to the self‐paced intervention from 

pre‐ to post‐intervention measurement, while three subjects had a decrease from pre‐ to post‐

intervention measurement in the cue‐based intervention (see Figure 2). However, these three subjects 

had an increased MEP amplitude in the 30‐minutes post‐intervention measurement compared to the 

pre‐intervention measurement, which could reflect that it takes some time for the changes in cortical 

excitability to consolidate. In the previous work, this protocol has been shown to generate a high 

percentage of subjects who had an increase in cortical excitability, but it should be noted that only 8 

subjects were included [14]. Based on the results in this study, there is an indication of a high level of 

responders compared to, for example, traditional paired associative stimulation, where higher levels 

of non‐responders have been reported [38]. However, it is difficult to compare the efficacy of the 

many different neuromodulation protocols due to their methodological differences in terms of 

stimulation sites and parameters [37,39,40]. It seems that both self‐paced and offline cue‐based BCI 

protocols are efficient in inducing plasticity with a relatively low number of repetitions, and the 

contraindications associated with TMS are avoided [25]. 

5. Conclusion 

Both cue‐based and self‐paced BCIs can be used to induce neural plasticity. The self‐paced 

approach led to higher immediate changes in the neural plasticity compared to the cue‐based 

approach; however, there was no statistical difference 30 minutes after the intervention. The findings 

in the current study should be validated in a stroke population to determine if the same neuroplastic 

changes are observed, and if the patients can initiate movements with precise and consistent timing 

according to the visual cues. 
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